DOI: 10.11766/trxb202108250454

郭龙,冯童禹,薛壮壮,王超,沈仁芳. 氮形态和磷肥对红壤玉米根际解磷微生物群落和磷酸酶活性的影响[J]. 土壤学报,2023,60 (5):1493-1506.

GUO Long, FENG Tongyu, XUE Zhuangzhuang, WANG Chao, SHEN Renfang. Effects of Nitrogen Form and Phosphorus Fertilizer on Phosphorus-solubilizing Bacteria and Phosphatase of Maize Rhizosphere in Acidic Red Soil[J]. Acta Pedologica Sinica, 2023, 60 (5): 1493–1506.

氮形态和磷肥对红壤玉米根际解磷微生物群落和磷酸酶 活性的影响^{*}

郭 龙^{1,2}, 冯童禹^{1,2}, 薛壮壮^{1,2}, 王 超^{1†}, 沈仁芳^{1,2}

(1. 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),南京 210008; 2. 中国科学院大学,北京 100049)

摘 要:较低的土壤磷素有效性限制了酸性红壤生产潜力提升。作为磷素活化的主要执行者,解磷微生物对施肥和根际 作用的综合响应尚不清楚。以玉米为试验材料,设置磷肥水平(施磷和不施磷)与不同氮形态(铵态氮肥和硝态氮肥) 的交互试验,使用编码酸性磷酸酶和碱性磷酸酶的微生物 phoC 和 phoD 基因作为分子标记物,研究了施肥和根际作用对 酸性红壤磷酸酶活性和相关功能微生物群落的影响。结果显示,根际作用显著提高了土壤磷酸酶活性,且作用强度大于 氮形态和磷肥水平。氮形态、磷肥水平和根际作用均显著影响 phoD 细菌操作分类单元(OTU)数目和香农指数,然而仅 有氮形态和根际作用影响 phoC 细菌 OTU 数目。根际作用对 phoC 和 phoD 细菌群落组成结构的影响程度显著高于氮形态 和磷肥水平,而且对 phoD 细菌群落的作用更明显。根际磷酸酶活性提高与土壤有机质增加密切相关。phoC 细菌群落组 成和结构的变化主要与根际养分变化有关,而 phoD 细菌群落结构的变化可能是根系分泌物和养分变化共同作用的结果。 总体而言,玉米根际作用对酸性红壤磷酸酶活性和相关功能细菌群落的影响大于氮形态和磷肥水平,但是其作用强度一 定程度上依赖于上述施肥措施。

关键词:酸性红壤;施肥措施;根际作用;解磷微生物;磷酸酶活性中图分类号: S154.36 文献标志码: A

Effects of Nitrogen Form and Phosphorus Fertilizer on Phosphorussolubilizing Bacteria and Phosphatase of Maize Rhizosphere in Acidic Red Soil

GUO Long^{1, 2}, FENG Tongyu^{1, 2}, XUE Zhuangzhuang^{1, 2}, WANG Chao^{1†}, SHEN Renfang^{1, 2}

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
 University of Chinese Academy of Sciences, Beijing 100049, China)

^{*} 国家自然科学基金项目(42020104004, 52022028)资助 Supported by the National Natural Science Foundation of China(Nos. 42020104004 and 52022028)

 ^{*} 通讯作者 Corresponding author, E-mail: chwang@issas.ac.cn
 作者简介:郭 龙(1994—),男,河南新乡人,博士研究生,主要从事土壤微生物研究。E-mail: lguo@issas.ac.cn
 收稿日期: 2021-08-25;收到修改稿日期: 2021-12-15;网络首发日期(www.cnki.net): 2022-03-05

