ACTA PEDOLOGICA SINICA

黄土高原地区¹³⁷Cs的分布及其影响因子研究*

李仁英¹杨浩¹唐翔宇²赵晓光¹ (1土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),南京 210008)

(2 中国科学院生态环境研究中心,北京 100085)

EFFECTS OF GEOGRAPHICAL FACTORS ON THE DISTRIBUTION OF ¹³⁷Cs IN THE LOESS PLATEAU

Li Renying¹ Yang Hao¹ Tang Xiangyu² Zhao Xiaoguang¹

(1 State Key Laboratory of soil and sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)
 (2 Research Center of Ero-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

А

关键词	黄土高原; ¹³⁷ Cs;	分布;影响因子
中图分类号	S157.1	文献标识码

中国的黄土高原地区,由于其土壤质地均一,颗粒 细小,颗粒间粘结力弱,结构松散,稳定性差等性质,极 易遭受水蚀以及风蚀。据统计,黄土高原水土流失面 积达 45.4万 km^2 ,年侵蚀模数大于15000 tkm^{-2} 的剧烈 水蚀面积为 3.67万 km^2 ,占全国同等强度侵蚀面积的 89%^[1]。每年进入黄河的泥沙约为 16亿t,其中约有 13 亿t来源于坡耕地,约占土壤侵蚀总量的 81%^[2]。

放射性同位素示踪技术在不改变原始地貌的条 件下利用示踪元素或核素的含量分异规律来研究土 壤侵蚀的发生、分布,具有精确、快速、且可反映出侵 蚀和沉积过程变化等优点^[3],因而被越来越多的研 究者所利用。¹³⁷Cs 示踪技术由于能较为准确地估算 出土壤侵蚀模数^[4]而被用于黄土高原地区的土壤侵 蚀研究。本文通过研究该地区小流域南沟中的¹³⁷Cs 在不同利用方式、典型地貌部位及典型坡面的分布 规律,探讨¹³⁷Cs 分布的影响因子,从而为土壤侵蚀 定量模型提供参数依据。

- 1 采样区概况与实验方法
- 1.1 小流域概况
 小流域南沟位于延安市的高坡村,地处黄河中

游黄土高原丘陵沟壑区。降雨量为483.4~ 630.8 mm,7~9月份的降水量占全年降水总量的 54.7%~63.6%,径流深23~75 mm。气候属半干旱 至半湿润的过渡区且旱季、雨季分明。年平均气温 8℃~10℃,多年平均≥10℃积温在3100℃~ 3300℃,持续时间为170~180 d,无霜期165~190 d,最冷月为1月,平均气温-6.3℃~-7.2℃,最热 月份为7月,平均气温22.7℃~23.2℃。

研究区域的土壤类型以黄绵土为主, 土壤质地 较轻, 肥力较差, 矿物组成以石英、长石和云母为主。 主要地貌类型为梁峁状黄土丘陵。农田以坡耕地为 主, 在修筑的梯田上, 种有苹果, 甜瓜等水果。在山 坡上长有次生的刺槐, 地面覆盖杂草, 植被覆盖度较 低。

1.2 土壤样品的采集

样点分别选在流域内梁、坡、沟三个地貌单元 内,包括次生林、耕地、草地等几种利用方式。本研 究分别在这三种利用方式上选了A、B、C、D和E等 五个剖面线。在梁和坡两种地貌单元内,从坡顶顺 坡向下每一定间距采集土样。在沟的地貌单元内从 沟头沿水流方向每一个坝取一个剖面样。采样点的

^{*} 国家重点基础研究发展规划项目(G1999011801)和国家自然科学基金项目(49973027)资助 作者简介: 李仁英(1975~), 女, 山东泰安人, 博士研究生, 主要从事土壤侵蚀及水环境的研究。E-mail: ryli@issas.ac. cn 收稿日期: 2003-02-05; 收到修改稿日期: 2003-06-05

空间分布如图1所示。

图 1 采样点空间分布图(12万)

样品分全样和分层样两种。全样采用土钻法, 把土钻垂直打入一定的深度,取出完整土样即可。 分层样在 10 cm × 20 cm 的面积上,用小铲刀取样。 非耕作土壤以 2 cm 的间隔取样至 10 cm 深度,以下 以 5 cm 间隔取样。耕作土壤以 5 cm 的间距取样。 取样的最大深度一般都在 30 cm 左右。

1.3 样品测定

土壤容重按常规方法测定^[5]。

¹³⁷Cs 含量测定: 土壤样品经自然风干, 剔除杂 草和小石子后研磨过 2.0 mm(10 目) 筛。在 105 ℃ 左右的烘箱中烘至恒重, 冷却后用 0.01 g 精度的天 平称取 300 g 放在相同规格的塑料容器中, 然后在 高纯锗探测器及多通道分析仪所组成的 ¥ 谱议 (对⁶⁰Co1.33 MeV 的能量分辨率为 2.10 keV, 峰康比 大于 48 1, 相对探测效率为 25%) 上测定。¹³⁷Cs 的质

