DOI: 10.11766/trxb202104140197

郑鹏,党廷辉,薛江. 粉煤灰、砒砂岩对煤矿排土场土壤水分特性改良的研究[J]. 土壤学报, 2023, 60 (2): 399–408. ZHENG Peng, DANG Tinghui, XUE Jiang. Experimental Study on the Improvement of Soil Moisture Characteristics of Coal Mine Dump by Fly Ash and Arsenic Sandstone[J]. Acta Pedologica Sinica, 2023, 60 (2): 399–408.

粉煤灰、砒砂岩对煤矿排土场土壤水分特性改良的研究*

郑 鹏^{1,2},党廷辉^{1,2,3†},薛 江³

(1. 中国科学院教育部水土保持与生态环境研究中心,陕西杨凌 712100; 2. 中国科学院大学,北京 100049; 3. 西北农林科技大学资源环 境学院,陕西杨凌 712100)

摘 要:露天煤矿排土场土壤理化特性差直接影响复垦效果,改善土壤水分特性对排土场的复垦具有重要的理论与实践意义。 本试验以内蒙古自治区的黑岱沟露天煤矿为对象进行土壤改良试验,将粉煤灰(F)、砒砂岩(S)作为添加物,对排土场土 壤(L)进行3种组合处理(LF、LS、LFS)并设置不同的质量比例梯度,试验共设(L3F1、L4F1、L5F1、L1S1、L2S1、 L3S1、L4S1、L5S1、L1F1S1、L2F1S1、L3F1S1、L4F1S1、L5F1S1)13种不同质量比的混合处理和(L、F、S)3种对照 处理,采用离心机法测定各复配土壤在不同水吸力下的含水量,利用 Gardner 模型拟合并绘制其水分特征曲线,计算各复配 土壤的比水容量、田间持水量、萎蔫系数、有效水含量。结果表明:(1) Gardner 模型能够很好地拟合 13 种复配土壤的水分 特征曲线,粉煤灰的添加使排土场土壤中的细土粒含量(黏粒、粉粒)增加了 24.11%~37.19%,提高了土壤的持水性和供 水性,添加础砂岩能够改良土壤的持水性但不能改良供水性能。(2)排土场土壤、粉煤灰、砒砂岩质量比为1:1:1(L1F1S1) 时持水性能最好,较排土场土壤提高了 47.6%; 排土场土壤、粉煤灰质量比为 3:1(L3F1)时其供水性能最好,较排土场 土壤提高了 40.23%。(3) LF 组合处理和 LFS 组合处理的田间持水量和有效水含量随着添加物比例的增加而提升,当排土场 土壤、粉煤灰质量比为3:1(L3F1)时田间持水量最大为18.02%, 排土场土壤、粉煤灰、砒砂岩质量比为1:1:1(L1F1S1) 时有效水含量最大为13.1%。综上,粉煤灰、砒砂岩综合利用有利于煤矿排土场土壤水分特性的改良,且复配土壤的黏粒、 粉粒含量在 30%~35%范围时,土壤的持水供水能力较好,在本试验中三者按1:1:1的质量比例进行复配效果最佳。 关键词: 露天煤矿排土场; 土壤改良; Gardner 模型; 水分特征曲线; 水分有效性 中图分类号: S152.7 文献标志码: A

Experimental Study on the Improvement of Soil Moisture Characteristics of Coal Mine Dump by Fly Ash and Arsenic Sandstone

ZHENG Peng^{1, 2}, DANG Tinghui^{1, 2, 3†}, XUE Jiang³

(1. Research Center for Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, Shaanxi 712100, China; 2.University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China)

* 通讯作者 Corresponding author, E-mail: dangth@ms.iswc.ac.cn 作者简介:郑 鹏(1995—),男,湖北宜昌人,硕士研究生,主要从事水土保持工程技术研究。E-mail: zhengpeng191@mails.ucas.edu.cn 收稿日期: 2021-04-14;收到修改稿日期: 2022-04-20;网络首发日期(www.cnki.net): 2022-05-27

^{*} 中国科学院西部行动计划项目(KZCX2-XB3-13)资助 Supported by the Chinese Academy of Sciences Western China Action Plan Project (No. KZCX2-XB3-13)

Abstract: [Objective] Reclaimed soil in an open-air coal mine is highly infertile due to its poor physical and chemical characteristics. The reclamation methods usually improve soil moisture content which has important theoretical and practical significance for the reclaimed mine soil. [Method] This experiment was conducted in the Heidaigou open-air coal mine in the Inner Mongolia Autonomous Region, in which the following treatments were applied; fly ash, arsenic sandstone and dump soil. A certain mass ratio gradient was set, including 13 blended treatments denoted as L3F1, L4F1, L5F1, L1S1, L2S1, L4S1, L4S1, L5S1, L1F1S1, L2F1S1, L3F1S1, L4F1S1, L5F1S1, in which the L, F, S represented three kinds of controlled treatments. The volumetric water content of each compound soil under different water suctions was measured by the centrifuge method for the drawing of the water characteristic curve using the Gardner fitting model. The specific water capacity, field water capacity, wilting coefficient and effective water content of each treatment were also calculated. [Result] The results showed that the Gardner model was appropriate to fit the water characteristic curves of the 13 compound soils. The addition of fly ash increased the content of fine soil particles (i.e., clay and silt) by 24.11% to 37.19%, respectively, and improved the water holding capacity and water supply of soil. Furthermore, the addition of arsenic sandstone improved the water holding capacity of soil but failed to improve the water supply performance. The water holding capacity of L1F1S1 treatment and water supply performance of L3F1 treatment was the best, which was 47.6% and 40.23% higher than that of the dump soil, respectively. The field water holding capacity and available water content of LF combined treatment and LFS combined treatment were enhanced with the increase of additive proportion. When the mass ratio of soil and fly ash in the dump was 3:1 (L3F1), the maximum field water holding capacity was 18.02%. On the other hand, the maximum available water content was 13.1% with the mass ratio of soil, fly ash and arsenic sandstone of 1 : 1 : 1 (L1F1S1). [Conclusion] Overall, the comprehensive utilization of fly ash and arsenic sandstone is beneficial to improve the soil water characteristics of coal mine dump, and the soil water holding capacity and water supply capacity is better when the clay and silt contents of the soil are within the range of 30%-35%. In this experiment, the mass ratio of $1 \div 1 \div 1$ is the best.

