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Abstract: Soil is a unique “quantum mechanics” system, and significant orbital hybridization effects occur at soil solid-liquid
interfaces. Orbital hybridization effects play a critical regulatory role in soil properties, processes, and functions. However, this
concept has not been given much attention in the context of soil solid-liquid interfaces. In the present study, the structure and

properties of soil solid-liquid interfaces were quantitatively described based on classical interfacial reaction theory, and atom/ion
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orbital hybridization in the electric field at the soil particle surfaces as well as its influence on ion-particle and particle-particle
interactions were characterized. The intrinsic correlation and regulatory pathways were elucidated for different soil environmental
processes, such as mineral weathering, soil acidification, heavy metal passivation/activation, soil water movement, and phosphorus
transport. They reveal a multi-scale coupling and multi-process linkage mechanism spanning: subatomic orbital hybridization effects
— microscale interfacial reactions — mesoscale soil particle interactions — macroscale soil processes and functions. This cross-scale
research framework provides a crucial theoretical foundation for advancing soil system functionality, enhancing cultivated land
quality, and strengthening agricultural environmental protection. The atom/ion orbital hybridization effects at the soil solid-liquid
interfaces fundamentally arise from the interactions between the electric field and atoms. Future researches should prioritize
advancements in the following domains: 1) Synergistic integration of modern analytical techniques and quantum mechanical theories
to elucidate surface reaction mechanisms governed by orbital hybridization; 2) Development of precise predictive models for

water-soil-solute transport dynamics; 3) Revealing multiscale coupling mechanisms between microscopic soil processes and

macroscopic manifestations; and 4) Establishing a quantum mechanics-based core theoretical framework for soil science.

Key words: Orbital hybridization; Interfacial reaction; Surface electric field; Soil colloid; Heavy metal; Soil acidification
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Fig. 5 Schematic diagram of H'-O atoms on the mineral surface (a ), the dissolution density variations of mineral elements in

montmorillonite ( MMT ), illite (ILI ), and kaolinite ( KLI) as a function of pH and H" adsorption energy density (b)
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Fig. 8 Cumulative flux of soil particulate phosphorus ( PP ) as a function of electrolyte concentration (a) and electrostatic

repulsion pressure between soil particles (b )
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