非耕作土壤

量浓度根据 662 keV 射线的全峰面积求得,并依据 (1)式计算出相应样点的¹³⁷Cs 面积浓度^[6]。

$$Cs = \sum_{i=1}^{n} C_i \cdot Bd_i \cdot D_i \cdot 1000 \tag{1}$$

式中 *Cs* 表示样点¹³⁷Cs 的面积浓度(Bq m⁻²), *i* 为采 样层序号, *n* 为采样层数, *Ci* 为 *i* 采样层的¹³⁷Cs 质 量浓度(Bq kg⁻¹), *Bdi* 为 *i* 采样层的土壤容重 (t m⁻³), *Di* 为*i* 采样层的深度(m)。

2 结果与讨论

2.1 ¹³⁷Cs的空间分布规律

2.1.1¹³⁷Cs 在非耕作土壤和耕作土壤中的剖面分 布 一般而言, 在非耕作土壤和未扰动的土壤 中, ¹³⁷Cs 主要分布在土壤剖面的上部, 且主要富集 在 0~ 5 m 之间^[7,8]。但从表 1 可知, 黄土高原地区 中的¹³⁷Cs 具有较深的分布, 甚至达到 25 m。这可 能与黄土颗粒间粘结力弱, 结构松散, 适于¹³⁷Cs 向 下迁移有关。

而在耕作土壤中(表 1),因其受到人为因素(主要指耕作活动)的强烈干扰,¹³⁷Cs基本均匀地分布在 15~20 cm 耕作层深度内^[9]。但分布深度因作物种类,耕作年限及耕作措施等不同而具有一定的差异。C5 土样来自斜坡的一小片耕地,由于坡度较大,不利于大幅度翻耕,因此,¹³⁷Cs 的分布较浅,主要分布在 0~15 cm 之间;而 E3 采样点位于集水区,淤积层较为深厚且耕种时间较久(30 年以上),从而¹³⁷Cs 具有较深的分布(0~20 cm 之间)。

剖面层次(cm)			剖面尼次()		
	A2	A5	司画法入(m)	A2	A 5
0~ 2	78.62	89. 56	0~ 5	58.76	62.81
2~ 4	97.87	78. 21	5~ 10	61.80	45.59
4~ 6	88.34	60. 79	10~ 15	50.66	60.79
6~ 8	76.19	48.63	15~ 20	0	58.76
8~ 10	63.42	49.44	20~ 25	0	0
10~ 15	34.60	20. 26	25~ 30	0	0
15~ 20	0	28.37	30~ 35	0	0
20~ 25	0	15. 20	35~ 40	0	0
25~ 30	0	0			

表1 非耕作土壤和耕作土壤剖面¹³⁷Cs的面积浓度(Bq m⁻²)

2.1.2 典型地貌部位的¹³⁷Cs 剖面分布特征 图 2 为典型地貌部位中¹³⁷Cs 剖面分布状况。图 2a 的

采样点位于中上坡, 其¹³⁷ Cs 主要富集在土壤表 层 0~15 m之间, 这与他人的研究结果相比, 富集

较深^[10,11]。而 5 cm 以下的¹³⁷Cs 面积浓度与土壤表 层0~ 5 m范围内的¹³⁷Cs 相比并没有急剧减少, 这一 方面可能与黄土的粘粒及有机质含量较少, 与其它 土壤相比¹³⁷Cs 易于向下淋溶迁移有关, 另一方面可 能是该点受到严重的土壤侵蚀, 以致表层富含¹³⁷Cs 的细小土壤颗粒流失, 从而使土壤表层的¹³⁷Cs 面积 浓度减少。

土壤的¹³⁷Cs 剖面分布会因微地貌的不同而有 所差异。图 2b 是中下坡的剖面样点。该图表明在 10~15 cm 之间有很高的¹³⁷Cs 面积浓度, 而表层 的¹³⁷Cs 面积浓度较低,这可能由于 A 采样点系列是 一复杂的凹形断面,而该剖面样点正好位于凹点上, 从而经受了土壤侵蚀及沉积的复杂过程。

图 2c 由于受到人为因素的影响,¹³⁷Cs 在剖面中 的分布基本上是均匀的。因此,¹³⁷Cs 在耕作土壤中 的剖面分布并不能反映出土壤被侵蚀的状况。但它 在土壤中的最大分布深度能指示土壤最大耕作层深 度,同时剖面中的¹³⁷Cs 总含量能提供有关土壤侵蚀 程度的信息。

图 2 ¹³⁷Cs 在土壤典型剖面的分布状况 (a,b 属于非耕作土壤; c 属于耕作土壤)