Key words: Opencast coal mine dump; Soil improvement; Gardner model; Soil-water characteristic curve; Water availability

黄土高原地区煤炭资源丰富,所持有的大型煤 矿与煤炭开采量均占全国的 60%以上^[1-2],但黄土高 原土壤风化强烈,侵蚀严重,是我国典型的生态脆 弱区^[3],在本区进行如此大规模的煤炭开采,特别 是以"采-排-复"为特点的露天煤矿开采过程会造 成地表塌陷、水位下降、植被破坏等问题,降低了 环境承载能力^[3-5]。排土场复垦一直是露天矿区修复 的热点问题,其土壤由于机械重复碾压致使土壤结 构破坏、孔隙度小、渗水性差,同时兼具有效水分 含量低、养分贫瘠等问题,严重阻碍了植物生产^[6-7], 因此矿区排土场治理得当便可以提供大量土地资源 并发挥其重要的生态功能,对此研究排土场土壤的 改良对于矿区的生态修复和黄土高原绿色生态屏障 的构建具有重要意义^[3.8]。

土壤水分是干旱半干旱地区植物生长的主要 限制因子,对于排土场土壤这种存在问题的土壤, 改善土壤水分特性对于土壤复垦和生态修复具有 重要意义^[9],白中科等^[1]和 Vos 等^[10]认为土壤重构 从机械组成的角度很直接地反映了土壤的持水保

水性能,是矿区土壤复垦的核心方法之一。当前, 粉煤灰、砒砂岩凭借各自的理化特性广泛应用于土 壤改良中,武琳等[11]和赵亮等[12]的研究表明施用 粉煤灰能明显地降低沙土的渗透性能,有效地改良 了沙土的持水能力;张露等^[2]认为风沙土与砒砂岩 复配后提高了土壤的田间持水量和全有效水含量, 且砒砂岩与风沙土按质量比 5:1 混合时效果最 好。学者们对粉煤灰、砒砂岩用于土壤改良的研究 成果丰富,但相对比较单一独立,且将重构土壤机 械组成与水分特性相结合的研究还需深入^[2, 13-14]。 基于此,本研究以位于内蒙古自治区的黑岱沟露天 煤矿为对象进行土壤改良试验研究,利用当地来源 广泛且低廉的粉煤灰、砒砂岩作为添加物,结合水 分特征曲线研究不同比例重构土壤的田间持水量、 比水容重、有效水含量等,探讨粉煤灰、砒砂岩在 排土场复垦中用于土壤水分特性的改良作用,寻求 最为合适的土壤质地组成和复配比例,旨在为黄土 区露天煤矿排土场的复垦与生态恢复提供技术支 持和理论依据。

1 材料与方法

1.1 研究区概况

黑岱沟露天煤矿(39°43′—39°49′N,111°13′— 111°20′E)位于内蒙古自治区鄂尔多斯市准格尔煤 田中部,地处黄河西岸,是晋、陕、蒙接壤黄土地 区的一部分。排土场的土壤为复填土,土壤堆积过 程经过了剧烈扰动和碾压,地貌平坦且质地较轻, 养分含量低,土壤结构性差,是典型的矿区土壤类 型,极易发生水土流失^[15]。矿区内存在燃煤发电厂, 可产生大量的粉煤灰,矿区所在的准格尔旗为砒砂 岩区,因此,粉煤灰和砒砂岩的来源广泛且获取便 捷。排土场的治理自 1997年便开始大规模实施,复 垦的主要方式是植被重建,但植被长势一般,与土 壤性质较差有关^[16]。

1.2 试验材料

本试验在实验室进行模拟研究。试验所用砒砂 岩系内蒙古准格尔旗的黄砒砂岩,其中黏土矿物主 要以水敏性的蒙脱石族矿物为主,骨骼颗粒主要由 石英、长石组成,颗粒间孔隙较少,但裂隙相对较 多,并且颗粒间及颗粒表面赋存的胶结物质较多, 胶结结构属于较为松散的基底—孔隙式结构,化学 组成中 SiO₂含量最高,约为 40%~50%, Al₂O₃含 量在 7%~16%, Fe₂O₃含量在 1%~7%^[17];粉煤灰 来自于黑岱沟露天煤矿燃煤发电厂,粉煤灰中细粉 粒比重很大且玻璃微珠含量多, SiO₂的含量占 70% 以上,此外还含 Al₂O₃、Fe₂O₃、CaO、MgO、B 等 物质,其化学性质和自然土壤较为相似^[11]。

实验前先将三种试验材料风干研磨后过 2 mm 孔径筛,混合均匀后采用四分法取样,并用英国马 尔文的 Mastersizer 2000 测定机械组成(国际制), 试验材料的机械组成测定结果如表 1。

1.3 试验方法

考虑到土壤改良的可行性和经济性,设定添加物的比例小于排土场土壤比例,否则需要大量的添加物,工程的可操作性和经济性将严重降低。本试验将粉煤灰标记为F,砒砂岩标记为S,排土场土壤标记为L,设计(LF组合处理、LS组合处理、 LFS组合处理)三组不同的混合方式,每组按不同的比例梯度混合设计(如表 2)。将充分混合好的样品按照容重 1.35 g·cm⁻³装入 100 cm³环刀中,每个处理 3 个重复。使用高速离心机测定土壤水分特征曲线,选取 13 个水吸力点,在土壤水吸力为 3,5,7,10,30,50,70,100,300,500,700,1000,1 300 kPa下设定转速,测定不同吸力下的土壤含水量。

