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Abstract: [ Objective ] Iron oxides play a pivotal role in the migration of heavy metals in natural environments, with humic acid
(HA), a major organic component in soils and water bodies, potentially exerting significant regulatory effects on these processes.
This study aims to systematically investigate the transformation kinetics of ferrihydrite (Fh) into crystalline iron oxides
(lepidocrocite Lp, goethite Gt, and magnetite Mt)and its impact on cadmium (Cd) sequestration. [ Method ] Using transmission
electron microscopy (TEM) coupled with energy-dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS),
this study conducted a controlled experiment involving Fh-Cd (control) and Fh-HA-Cd systems. Fe(Il) was introduced as a
catalyst to initiate the transformation, which was monitored over 168 h. The study examined the effects of HA (initial
concentration 4.94 mmol-L™") and Cd (initial concentration 88.29-94.27 umol-L™")on mineral phase evolution, Cd adsorption, and
retention mechanisms. [ Result ] The results revealed that in the Fh-Cd system, Lp (48.08%) and Gt (43.49%) formed rapidly
within 6 h, with Lp continuing to transform into Gt by 120 h, and a small amount of Mt (4.82%) emerging by 168 h. In contrast,
in the Fh-HA-Cd system, HA significantly inhibited the transformation rate, resulting in slower formation of Lp and Gt, with a
final mineral composition at 168 h of Fh (2.63%), Lp (42.79%), and Gt (54.6%), and no detectable Mt. During the transformation,
the solid-phase HA concentration decreased from 4.94 mmol-L™' to 4.49 mmol-L™', and Cd concentration in the solid phase
dropped sharply after 6 h before stabilizing, with the Fh-HA-Cd system exhibiting 5%—10% higher solid-phase Cd than the Fh-Cd
system. TEM-high angle annular dark field and EDS analyses showed that C and Cd were initially closely associated with Fh;
post-transformation, Lp and Gt retained strong Cd adsorption but exhibited significantly reduced C adsorption. EELS line scans
further indicated that C was primarily retained on Fh surfaces and within defects/porosities of Lp, with carbon functional groups
(C-H, C=0, C-OH) desorbing during transformation, while Cd was retained through multiple mechanisms including adsorption,
structural substitution, and physical encapsulation in the newly formed iron oxides.[ Conclusion ] This study demonstrates that HA
significantly influences Cd’s geochemical behavior by suppressing iron oxide transformation and enhancing Cd adsorption. These
findings provide valuable scientific insights into the interaction mechanisms among iron oxides, organic matter, and heavy metals,
offering a theoretical basis for understanding and managing Cd contamination in natural systems.

Key words: Iron oxides; Humic acid; Cadmium; Fe(II)-catalyzed; Adsorption and sequestration
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Mt: magnetite. The same below.
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Relative content distribution of Fe oxides during the transformation process of ferrihydrite ( a. Control group of ferrihydrite+cadmium

transformation; b. Experimental group of ferrihydrite+humic acid+cadmium transformation )
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cadmium. The same below.
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Fig. 2 The variation of total organic carbon concentration ( a) and cadmium concentration (b ) during the transformation of ferrihydrite-humic

acid-Cd coprecipitation
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Fig. 3 Transmission electron microscope-high angle annular dark field ( TEM-HAADF ) images of Fe oxides during the ferrihydrite-humic

acid-cadmium transformation ( a. and b. morphologies of ferrihydrite at 0 h; c. and d. Co-precipitation of Fe oxides for 168 h; e. lepidocrocite at
168 h; f. goethite at 168 h )
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£ : HAADF, HfIJERY. Note: HAADF, high angle annular dark field.