Abstract: [Objective] Low phosphorus (P) availability limits the increase in the productive capacity of acidic soils. The bacteria phoC and phoD genes encode acid and alkaline phosphatase (ACP and ALP), respectively, which mineralize organic phosphorus (P) to inorganic P, are affected differently under different fertilization regimes. However, the combined responses of phosphorus-solubilizing microorganisms (PSM) to fertilization strategies and the rhizosphere effect are still unclear. [Method] In this study, it was evaluated the response of maize to the interaction of different nitrogen forms (ammonium nitrogen and nitrate nitrogen) and phosphate fertilizer levels. The phoC and phoD genes, separately coding for acid and alkaline phosphatase productions, were used as molecular markers to investigate the effects of fertilization strategies and rhizosphere effect on soil phosphatase activities and associated functional microbial communities in acidic soil. [Result] The rhizosphere effect significantly increased soil phosphatase activities in the rhizosphere. ALP activities in the rhizosphere under nitrate-nitrogen treatment were lower than in the corresponding ammonium nitrogen treatment. Also, the strength of the rhizosphere effect was greater than that of nitrogen forms and phosphate fertilizer levels. Nitrogen forms, phosphate fertilizer levels and rhizosphere effect all significantly affected the operational taxonomic units (OTU) number and Shannon index of phoD-harboring bacteria, but only nitrogen forms and rhizosphere effect affected the OTU number of phoC-harboring bacteria. Principal coordinate analysis (PCoA) and PERMANOVA analysis showed that the rhizosphere effect exhibited more influence on the phoC-and phoD-harboring bacterial community composition than nitrogen forms and phosphate fertilizer levels, with more effects on the phoD-harboring bacterial community. The stimulation of soil phosphatase activities in the rhizosphere was closely related to the increase in soil organic matter. Additionally, changes in the composition and structure of phoC-harboring bacterial community were mainly related to the changes in rhizosphere nutrients, while the changes of phoD-harboring bacterial community structure may be attributed to combined effects of root exudates and nutrient changes. [Conclusion] The rhizosphere showed more influence on soil phosphatase activities and associated functional bacterial communities than nitrogen forms and phosphate fertilizer levels in acidic soil. However, the strength of the effect strongly relied on the fertilization strategies.

Key words: Acidic red soil; Fertilization strategies; Rhizosphere effect; Phosphorus-solubilizing bacteria; Phosphatase activity

酸性土壤(pH < 5.5)约占我国土壤总面积的 22.7%,主要分布在水热资源丰富、生产潜力巨大的 南方红壤地区^[1]。酸性红壤特点在于养分贫瘠和胁 迫因子众多,其中磷素是作物生产潜力发挥的最大 限制养分元素^[2]。事实上,所谓的土壤缺磷并不是 磷素贮量不足,而是缺少植物可利用的有效磷,红 壤区酸化加剧导致磷素有效性更低^[3]。传统农业生 产中,施用化学磷肥是解决酸性红壤上植物缺磷的 主要途径,然而较低的磷肥利用率(10%~25%)不 仅造成资源浪费,而且引发水体富营养化等环境风 险^[4]。磷矿是一种不可再生资源,在未来 50~100 年世界磷矿储量可能被开采耗尽。如何有效利用土 壤遗留的磷,提高土壤磷素利用,对于恢复酸性红 壤生态系统的养分循环功能、保护生态环境和节约 资源具有十分重要的意义。

解磷微生物作为土壤生态系统的重要生物组 分,是土壤难溶性磷活化和形态转化的执行者。其 活化磷素的一个重要途径是分泌磷酸酶,将土壤有 机态磷转化为生物可利用的有效磷^[5]。磷酸酶包括