Table 1 Mechanica	l composition o	of the test	material
-------------------	-----------------	-------------	----------

	机械组成									
试验材料	Mec	土壤质地								
Test material	黏粒	粉粒	砂粒	Soil texture						
	Clay	Silt	Sand							
排土场土壤 Dump soil(L)	4.1	18.3	77.6	砂质土壤						
粉煤灰 Fly ash (F)	8.7	47.0	44.3	粉砂质土壤						
砒砂岩 Arsenic sandstone (S)	11.4	14.3	74.2	砂质土壤						

表 2 各试验处理复配质量比例设计

				Table 2 The composite mass proportion of each test treatment									
	LF 处3	理 Treatm	nent LF	LS 处理 Treatment LS			LFS 处理 Treatment LFS						
	L3F1	L4F1	L5F1	L1S1	L2S1	L3S1	L4S1	L5S1	L1F1S1	L2F1S1	L3F1S1	L4F1S1	L5F1S1
质量比例	$2 \cdot 1$	4 • 1	5 · 1	1 • 1	2 · 1	$2 \cdot 1$	4 • 1	5 · 1	1 · 1 · 1	$2 \cdot 1 \cdot 1$	$2 \cdot 1 \cdot 1$	4 · 1 · 1	5 · 1 · 1
Proportion	5 • 1	4 · 1	5 · 1	1 • 1	2 • 1	5 • 1	4 · 1	5 • 1	1 • 1 • 1	2 • 1 • 1	3 • 1 • 1	4 • 1 • 1	5 • 1 • 1

注: L: 排土场土壤; F: 粉煤灰; S: 砒砂岩, 下同。Note: L: Dump soil, F: Fly ash, S: Arsenic sandstone. The same as below.

2 期

1.4 水分特征曲线拟合及水分参数计算

Gardner 模型符合脱水曲线的中低水吸力段,能 较好地表达土壤水分特征曲线的变化趋势。宋佳龙 等^[13]在沙土复配的草坪根系层土壤中应用了该经验 公式,表明 Gardner 模型能很好地拟合该类型土壤 的水分特征曲线。故本试验的土壤水分特征曲线采 用 Gardner 模型进行拟合,其参数方程为:

$S = a \cdot \theta^{-b}$

式中,a、b为经验参数;S为土壤水吸力(100 kPa); θ 为体积含水量(cm³·cm⁻³),将上式对土壤含水量 θ 求导得出土壤比水容量的计算公式为:

$$C_{\theta} = A \cdot B \cdot S^{-(B+1)}$$

式中, C_{θ} 为土壤的比水容量,参数 A 为土壤水吸力 S=100 kPa 时的容积含水量,在一定程度上反映了土 壤持水能力的大小^[18];参数(B+1)表明比水容量 随水吸力变化快慢的程度;参数 $A \cdot B$ 为土壤水吸力 为 100 kPa 时的比水容量值 C_0 ,可用来反映土壤供 水能力的大小,在衡量土壤水分对植物的有效性上 具有重要意义^[18]。

通过复配土壤的水分特征曲线可以得到一些 重要的水分参数。在该类型复配土壤中,田间持水 量大约相当于水吸力为 33 kPa 时的土壤含水量, 萎蔫系数大约相当于水吸力为 1500 kPa 时的土壤 含水量^[2,19]。在田间持水量和萎蔫系数之间的水分 被认为是有效的,田间持水量减去萎蔫系数为最大有效含水量,因吸收难易程度不同,有效水又可以分为速效水和迟效水,速效水的含量为田间持水量减去水吸力为 600 kPa 时的土壤含水量,迟效水含量指水吸力为 600 kPa 时的土壤含水量减去萎蔫系数^[20-21]。

数据通过 Excel 进行初步整理计算,使用 Origin 2018 进行土壤水分特征曲线的拟合与绘制。

2 结 果

2.1 不同处理复配土壤的机械组成及水分特征曲线

排土场土壤与粉煤灰、础砂岩复配后土壤的机 械组成改变显著(图1),复配土壤的土粒粒径均有 不同程度的减小。组合处理 LF 的机械组成变化最 为明显,随着粉煤灰添加比例的提高,砂粒含量由 L5F1 处理的 69.82%降低至 L3F1 处理的 60.95%, 粉粒含量则由 25.48%提高至 32.56%,相较于排土 场土壤 L3F1 处理的黏粒含量提高了 56.09%,粉粒 含量提高了 78.42%,砂粒含量降低了 21.45%;组 合处理 LFS 的机械组成变化规律与组合处理 LF 相 同,复配土壤中黏粒、粉粒含量随着础砂岩、粉煤 灰添加比例的提高而提高,其中 L1F1S1 处理中黏 粒含量达 8.07%,较 L1F1 处理提高了 26.09%,粉 粒含量达 26.53%,较排土场提高了 44.97%;组合 处理 LS 的机械组成变化相较于组合处理 LF 和组合 处理 LFS 并不太明显。

Fig. 1 Mechanical composition of fly ash, arsenic sandstone and dump soil

图 2 为粉煤灰、砒砂岩与排土场土壤在不同质 量比例下复配后的水分特征曲线,图中点为实测值, 线为拟合线。各处理的水分特征曲线所呈现的大致 规律相同,各曲线在 1~100 kPa 吸力下,随着水吸 力的增加,土壤含水量下降迅速,在100 kPa 以后, 曲线逐渐平缓。随着复配土壤中粉煤灰、砒砂岩添 加比例的增加,其水分特征曲线逐渐向上移动,越 来越接近纯粉煤灰、纯砒砂岩的水分特征曲线,即 在同一土壤水吸力(1~1 300 kPa)下,随着粉煤灰、 砒砂岩质量比例的增加,其土壤含水量也逐渐增大。