B 4 KERE -SSR - At AR P RE R (A BOE R &% (a. Fh (O h); b. Fh S008I %44k (168h); c. JCFh 3%
M PRk (168 h))

Fig. 4 Mapping images by energy dispersive spectrometer during the ferrihydrite-humic acid-cadmium transformation ( a. Fh (0 h); b. Fe

mineral aggregates covered by Fh 168 h; c. Fe mineral aggregates without Fh coverage ( 168 h))
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Fig. 5 Electron energy loss spectra of Fe, O, and C during the Fh+HA+Cd transformation (a. 0 h; b. 168 h)
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Cd % B 52 4 A8 £ 2 e Tk SR Ak R B Al o
W B S B Sh AR . B4R (0~6 h), [EIAH
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WA s JEHIRIATE Fe (11) U5 S/ ERAe f b X B8 18147 1) 52 e BL 117

Cd ¥ JEM# N (& 2b), AIEEM T Fh [6] Lp Al
Gt AL SR F M (SSA) /P27, M
YD T T RS 0 o Fh B 7 SSA (Lt W B T
K3 Cd(70.99 pmol-L™" I 83.66 pmol-L™"), {HfiZ
mnax Lp Ml Gt MIE R, WMREJ) FRE; SR, 6 h
Je A Cd WREE RS LTF (I 2b) B, FEK
) Lp Al Gt i i HA ML 4k 22 B 77 Cdo S5 40 [
A Cd e AR IR AL B 2 5%~10%, HAE 24 h J5HE
PUkEFaE (K 2b), #8 HA MFE7E R E R T
Cd W EAHAE R RE ST . PTREMIALEIELHG: (1) HA
BTG PEE RE T (AR FEFNER L ) 5 2 1 45 A 1 T
BT Cd AW RFHRE A1 20, HA AT REHE i B
W Cd [ ETEGAAAL R (2) HA il T #h
(et A 2730 0 SER T Fh (AEAERTTE], A
FERT Cd fEfm SSA w7 LR B ESE]; (3) HA
A REIE 2 Lp (945 5 B S 80T AR BIE 1935 , 3
BB N Cd 4R T BAMY E A7 e 12T
TEM-HAADF #l EDS 73 #friff — 2 348 17 ik #l
#, OhWF, CH Cd'5 Fe O mEEA (K 4a),
L] FhXf Cd 1 HA BB B RE J15R . 168 h 5,
Lp Al Gt X} Cd WM B3, (AXE C Mg Bk 55
(F 5b), 35 ASBRA Y AL SSA A mifh 2z
JEAEALP—3, Fe-O 55 Cd BYAHEME (18 4) =0,
BAAY RS Cd iRy FER K . Cd nT R
ZFPHLEIR B TR0 gk, s 2R
B S5 EAC I B2 . Lp S A b B 40 KL BRI
S (I 3¢ FIEl 3e) ATRERN Cd 1P R 424 T
i, T Cd MZEH R AT RE & 4= 7E Lp 3¢ Gt 1Y/
M, JEHJEAE Fe LA, XRRHILHI 72 SE AT Y
W EARE, AN, HA AIFETE AT e L 2
TERAEA Y R R T, PR Cd
B, JCHOETER AR .
33 CHESSUYHLTIEFHEES EUIE
EELS &M E M E e /s T C %1k
HREPHSIEEFAIE . 0 h &, Fh i C {5550
BT Fe 1 O, $0 27E 60~80 nm AL IE(EBH & (&
Sa), JZWT Fh i HA AU E 4. 100~250 nm N C
S35 BT P g 5 HA FE Fh fS0RLR] A% = E 3459 W f
A, 168 hit), C 55 MmERAL, Hh7E Lp #Fé
(£590 nm ) FIFLALERL (29 125nm) &b (& 5b), &
B C M\ Fh 3R ] i S B a0 RS .