酸性磷酸酶和碱性磷酸酶,其活性是反映土壤有机 磷分解潜力的重要指标^[6]。微生物的 phoC 和 phoD 基因分别作为编码酸性磷酸酶和碱性磷酸酶的分子 标记物,为检测土壤解磷微生物的种类、丰度以及 群落结构提供了有效手段[7-8]。土壤磷酸酶活性与解 磷微生物群落多样性和组成结构密切相关^[9]。作为 重要的农业措施,施肥通过改变土壤解磷微生物群 落影响磷酸酶活性^[10]。由于氮肥是加速农田土壤酸 化的主要诱因[11],磷肥是提高植物磷素吸收的主要 途径,在酸性土壤中这两种施肥措施受到广泛关注。 虽然氮肥形态(铵态氮肥和硝态氮肥)被报道影响 了酸性红壤总细菌和固氮菌群落^[12-13],但是对酸性 红壤磷酸酶活性及相关功能微生物的影响尚未见报 道。不同于氮肥,磷肥对酸性土壤磷酸酶活性以及 phoC和 phoD 细菌群落的影响已有报道^[14],但在不 同试验中,磷肥对土壤磷酸酶活性和相关功能微生 物群落的影响程度和模式差异较大[14-15]。因此,需 要更多的研究阐明施肥措施对酸性土壤解磷微生物 群落组成和功能的影响,明确解磷微生物发挥功能 的有利条件。

在土壤-植物生态系统中,除了施肥措施,植物 根际也是影响土壤微生物群落组成和功能的重要驱 动力。根际微生物组作为植物的第二基因组,已成 为科学研究热点^[16]。根际效应对土壤解磷微生物群 落组成和功能有积极的作用^[17],但是施肥调控下的 根际效应变化强度鲜有报道。实际上,根际对土壤 微生物的调控作用受施肥措施的直接影响,主要通 过改变土壤性质和植物生长状态^[18]。因此,土壤微 生物群落组成和功能发挥是根际效应和施肥措施综 合作用的结果,两者密不可分。尽管施肥措施和根 际效应对土壤解磷微生物群落和磷酸酶活性的影响 均有报道^[8,15],但是两者的综合效应尚缺乏研究。

因此,本研究设置了氮形态和磷肥水平两种施 肥措施的交互试验,以酸性红壤重要的旱作作物玉 米为研究对象,分析了非根际与根际土壤磷酸酶活 性及 phoC 和 phoD 细菌群落多样性和组成结构,重 点考察了施肥措施对根际作用强度的影响,试图明 确施肥还是根际效应是调控酸性红壤解磷微生物群 落组成和功能的主要因素。研究结果为充分发挥解 磷微生物功能以及深入挖掘酸性红壤解磷微生物资 源提供理论基础和科学支撑。

1 材料与方法

1.1 盆栽试验

盆栽试验所用酸性红壤采自江西省鹰潭市中国 科学院鹰潭红壤生态实验站的森林土。土壤基本理 化性质为 pH 4.38,有机质 12.53 g·kg⁻¹,全氮 0.49 g·kg⁻¹,全磷 0.30 g·kg⁻¹,全钾 10.97 g·kg⁻¹,有 效磷 9.01 mg·kg⁻¹。共设置 4 个处理:施用铵态氮肥 (硫酸铵)不施磷(NH₄-P0)、施用铵态氮肥和磷肥 (NH₄-P100)、施用硝态氮肥(硝酸钠)不施磷 (NO₃-P0)、施用硝态氮肥和磷肥(NO₃-P100)。氮 肥使用量为 88.9 mg·kg⁻¹(以 N 计),磷肥以磷酸二 氢钾形式供应,施肥量为 100 mg·kg⁻¹(以 P 计), 不施磷肥处理中使用硫酸钾添加钾 125.8 mg·kg⁻¹ (以 K 计)。每盆用土 2.0 kg,肥料一次性施入,与 土壤混匀后装盆。每个处理设置 8 盆,其中 4 盆种 玉米,4 盆不种。试验在中国科学院南京土壤研究 所自然温室中进行。试验玉米品种为郑单 958,每 盆播种 5 粒种子, 土壤含水量保持在饱和持水量的 60%。玉米地上部长至 1 cm 时间苗, 每盆定植 3 棵 幼苗。自间苗之日起, 进行为期 3 周的培养。