表 3 为不同处理下土壤水分特征曲线的拟合方程,在不同质量比的混合处理和对照处理中,粉煤灰、 础砂岩、排土场土壤质量混合比例为 1:1:1 (L1F1S1)时,曲线拟合方程为: $S=0.2034\theta^{-0.284}$, Gardner 模型的拟合精度最高, $R^2=0.9929$;当为纯排 土场土壤(L)时,拟合方程为: $S=0.1378\theta^{-0.305}$, Gardner 模型的拟合精度最低, $R^2=0.9476$ 。因此, Gardner 模型能很好地拟合不同处理复配土壤的水分特征曲线。

图 2 排土场土壤与础砂岩(a)排土场土壤与粉煤灰(b)排土场土壤与粉煤灰、砒砂岩(c)不同复配比例土壤的水分 特征曲线

Fig. 2 (a) soil-water characteristic curve of arsenic sandstone and dump soil with different mix ratios; (b) soil-water characteristic curve of fly ash and dump soil with different mix ratios; (c) soil-water characteristic curve of arsenic sandstone, fly ash and dump soil with different mix ratios

	表 3	不同处理下土壤水分特征曲线拟合方程
Table 3	The curve fittin	g equation of soil moisture characteristics under different treatments

处理	拟合方程	p ²	处理	拟合方程	P ²
Treatment	Fitting equation	R	Treatment	Fitting equation	R
F	$S=0.253 \ 3\theta^{0.280}$	0.975 0	L3S1	$S=0.148 5\theta^{0.271}$	0.969 8
S	$S=0.207 \ 0\theta^{0.140}$	0.982 0	L4S1	$S=0.143 9\theta^{-0.273}$	0.961 1
L	S=0.130 80 ^{0.305}	0.947 6	L5S1	$S=0.139 \ 3\theta^{-0.314}$	0.972 6
L3F1	S=0.184 60 ^{-0.353}	0.992 6	L1F1S1	$S=0.203 \ 4\theta^{-0.284}$	0.992 9
L4F1	$S=0.181 \ 6\theta^{-0.293}$	0.993 0	L2F1S1	$S=0.182 \ 3\theta^{-0.287}$	0.982 1
L5F1	S=0.166 90 ^{-0.291}	0.990 0	L3F1S1	$S=0.178 8\theta^{-0.287}$	0.986 9
L1S1	$S=0.173 \ 5\theta^{0.223}$	0.972 3	L4F1S1	$S=0.169 5\theta^{-0.300}$	0.981 2
L2S1	$S=0.155 \ 4\theta^{0.250}$	0.960 0	L5F1S1	S=0.163 60 ^{-0.309}	0.980 2

2.2 不同处理复配土壤的比水容量

利用图 2 的水分特征曲线,可得到复配土壤比水容量的相关参数值。参数 A 值在一定程度上表征了土壤持水能力的大小,由表 3 可见,LS 组合处理间 A 值的排序为 L<L5S1<L4S1<L3S1<L2S1<L1S1<

S,随着础砂岩质量比例的增大, *A* 值由 L5S1 处理 的 0.139 3 增加至 L1S1 处理的 0.173 5; LF 组合处 理间 *A* 值的排序为 L<L5F1<L4F1<L3F1<F, 且 *A* 值 大于同质量比例的 LS 组合处理; LFS 组合处理的 *A* 值变化规律与 LF 组合处理、LS 组合处理相同, *A* 值由 L5F1S1 处理的 0.163 6 增加至 L1F1S1 处理的 0.203 4。13 种复配土壤中 L5S1 处理的 A 值最小为 0.139 3,相较于排土场土壤(A=0.130 8)提升了 6.50%, L1F1S1 处理的 A 值最大为 0.203 4,相较于 排土场土壤提升了 55.50%。

A·*B*值可用来反映土壤供水能力的大小。纯粉 煤灰的供水性最好,*A*·*B*值为 0.070 9,纯础砂岩 *A*·*B* 的值仅为 0.029 0,小于排土场土壤的 *A*·*B*值 0.042, 供水性最差。FS 组合处理的复配土壤 *A*·*B*值排序为: S<L1S1<L2S1<L3S1<L4S1<L5S1<L,*A*·*B*的值随础 砂岩质量比例的增加而减小;组合处理 LFS 间的 *A*·*B* 的值由 L5F1S1 处理的 0.050 6 增加至 L5F1S1 处理 的 0.057 8,*A*·*B*的值与础砂岩、粉煤灰的混合比例 有显著的线性关系,其线性方程为 *y*=0.007 91*x*+ 0.048 72 (*R*²=0.982)(其中 *y* 为础砂岩、粉煤灰的 混合质量比例,*x* 为参数 *A*·*B* 的值)。参数 (*B*+1) 表明比水容量随水吸力变化快慢的程度^[22], LF 组合 处理的(*B*+1)值随着粉煤灰添加比例的提高而增大, LFS 组合处理和 LS 组合处理则正好相反,随着添加 比例的提高,比水容量随水吸力变化程度逐渐减慢。

表 4 为各处理复配土壤在 1~1 000 kPa 水吸力 条件下的比水容量。在中低水吸力(1~500 kPa) 条件下,LF组合处理、LFS组合处理的比水容量随 着添加比例的增加而增大,但 LS 组合处理呈现的 规律相反,比水容量随着础砂岩质量比例的增加而 减少。不同处理间比水容量达到 10-2 数量级时对应 的土壤水吸力不同,LFS组合、LF组合处理达到10-2 数量级的土壤水吸力为100 kPa,此时土壤供水能力 较强,在相同土壤水吸力下,LFS 组合处理的比水 容重大于 LF 组合处理; LS 组合处理所呈现的规律 正好相反,达到 10⁻² 数量级时对应的土壤水吸力与 排土场土壤一致均为 50 kPa, 此时土壤向作物供水 的能力相对较弱,因为当比水容量达到 10-2 数量级 时,土壤水分处于毛管断裂含水量的水平,此时土 壤的供水能力不再能及时地满足作物生长需要; 当 土壤水吸力大于 500 kPa 时,各处理的比水容重均 达到 10-3 数量级,变化逐渐趋于稳定,此时复配土 壤中的水分基本处于作物难以利用的状态。

