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Abstract: Soil chemistry has developed rapidly over the past few decades and has formed a relatively complete theoretical system
and technical system. Scientific apparatus represented by synchrotron radiation sources are playing an increasingly important role
in the research of soil chemistry. The related technologies based on synchrotron radiation, with their unique advantages, can
conduct in-situ analysis on the cycling of elements and substances in complex environments at the molecular level, providing

more comprehensive technical support for the research covered by soil chemistry, such as soil mineral chemistry, soil organic
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chemistry, soil inorganic nutrient chemistry and soil pollution chemistry. Significant advances have been made in several areas,
including the identification of poorly crystalline minerals, the structural and spatial resolution of organo(metal)-mineral
complexes, and the characterization of the morphology and spatial distribution of heavy metals. In recent years, the combination
of synchrotron radiation with other spectral and imaging techniques has been increasingly applied in soil research, greatly
promoting the development of geochemistry. In this paper, it has been reviewed the progress made in the field of soil chemistry by
related technologies based on synchrotron radiation sources and other combined technologies. Finally, prospects for the
development of synchrotron radiation sources, for the further integration of complementary techniques, and for the application of
related technologies based on synchrotron radiation to the actual soil environment are proposed.

Key words: Synchrotron radiation; Soil mineral chemistry; Soil organic matter chemistry; Soil inorganic nutrient chemistry; Soil

pollution chemistry

- HE R Hb K 3R IRDAT ) 6 LA A Y SR AR AR R T
B, WOREBEMAA IR, A Y DL R R
ZRG ARG, EA R LR YIE A .
FEor SHENUT R . RIS Y DL R AT R A
Yy ERAL A0 PR S5 S B FR AL A T . 1 b 3
SRR Ay SCERE, AR B A Y
7 1 HA BRI,

b2 SR Y RIS v R R S T A A
MICRIEA AW 122 501505k SR, LA
G E R B TTRZ AN, (LR RER
SRRy RS, AR R T RAFESSS
[E] 5340 H A X AT (XRD ) B AT RAE M TTH™
Yatihey, ARE LAAFATT 3 v 3 1 55 A R 454
AR, EFRBHEFIICHE . BRUNGEEARTF
B iz s T R eE sy, oMl T ek
SEATR Y & D), BB R AR X RO
LRI ( XAFS ), X HF42¢66E (XRF ), [l
ARG X B ATS (SR-XRD ), T mifE X Sk
PR B BC X 23 A1 BRBOGIE ( PDF ). [R] 20 48 S e L
A e 2T AN ( SR-FTIR )., [A) A 48 5 41 4h & B
( SR-IRM ), [RHR4EHE FREIE (SR-XPS ), 4
FEH X SR RS (STXM ) DL [R5 48 5 58 it
FHLWZER (CT) FZ2 AR, AU LIRS
e CHE) TR odT, HRBUE S . HA MK
23 (BRI (] S0 e 00, RS R P RO EE B ) 45
AT R IE SRR T AT FEF B0,

1 [ HOR 1A

1987 4, Hayes %R Jeia R A f bt XAFS

FoAR ELHEAE R T 1 AR A 2k A T 4 2% T B 1 20 T
HLE (B 1), 1994 4F, Fendorf Z:IZ G 4% i F1 T
XAFS AR TR WO IR A, iR
R ARTE 2= P RN . XAFS A5G
HAMYEAR , B X SFEIRIGE D 45#) ( XANES)
TEMP R X SRMOE AL (EXAFS) i
EXAFS RS HEAHLAE b B 0F 53 J5 7 104 J&y 35 C 437 B4
Bif 5P, XANES W50 T B A R fkf 2l
FIF EXAFS A w5 7 & Fh 4 s 2 11 2 481k
P IRAETE A, DA 4 Jd 7S A i 25 A bl
HilU 1 XANES A9 W it R 07 B 2 B SR AR S 14 3
Jnmsgan, an As (D) WG RERAL T As (V)
BA R, SEAEk, ST RIS AMIX X 5
2RI WORS 2B 250 ( u-XAFS ) M IX. X S92 665
(p-XRF) BBk EZ H T LMY R a5 E
2 MR BERE i b 4 I8 JT 2 AR IR 25 i 2s [8) 43 A
fER AT B e AR 2B S R BL S R 2
PDF H A Z ¥ T FAE A} b 3 408 i () 7 1 25
FECALE S, X X G2k b 7 A o B s k17
AR, A58 FE AR A R R, BRI P2
(i) B8 ) B S 28 (] A A, Ha s [EVACRE A | 5T S i
A R s R AL FALEE . A L F L XRD HAR,
SR-XRD [/r PRI m, FEIEEEE, Al i
XA AR I T R R A 09 STXM A &kl
LT X Lk WA A X SRR, DL A 1]
R A BRI R, E 24k (2D) M =4k
(3D) B TFREETER . B MAENE & .
FZERE RS, I Bk 8 2 b T b R 27 Sk
MR R G0 PRBEE R RIML 45 1 A oE o0,
) 25 8 B 4 R Dy 483 = AR & R ] 4y Sl AR TR A

http://pedologica.issas.ac.cn



13 BEREPHAE . [P AR STAR O 0 B AR 7 Al v 0 3 P i e 27

R L3500 4 /F T magnitude

\\\‘\\\\\ Fo 338A Ru10A e

EXAFSxK’