图内数值为采样点海拔高度(m) 图 3 ¹³⁷Cs 在不同断面的分布

2.1.3 ¹³⁷Cs 在坡面的分布状况 黄土高原地区 强烈的土壤侵蚀致使表层土壤及土壤吸附固定 的¹³⁷Cs随着水土流失而损失。所研究小流域中 的¹³⁷Cs含量大约在 107.39~985.77 Bq m⁻²之间,与 背景值2 266 Bq m⁻²⁽¹⁾相比明显较低,且在空间上具 有较大的变异。 图 3 表明了¹³⁷Cs 在坡面上的分布状况。从这 两个图可知,¹³⁷Cs 的空间分布具有很大的变异且非 耕作土壤中的¹³⁷Cs 含量明显大于耕作土壤。耕作 土壤中的低¹³⁷Cs 含量主要与陡坡种植方式下土壤 的可蚀性较大有关。而在非耕作土壤中,由于植被 截留降水,减少雨滴的冲击,提高土壤抗蚀能力,土

⁽¹⁾ 杨明义。多核素复合示踪定量研究坡面侵蚀过程。中国科学院博士学位研究生学位论文, 2001. 38~39

壤侵蚀强度减弱,从而¹³⁷Cs 含量相对较高。 2.2 ¹³⁷Cs 空间分布的影响因子

2.2.1 ¹³⁷Cs 与坡度的关系 非耕作土壤中¹³⁷Cs 面积浓度随坡度的变化趋势与采样点所处的坡面状况 及微地貌有很大关系^[12]。而在耕作土壤中,由于人 为的犁耕堆积作用,¹³⁷Cs 基本均匀地分布在田间 中。而所有样点中的¹³⁷Cs 与坡度的相关分析得知, 两者呈显著相关: y = -8.766 3 x + 597.95, (r = 0.53, p = 0.05, n = 18), 式中, x 为坡度(°), y为¹³⁷Cs 的面积浓度(Bq m⁻²)。

2.2.2 ¹³⁷Cs 与坡长的关系 无论在耕作土壤还 是在非耕作土壤, ¹³⁷Cs 在坡长上的变化趋势相同且 与文安邦等^[13]的研究结果一致, 即:随着坡长的增 加其面积浓度先增加, 其增加的位置及程度视地形 而定;随后由于坡长的增加, ¹³⁷Cs 的面积浓度降低。 在中下坡时, ¹³⁷Cs 的面积浓度达到最低值, 然后, 其 面积浓度又随之升高。而所有采样点的¹³⁷Cs 与坡 长的关系为 y = 1. 753 3 x + 295. 3, (r = 0. 43, p = 0.05, n = 18), 式中, x 为坡长(m), y 为¹³⁷Cs 的 面积浓度(Bq m⁻²)。两者的相关关系不显著。通 过比较¹³⁷Cs 与坡度、坡长的关系可知, 在所研究的小 流域中, 坡度对¹³⁷Cs 的影响明显大于坡长。

参考文献

[1] 杨勤科, 焦锋, 雷会珠. 论黄土高原山川秀美建设. 水土保持

研究,2000,7(2):52~54

- [2] 王维敏主编. 中国北方旱地农业技术. 北京: 农业出版社, 1994
- [3] 石辉, 刘普灵, 田均良. 核示踪技术在土壤侵蚀研究中的应用.水土保持通报, 1997, 17(3): 44~49
- [4] 杨浩,杜明远,赵其国,等.利用¹³⁷Cs示踪农业耕作土壤侵蚀
 速率的定量模型.土壤学报,2000,37(3):296~305
- [5] 鲁如坤主编 土壤农业化学分析方法.北京:中国农业科技 出版社,2000.266~271
- [6] Sutherland R A, de Jong E. Estimation of sediment redistribution within agricultural fields using caesium-137, Crystal Springs, Saskatchewan, Canada. Appl. Geography, 1990, 10(3): 205~221
- M chemy JR, Ritchie JC. Physical and chemical parameters affecting transport of 137-Cs in and watersheds. Water Resources Research, 1977, 13: 923~ 927
- [8] 张信宝, 赫吉特 D L, 沃林 D E ¹³⁷Gs 法测算黄土高原侵蚀速 率的初步研究. 地球化学, 1991, 3: 212~218
- [9] 张信宝, 李少龙, 王成华, 等.¹³⁷Cs 法测算梁峁坡农耕地土壤
 侵蚀量的初探. 水土保持通报, 1988, 8(5): 18~ 22
- [10] Walling D E, Quine T A. Use of caesium-137 to investigate paterns and rates of soil erosion on arable fields. *In*: Boardman J, Foster I D L, Dearing J A. eds. Soil Erosion on Agricultural Land. Chichester, UK: Wiley, 1990. 33~ 35
- [11] Owens P N, Walling D E. Spatial variability of caesium-137 inventories at reference sites: An example from two contrasting sites in England and Zimbabwe. Appl. Radiat. Isot, 1996, 47(7): 699-707
- [12] 汪阳春,张信宝,李少龙,等.黄土峁坡侵蚀的¹³⁷G 法研究.
 水土保持通报,1991,11(3):34~37
- [13] 文安邦,张信宝,张一云,等.黄土峁坡耕地土壤侵蚀与泥沙 输移.山地研究,1995,13(2):85~90