表 4 不同水吸力下不同处理复配土壤的比水容重 /[mL·(100 kPa·g)⁻¹]

 Table 4
 Specific water capacity of soil mixed with different mass ratios of arsenic sandstone, fly ash and dump soil under different water suction

处理					土壤水则	を力 Soil wa	ater suction	/ (kPa)				
Treatment	3	5	7	10	30	50	70	100	300	500	700	1 000
F	2.32	2.20	2.13	1.35	3.31×10^{-1}	1.72×10^{-1}	1.42×10^{-1}	1.06×10^{-1}	8.03×10^{-2}	7.04×10^{-2}	1.02×10 ⁻²	8.89×10 ⁻³
S	1.09	9.12×10 ⁻¹	6.01×10^{-1}	5.00×10 ⁻¹	1.14×10^{-1}	6.39×10 ⁻²	4.35×10 ⁻²	1.56×10 ⁻²	6.28×10 ⁻³	4.63×10 ⁻³	3.01×10^{-3}	1.65×10 ⁻³
L	1.49	1.41	1.35	8.48×10^{-1}	2.02×10^{-1}	9.94×10 ⁻²	6.69×10^{-2}	2.33×10 ⁻²	9.00×10 ⁻³	6.15×10^{-3}	4.55×10 ⁻³	2.01×10 ⁻³
L3F1	1.75	1.69	1.63	1.32	2.99×10 ⁻¹	1.50×10^{-1}	9.54×10 ⁻¹	9.54×10 ⁻²	9.01×10 ⁻³	6.79×10 ⁻³	5.44×10 ⁻³	5.33×10 ⁻³
L4F1	1.83	1.72	1.60	1.04	2.54×10 ⁻¹	1.31×10^{-1}	1.02×10^{-1}	8.51×10^{-2}	5.31×10 ⁻²	8.95×10 ⁻³	6.58×10 ⁻³	5.12×10 ⁻³
L5F1	1.89	1.75	1.58	1.05	2.52×10 ⁻¹	1.30×10 ⁻¹	1.16×10 ⁻¹	8.41×10 ⁻²	5.30×10 ⁻²	8.22×10 ⁻³	6.43×10 ⁻³	5.02×10 ⁻³
L1S1	1.19	1.10	1.00	6.47×10 ⁻¹	1.69×10 ⁻¹	9.03×10 ⁻²	5.98×10 ⁻²	1.72×10 ⁻²	7.01×10 ⁻³	5.40×10 ⁻³	3.70×10 ⁻³	1.75×10 ⁻³
L2S1	1.25	1.13	1.08	6.91×10 ⁻¹	1.75×10 ⁻¹	9.24×10 ⁻²	6.07×10 ⁻²	1.75×10 ⁻²	7.84×10 ⁻³	5.20×10 ⁻³	3.74×10 ⁻³	1.78×10 ⁻³
L3S1	1.29	1.20	1.18	7.51×10 ⁻¹	1.86×10 ⁻¹	9.71×10 ⁻²	6.33×10 ⁻²	1.85×10 ⁻²	7.96×10 ⁻³	5.20×10 ⁻³	3.98×10 ⁻³	1.82×10 ⁻³
L4S1	1.32	1.25	1.19	7.58×10 ⁻¹	1.87×10^{-1}	9.77×10 ⁻²	6.36×10 ⁻²	1.99×10 ⁻²	7.98×10 ⁻³	5.42×10 ⁻³	4.01×10 ⁻³	1.85×10 ⁻³
L5S1	1.42	1.38	1.34	1.13	1.98×10 ⁻¹	9.99×10 ⁻²	6.49×10 ⁻²	2.03×10 ⁻²	7.58×10 ⁻³	5.90×10 ⁻³	4.32×10 ⁻³	1.98×10 ⁻³
L1F1S1	1.87	1.81	1.76	1.11	2.71×10^{-1}	1.41×10^{-1}	1.21×10^{-1}	9.2×10 ⁻²	5.66×10 ⁻²	7.31×10 ⁻³	9.52×10 ⁻³	5.33×10 ⁻³
L2F1S1	1.72	1.75	1.66	1.05	2.46×10 ⁻¹	1.32×10 ⁻¹	1.28×10 ⁻¹	8.2×10 ⁻²	5.00×10 ⁻²	6.83×10 ⁻³	9.11×10 ⁻³	5.23×10 ⁻³
L3F1S1	1.77	1.70	1.64	1.03	2.55×10 ⁻¹	1.28×10 ⁻¹	1.25×10 ⁻¹	7.58×10 ⁻²	4.52×10 ⁻²	9.03×10 ⁻³	6.59×10 ⁻³	4.86×10 ⁻³
L4F1S1	1.76	1.71	1.61	1.01	2.43×10 ⁻¹	1.26×10 ⁻¹	1.11×10^{-1}	7.5×10 ⁻²	3.89×10 ⁻²	6.28×10 ⁻³	8.56×10 ⁻³	4.23×10 ⁻³
L5F1S1	1.7	1.68	1.60	1.00	2.44×10 ⁻¹	1.25×10 ⁻¹	1.10×10 ⁻¹	7.20×10 ⁻²	3.21×10 ⁻²	6.15×10 ⁻³	8.23×10 ⁻³	4.12×10 ⁻³