KA™

E: bk OEHRTRRIVN, R WIETHEE; 1 ASME . B TXIWMaY, 2 NIEARE EEE, 3~5 ANESEGY; Hb s
M 45280 EXAFS Ml & . Note: The photoelectron wave vector magnitude is given by k, and the interatomic distance is designated as R.
An outer-sphere, ion-pair adsorption complex 1 with the first hydration sphere shown as a shaded area; a solid solution of selenite 2 in the
oxide phase; and inner-sphere complexes 3 through 5 on the oxide surface. Distances determined from the selenium EXAFS analysis are
shown for the model structure 5, which is consistent with the EXAFS data. The oxide is shown as the striped area below the line that

represents the oxide-water interface.
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Fig. 1 Extended X-ray absorption fine structure ( EXAFS ) spectra of selenate and selenite adsorbed to a-FeOOH ( solid lines ) as compared with
the dissolved sodium salts ( dashed lines ) ( Left), and structures for selenite adsorbed to a-FeOOH ( Right ) "
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: XANES, X FE&MIWEHLEH; EXAFS, ¥ EH X GHEMldsty; FTIR, HEMNASMRIIDERE; CT, IHENLEIZEH;
XRF, X HHR 71 ; STXM, HIiBE S X §F4k W14 . FE. Note: XANES, X-ray absorption near edge structure; EXAFS, Extended

X-ray absorption fine structure; FTIR, Fourier transform infrared spectroscopy; CT, Computed tomography; XRF, X-ray fluorescence

spectroscopy; STXM, Scanning transmission X-ray microscopy. The same below.
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Fig. 2 Applicaition of synchrotron radiation techniques in the field of soil chemistry
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Fig. 3 Distribution maps of functional groups in typic Hapludoll section detected by SR-based FTIR strategy
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Presence of a colored dot indicates that an element can be detected through the corresponding technique.

E 4 RS A (XANES. EXAFS. XRF. FTIR, STXM #I XPS)

IS FHOGER AL

Fig. 4 Elemental range covered by synchrotron radiation techniques ( XANES, EXAFS, XRF, FTIR, STXM, and XPS)
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RGB color scheme

FE5ESTXM

2 pm

STXM
-Ptychography

FE:a) ~d) NTE Fe/C BE/R LN 0.5 #1 0.1 fif DOM-Ri Al DOM-Ra 55 Fe. Cr JGUTiE (B ST X 4 BH (STXM ) % RGB
&, 45444 S0.5Ri. S0.5Ra. SO.1Ri Al S0.1Ra; f). i) 7 S0.5Ri F1 SO0.1Ri RGB & it & X 8 (B A g2t ) BB MIE; ¢). h).
j)s k) RETSEM TSR (Ptychography ) M94% (Cr) FI%k (Fe) 78 L 1@ Xl (BEEL ) MITHR I M. e) HKH RGB
RO RFERARBIE (LLE: Cr; G0 C; ¥ Fe) MEM; LM =FEEIRS RITR Z MM SCHEYE; Cr. C. Fe iy
MR BS540, g%, WEEMmAE S IFME, Note: a) —d) are RGB maps of the coprecipitates formed at the Fe/C molar ratios of 0.5
and 0.1 in the presence of DOM_Ri or DOM_Ra based on conventional STXM, named S0.5Ri, S0.5Ra, SO.1Ri, and SO.1Ra, respectively;
f)and i )are zoomed-in view of selected regions( orange dashed lines )in the RGB maps of S0.5Ri and S0.1Ri;g),h),j ), and k )are elemental
distribution maps obtained by the ptychography amplitude images of selected regions ( orange dashed lines ) at the Cr, Fe L-edge; e ) is RGB
color scheme was used to indicate the superposition of different colors ( red, Cr; green, C; blue, Fe); anew color will be generated when
two or three colors are mixed, which represents the association of elements; the relative concentrations of Cr, C, and Fe are positively

correlated with the color intensity of red, green, and blue, respectively.

Kl 5 FT1E48 STXM 5& 2 M TA15 i1 ( STXM-ptychography ) A%k (Fe ). #% (Cr) Fifk (C) PR PICE M
@[39]
Fig. 5 Elemental distribution maps of the Fe, Cr, and C coprecipitates based on conventional STXM and STXM-ptychography

[89]
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