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Elimination of Organic Pollutants in Soil Basing on Synthetic Microbiome
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Abstract: Polluted soils typically harbor a complex and widespread array of organic contaminants that seriously endanger
ecological security and public health. The utilization of the microbiome to degrade organic pollutants in soil is regarded as a green,
safe and cost-effective technique. Comparing with the traditional single-strain method, the bioremediation method based on the
synthetic microbiome has obvious advantages. However, this method still has some problems and challenges concerning with the

complex soil contamination with multiple organic pollutants. An in-depth investigation of the process and mechanism of the
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organic pollutant elimination in soil using synthetic microbiomes has become a research hotspot in bioremediation. This paper
reviews the advantages and problems encountered in applying synthetic microbiomes to eliminate organic pollutants in soil,
clarifies the methods for designing and constructing microbiomes for organic pollutant degradation, and analyzes the role and
mechanism of synthetic microbiomes in eliminating soil organic pollutants. currently, synthetic microbiome is still at its early
stage in the field of soil bioremediation, with more crucial data being needed. Future efforts must intensify research into
synthetic-microbiome optimization, the combined use of synthetic microbiomes with other organisms, and multidisciplinary
integration and technological innovation, thereby providing a robust foundation for developing safe, efficient, and feasible

biological strategies for the remediation of soil organic pollution.
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Fig.1 Research hotspots on elimination of organic pollutants in soil basing on synthetic microbiomes
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Fig.2 Methods for synthesizing microbiomes by integrated design
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Table 1 The elemination effect of organic pollutants in soil based on synthetic microbiome
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