2.3 不同处理复配土壤的水分有效性

图 3 为各复配土壤水分有效性情况,各处理间 土壤水分的有效性上存在较大差异。在 LFS 组合处 理中,随着添加比例的增加,田间持水量由L5F1S1 处理的 15.52% 上升至 L1F1S1 处理的 17.26%, 在各 处理中涨幅最大,复配土壤中的有效水含量由 L5F1S1 处理的 12.13%上升至 L1F1S1 处理的 13.10%, 土壤有效水含量随着添加比例的提高而上 升,经拟合发现,础砂岩、粉煤灰的质量比例与土 壤有效水含量呈正比例函数关系,其关系为 v= 2.39x+11.47(其中 y 为土壤有效水含量, x 为复配土 壤中添加材料的质量比例), R²=0.9779; LF 组合处 理中田间持水量和有效水含量变化规律同 LFS 组合 处理,其中 L3F1 处理复配土壤中速效水含量达 7.60%,相较于排土场土壤(7.17%)提升了 6%; 在 FS 组合处理中, 田间持水量由 L5S1 处理的 14.35%增加至 L1S1 处理的 16.02%, 其中 L1S1 处 理的萎蔫系数为 5.51%, 13 组处理中最大, 较排土

场土壤(萎蔫系数=1.98%)增加了178.28%。

3 讨 论

研究结果表明, 础砂岩、粉煤灰与排土场土壤 混合能够改良土壤的持水性, 且随着添加比例的增 加, 土壤水分特征曲线呈上移的趋势, 复配土壤的 持水能力逐渐增强, 当等质量比的础砂岩、粉煤灰 比加入到排土场土壤中时, A 值变化规律与础砂岩、 粉煤灰单独添加情况相同, 且 L1F1S1 处理的 A 值 大于 L1S1 处理和 L3F1 处理, 故在排土场土壤中添 加等质量比的砒砂岩和粉煤灰能够提高土壤的持水 性, 且持水效果优于砒砂岩、粉煤灰单独与排土场 土壤混合。这是因为在排土场土壤中添加粉煤灰显 著改变了原土壤的机械组成, 添加比例越高复配土 壤的细土粒含量越高, 其中 L1F1S1 处理的黏粒、 粉粒含量最高达 34.6%, 相较于排土场土壤提高了 54.46%, 随着土粒粒径的减小, 土粒的吸湿量、持

图 3 不同处理复配土壤的田间持水量(a)、萎蔫系数(b)、速效水含量(c)、迟效水含量(d) Fig. 3 Field capacity (a), wilting coefficient (b), rapidly available water content (c) and delayed water content (d) of soils mixed with fly ash, arsenic sandstone and dump soil in different proportions

水量不断增加^[23],同时粉煤灰中含有的 SiO₂ 和 Al₂O₃ 会发生水化作用保持水分^[12];葛磊等^[17]关于 砒砂岩的研究得出,砒砂岩不仅材料密度低,透水、 透气性能良好,而且其矿物组成以水敏性的蒙脱石 矿物为主,胶体特性突出,吸湿性显著,持水能力 强。因此,粉煤灰和砒砂岩作为土壤改良剂均能提 高排土场土壤的持水性能^[24]。

在排土场土壤中添加粉煤灰或者等质量比的砒 砂岩、粉煤灰混合物则能够很好地改良排土场土壤 的供水性能,且添加比例越高,供水性能越好,而 砒砂岩并不能改良排土场土壤的供水性能。其中 L1F1S1 处理、L3F1 处理的 A·B 值最大分别为 0.0539、0.0589,相较于排土场土壤分别提高了 28.33%、40.23%,这说明当排土场土壤与粉煤灰复 配比例为3:1时,土壤供水性能最好,排土场土壤、 粉煤灰、砒砂岩以1:1:1的比例混合时也能够很 好地改良土壤的供水性能,但效果与纯粉煤灰相比 次之。这是因为粉煤灰的加入改变了排土场土壤的 孔隙结构,小粒径的粉煤灰颗粒具有丰富的小孔隙 和巨大的比表面积, 使得总孔隙度减少而毛管孔隙 比例升高^[12],因此在中低水吸力(1~500 kPa)条 件下,复配土壤的比水容量随着添加质量比例的增加 而增大,比水容量达到10-2数量级时的土壤水吸力为 100 kPa(排土场土壤为 10 kPa), 此时土壤比水容量 较高,土壤供水能力较强。这与尚熳廷等^[21, 25]得到 的结论一致, 土壤孔隙较大处的毛管势较小, 其中 的水分在较小水吸力下就能排出,且土壤大孔隙能 储存相对较多的水分,在增加相同水吸力的情况下 能排出较多水分,从而土壤含水量变化也较大,所 以在水吸力较小时比水容量较大,且比水容量随水 吸力的变化趋势也较快,但随着水吸力的逐渐升高, 土壤大孔隙中水分被排尽,当继续增加水吸力时, 此时小孔隙便开始失水,但小孔隙的失水情况与大 孔隙刚好相反,所以随着水吸力的继续增加,其比 水容量减小,且变化幅度也有所减慢。

在排土场土壤中添加粉煤灰、砒砂岩或者等质 量比的砒砂岩、粉煤灰混合物均可以提高土壤的田 间持水量,其中粉煤灰的效果最好;虽然砒砂岩能 够改良土壤的田间持水量,但其降低了排土场土壤 的有效水含量,这是因为砒砂岩虽然提高了复配土 壤的田间持水量,但由于蒙脱石系 2:1型的晶层结 构,晶层间的结合力很弱,具有很大的胀缩性,遇 水膨胀使得胶结较弱的砒砂岩破碎^[26],大大提高了 土壤的萎蔫系数,这就导致了复配土壤的有效含水 量降低;在排土场土壤中添加粉煤灰或者等质量比 的砒砂岩、粉煤灰混合物后,不仅可以提高土壤的 田间持水量,也可以提高土壤有效水含量,L1F1S1 和 L3F1 处理有效含水量分别为 13.10%、13.9%,相 较于排土场土壤提高了 11.7%、18.8%,土壤有效水 含量的增加,有利于协调气候与水分之间的矛盾, 为作物生长提供必要的水分支撑^[27]。