HReA L (B Sc fIE 5d) dF— 304 T i%ss
W 285.1~286 eV ( C-H/C-C ) {551 168 h iif I 3%
AR, W C-H ok C-C HEAE G fhad 72 vl i & A= b
2 A ks 288.1~289 eV (C=0) {5 5 Ml # /R
C=0 % i) i Bt sl F4 At ; 289.9~292 eV ( C-OH) 5
S 168 h B R AR E I H AR R, e T
C-OH #EMFR /R . LR ARfb R, HA 7EFEfbiT
PR3 T 3 I A OB RY, AT REJE T Fe (1)
P I AR JF R N BT HA 43 F 2586 B 40 fift

C HREAEHLEI AT B 52 A i 25 A0 R AR 2% 1)
AHIE . Fh i SSA ARSI I K i HA, (HREE
Lp Al Gt BB, SSA W/ S8 HA MR, 4R
I, Lp Al Gt g Gk FEFIFLB R C AL T8 14 [ 47
B, BXAE A SR FREE AT BRI Y 4 30 [ A7 2
AEEZ S, B, fetgeh, SAEY B T g
) E A AR AR YA ML S TR R .
Hh, HA BYREME AT RE RO AR T A ALY, axdk
Yyl gt — 2 S AL R A BAE R, s
ML 2A
34 BEENERRME

AR5 B 45 R0 AR A AL I E A SRR T Y
M ERAb 2217 R B PR L, HA X Fh #4L A 90 il
YEFIZRM, 7E5 SA PR MRS (i e 4 3 ol ]
WU ), BRE AL LT RE AN, JE A
A Fh AR INAEAE , DT (R A e 1) 2 4 s W i e
71, HA Hi5 Cd FEIfERRE1#/R,, 76 Cd 154 + 1
BB T, IRINE & HA WA LR AT g — R A 2L
HISRNE . SRIM, HA RIREMEAL C B AT e 2 80h
BLR B RE R, 3% AR RUEE 1] RS2 ) - SERIE A

AT FE 1Y Jry BR P A T 52 30 4% 14 T RE TG 12 o8 A A
PLARIREE . flan, SegerhEde pH, IREEF Fe
(ID) WEEFRE 5 H AR AE 25 5. WAk, SRR
5 EAE W T Sl e A A B R AV RS I . R
KA A S5 G AL RAEBORFN 5073l Iy 2240,
— L RRAFEAELM (pH, BEFHE | AW
Bl ) WAL Bh 1 RIOC R BAE BRI

4 %5

AP FE I I AR G S M2 N R AR, 878
T Fe (II) #S F/RKERH™ (Fh) [0 S AER ALY i
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Eibd 63 ¥

TRfBh J127 , LA K HA FI Cd 785 Ak 3o 75 v A e Fff A
EAEAT R 5 REM, Fe (11) BEMIET Fhm Lp
MGt B9 EE 1k, T HA SRR RER] (R AL
FRILAE ) WL PR A R R, B Rk SR
b4, Fh-HA-Cd b 5C 04l rhass s i [ A Cd
WRERW, HA B9 T Cd BREIAHAE R e 1 . Rk
JFUAET, C 1 Cd 5 Fh mEME, HILIFRE Lp
H1 Gt X Cd BB RE S ATh e, (HXS C iYW B I 3
WS, RO T AR AR L 3R T R A e R R IHT
e AR, fEfEfbad #irp, C HZEAFE T Fh
Fum M Lp myskFEAALBE T, C=0 F1 C-OH #ii /L,
T W] HA TERAL P B B AR BB AT o Cd 03 3k i
B L 2 AR R 3 2 A 2 AL AR B T8 E B
MEEAY T . ABERERD], HA G828 5k E Ak
WAL ESE Cd Bf7, BE W Cd MHER{b2:T
T2, N B SRR - HL IR - B 4 A B AL I
PEAL T OGRS . RO AT 45 5 IR o R AR+
A CAnJEAL X BHEIISOETE ) MorF 3h J1 2414,
#E— 2 ] HA-Cd-Bk &0 WA BAE B 3 28 72
FAORALE, [ BFERR AN R AR 454 (i pH. &+
SREE ) XFRAL R BT R, A Cd 1534 iR
BEFNFREE 5 2 S AL T hORS o ) 38 SR
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