4 结 论

(1) Gardener 模型 ($S=a\cdot\theta^{-b}$) 很好地拟合了砒 砂岩、粉煤灰与排土场土壤复配后的水分特征曲线, 能准确表征复配土壤的水分特性。在排土场土壤中 添加粉煤灰显著增加了细土粒含量,其中粉粒、黏 粒含量达 30%左右,当排土场土壤与粉煤灰质量比 例不超过3:1时,复配土壤的持水性和供水性随着 粉煤灰添加比例的增加而提高;在排土场土壤中添 加质量比例小于 50%的砒砂岩时,复配土壤具有很 好持水性,且效果优于同比例添加的粉煤灰,但复 配土壤的供水性能、速效水含量随之下降。(2)在 排土场土壤中添加等质量比的粉煤灰、砒砂岩,既 能保证复配土壤的持水性又能提高供水性,因此针 对矿区排土场这一类缺少黏粒、粉粒但砂粒含量较 高的粗质地土壤,推荐综合应用细土粒含量高的粉 煤灰和砒砂岩进行土壤改良,当复配土壤的黏粒、 粉粒含量在 30%~35%范围内时, 土壤水分特性的 改良效果较好,本试验中三者的复配比例为1:1:1 时,复配土壤的持水供水能力最佳,是否能找到 更优的粉煤灰、砒砂岩复配比例,还需进一步研 究探讨。

参考文献(References)

- Bai Z K, Wang W Y, Li J C, et al. Ecological rehabilitation of drastically disturbed land at large opencut coal mine in loess area[J]. Chinese Journal of Applied Ecology, 1998, 9 (6): 621—626. [白中科, 王文英,李晋川,等. 黄土区大型露天煤矿剧烈扰动土地 生态重建研究[J]. 应用生态学报, 1998, 9(6): 621—626.]
- [2] Zhang L, Han J C, Luo L T, et al. Water-holding characteristics of compounded soil with feldspathic sandstone and aeolian sandy soil[J]. Journal of Northwest

A & F University (Natural Science Edition), 2014, 42 (2): 207—214. [张露,韩霁昌,罗林涛,等. 砒砂岩 与风沙土复配土壤的持水特性研究[J]. 西北农林科技 大学学报 (自然科学版), 2014, 42 (2): 207—214.]

- [3] Wang Z H, Liu Z B, Chen J P. Research on plan of land reclamation and ecological reconstruction in Hei Daigou Open Mine[J]. Opencast Coal Mining Technology, 2003, 18(1): 19—21. [王志宏,刘志斌,陈建平. 黑岱沟露 天煤矿土地复垦及生态重建规划研究[J]. 露天采矿技 术, 2003, 18(1): 19—21.]
- [4] Wang S F, Cao Y G, Bai Z K, et al. Spatial characteristics of reconstructed soil texture in dumping site of loess open-pit mining area[J]. Journal of Northwest Forestry University, 2020, 35 (6): 40—51. [王舒菲,曹银贵, 白中科,等. 黄土露天矿区排土场重构土壤质地空间特 征研究[J]. 西北林学院学报, 2020, 35 (6): 40—51.]
- [5] Liu Z, Han L, Wang D Y, et al. Soil physicochemical properties and quality assessment in the coal mining area of Loess Plateau in Northern Shaanxi Province[J]. Journal of China Coal Society, 2021, 46 (5): 1555—1564. [刘钊,韩磊,王丹月,等. 陕北黄土高原煤矿区土壤理化性质及质量评价[J]. 煤炭学报, 2021, 46 (5): 1555—1564.]
- [6] Huang Y H, Cao Y G, Pietrzykowski M, et al. Spatial distribution characteristics of reconstructed soil bulk density of opencast coal-mine in the loess area of China[J]. Catena, 2021, 199: 105116.
- [7] Xi M Z, Zhao Z Q, Bai Z K, et al. A review on soil carbon sequestration in reclaimed opencast coal mine[J]. Chinese Journal of Soil Science, 2019, 50 (3): 748—756. [席 梅竹,赵中秋,白中科,等. 露天煤矿区复垦土壤碳库 研究进展[J]. 土壤通报, 2019, 50 (3): 748—756.]
- [8] Li H K, Zhang Y N. Evaluation of soil quality in the dump of Heidaigou mining area, Inner Mongolia[J]. Soil and Water Conservation in China, 2014(10):63—66. [李 海宽,张雅楠. 内蒙古黑岱沟矿区排土场土壤质量评价 [J]. 中国水土保持, 2014(10):63—66.]
- [9] Shan L. Plant water use efficiency and agricultural water use in semi-arid regions[J]. Plant Physiology Communications, 1994, 30 (1): 61—66.[山仑. 植物 水分利用效率和半干旱地区农业用水[J]. 植物生理学 通讯, 1994, 30 (1): 61—66.]
- [10] Vos C, Don A, Prietz R, et al. Field-based soil-texture estimates could replace laboratory analysis[J]. Geoderma, 2016, 267: 215-219.
- [11] Wu L, Zheng Y H, Zhang Z G, et al. Assessment of nutrient and pollution risk of fly ash as a soil amendment[J]. Environmental Science & Technology, 2020, 43 (9): 219—227. [武琳,郑永红,张治国,等. 粉煤灰用作土壤改良剂的养分和污染风险评价[J]. 环 境科学与技术, 2020, 43 (9): 219—227.]
- [12] Zhao L, Tang Z J, Liu F. Laboratory tests of fly ash as a

sandy soil amendment and its effects on soil water[J]. Acta Scientiae Circumstantiae, 2009, 29(9): 1951—1957. [赵亮, 唐泽军, 刘芳. 粉煤灰改良沙质土壤水分物理 性质的室内试验[J]. 环境科学学报, 2009, 29(9): 1951—1957.]

- [13] Song G L, Han L B, Li D Y. Hydraulic conductivity characteristics of rootzones at different ratios of sand to soil[J]. Journal of Beijing Forestry University, 2008, 30 (4): 89—94. [宋桂龙,韩烈保,李德颖. 不同沙土配 比根系层导水特性研究[J]. 北京林业大学学报, 2008, 30 (4): 89—94.]
- Gangloff W J, Ghodrati M, Sims J T, et al. Impact of fly ash amendment and incorporation method on hydraulic properties of a sandy soil[J]. Water, Air, and Soil Pollution, 2000, 119 (1/2/3/4): 231-245.
- [15] Liu H T, Zheng J Y, Li G L, et al. Characteristics of soil aggregates in the Shanxi-Shaanxi-Inner Monglia opencast coal dump, China[J]. Journal of Agro-Environment Science, 2021, 40 (1): 137—143. [刘鸿涛,郑纪勇, 李高亮,等. 晋陕蒙露天煤矿排土场土壤团聚体的变化 特征[J]. 农业环境科学学报, 2021, 40(1): 137—143.]
- [16] Tang J, Dang T H, Xue J, et al. Effects of vegetation restoration on soil aggregate characteristics of an opencast coal mine dump in the loess area[J]. Acta Ecologica Sinica, 2016, 36 (16): 5067—5077. [唐骏, 党廷辉,薛江,等. 植被恢复对黄土区煤矿排土场土壤 团聚体特征的影响[J]. 生态学报, 2016, 36 (16): 5067—5077.]
- [17] Ge L, Li J, Peng B. Study on microstructure characteristics of soft rocks in Ordos[J]. Land Development and Engineering Research, 2019, 4(8): 36—42. [葛磊,李娟,彭飚. 鄂尔多斯砒砂岩微观结构 特征研究[J]. 西部大开发:土地开发工程研究, 2019, 4(8): 36—42.]
- [18] Li K Y, Li Y S. Significance and application of soil moisture characteristic curve [J]. Shaanxi Journal of Agricultural Sciences, 1991, 37 (4): 47—48. [李开元, 李玉山. 土壤水分特征曲线的意义及其应用[J]. 陕西 农业科学, 1991, 37 (4): 47—48.]
- [19] Li Y L, Guo C Y, Xu M. Non-saturated layer moisture content characteristic curve empirical formula research[J]. China Mining Magazine, 2010, 19(8): 105—109. [李 云龙,郭春颖,徐敏. 非饱和带水分特征曲线经验公式 研究[J]. 中国矿业, 2010, 19(8): 105—109.]
- [20] Yuan J F. Soil moisture characteristic curve and soil moisture hysteresis [J]. Chinese Journal of Soil Science, 1986, 17 (1): 43—47. [袁剑舫. 土壤水分特征曲线和 土壤水分的滞后现象[J]. 土壤通报, 1986, 17 (1): 43—47.]
- [21] Fu X L, Shao M A, Lü D Q. Quantitative relationship between mass water content, pressure head and bulk density in determination of soil water retention

characteristics Ⅱ. Undisturbed soils[J]. Acta Pedologica Sinica, 2008, 45 (1): 50—55. [付晓莉, 邵明安, 吕 殿青. 土壤持水特征测定中质量含水量、吸力和容重三 者间定量关系 Ⅱ.原状土壤[J]. 土壤学报, 2008, 45 (1): 50—55.]

- [22] Ning T, Guo Z S, Li Y L. Soil water characteristic curves and soil water constants at different depths in the abandoned sloping field of loess hilly region[J]. Journal of Soil and Water Conservation, 2014, 28(3): 166—170.
 [宁婷,郭忠升,李耀林. 黄土丘陵区撂荒坡地土壤水 分特征曲线及水分常数的垂直变异[J]. 水土保持学报, 2014, 28(3): 166—170.]
- [23] Yang D, Ma Y D. Feasibility studies on coal-fly-ash application in refuse dump of coal mine for soil improvement[J]. Journal of Liaoning Technical University, 2006, 25 (S1): 324—326. [杨丹, 马云东. 用粉煤灰对煤矿排土场土壤改良可行性研究[J]. 辽宁 工程技术大学学报, 2006, 25 (S1): 324—326.]
- [24] Mi M X, Shao M A, Wu X G,, et al. The effects of coal gangues and caliche nodules on plant growth and soil moisture[J]. Acta Pedologica Sinica, 2021, 58 (6):

1460—1471. [米美霞, 邵明安, 武小刚, 等. 煤矸石和 钙结石对植物生长和土壤含水量的影响[J].土壤学报, 2021, 58(6): 1460—1471.]

- [25] Shang M T, Zhang J Y, Liu J F, et al. Effects of macropore on soil specific water capacity and unsaturated hydraulic conductivity[J]. Journal of Irrigation and Drainage, 2012, 31 (2): 1—5. [尚熳廷,张建云,刘 九夫,等. 大孔隙对土壤比水容重及非饱和导水率影响 的实验研究[J]. 灌溉排水学报, 2012, 31 (2): 1—5.]
- [26] Huang C Y. Coursematerials for the 21 st century-Soil science[M]. Beijing: China Agricultural Science and Technology Press, 2000: 24—25. [黄昌勇. 面向 21世纪课程教材土壤学[M]. 北京:中国农业出版社, 2000: 24—25.]
- [27] Zheng Z C, Li W, Li T X, et al. Soil water retention curve based on fractal theory in greenhouse soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43 (5): 49—54. [郑子成,李卫, 李廷轩,等. 基于分形理论的设施土壤水分特征曲线研 究[J]. 农业机械学报, 2012, 43 (5): 49—54.]

(责任编辑: 檀满枝)