1.2 植物和土壤样品采集与元素测定

采用抖根法收集根际土壤,每盆玉米获得的根际土混匀作为一个根际土壤样品。未种玉米盆中的 土壤为非根际土。土壤样品分3份保存:一份储存 在-20℃用于 DNA 提取;另一部分储存于4℃冰箱, 一周之内测定磷酸酶活性、铵态氮和硝态氮含量; 剩余土壤样品风干研磨后用于测定其他土壤理化性质。收集玉米根系和地上部,用蒸馏水反复冲洗掉 根系表面土壤颗粒后,于 105℃杀青,65℃烘干至 恒重,并称重。地上部样品粉碎后使用 H₂SO₄-H₂O₂ 消煮,采用凯氏定氮仪(Hanon K9860,山东)测定 氮含量,分别使用钼锑抗比色法和火焰光度计 (FP640,上海)测定磷和钾元素含量。

1.3 土壤理化性质测定

按照土水质量比 1:2.5 振荡后,用 pH 计 (Mettler Toledo FE20,美国)测定土壤 pH。使用重 铬酸钾氧化法测量土壤有机质含量,Vario MAX CNS 元素分析仪(Elementar,Hanau,德国)测量 土壤全氮。氯化钾浸提新鲜土壤,用连续流动分析 仪(San⁺⁺,Skalar,荷兰)测定铵态氮和硝态氮含 量。H₂SO₄-HCIO₄ 消解土壤,分别用钼锑抗比色法 和火焰光度法测定全磷和全钾含量。使用盐酸-氟化 铵溶液浸提土壤后,用钼锑抗比色法测定有效磷含 量。土壤经醋酸铵溶液浸提后,使用火焰光度法测 定土壤速效钾含量。土壤酸性磷酸酶和碱性磷酸酶 活性测定参照鲁如坤^[19]描述的方法。

1.4 土壤 DNA 提取及高通量测序

使用 DNA 试剂盒(FastDNA SPIN Kit for soil) 提取土壤总 DNA。分别采用 phoC 基因的引物序列 phoc-A-F1(5'-CGGCTCCTATCCGTCCGG-3')/phoc-A-R1(5'-CAACATCGCTTTGCCAGTG-3')^[8]和 phoD 基因的引物序列 S-F730(5'-CAGTGGGACGACC AC-GAG-GT-3')/S-R1101(5'-GAGGCCGATCGGC ATGTCG-3')^[7]进行 PCR 扩增,并在每个样品的上 游引物 5'端添加一段长度为 7 bp 的特异性多肽以区 分样品。PCR 反应体系和程序参照 Zheng 等^[14]。然 后将 PCR 产物送至派森诺生物技术有限公司(上 海),分别运用 Illumina HiSeq PE150 和 Illumina Miseq PE250 对 phoC 和 phoD 基因进行双端测序。

1.5 数据处理与统计分析

利用 FLASH 软件对双端序列进行连接后,采 用 QIIME 软件将测序的双端序列数据进行处理,并 使用 USEARCH 剔除嵌合体序列,获得每个样本的 有效序列。去除长度小于 130 bp 的 *phoC* 基因序列 和长度小于 150 bp 的 *phoD* 基因序列。将剩余的高 质量序列聚类为操作分类单元(OTU),阈值设置为 97%,并选取每个 OTU 中丰度最高的序列作为代表 序列。基于美国国立生物技术信息中心基因库 (NCBI GenBank)对代表序列进行分类学注释。每 个样品 OTU 序列稀释至相同水平(42 888 个有效序 列),用于 α 和 β 多样性分析。使用 QIIME 软件计 算 α 多样性指数 (OTU 数目和香农指数)。

基于 Bray-Curtis 距离,使用主坐标分析 (PCoA)展示 phoC和 phoD 细菌群落的组成结构。 置换多元方差分析(PERMANOVA)用于检验根际 作用、氮肥形态和磷肥水平对细菌群落结构影响差 异的显著性。使用 Mantel 分析检验土壤理化因子 对细菌群落结构的影响。以上分析均使用 R 软件 "vegan"包完成。

使用软件 SPSS20.0 进行统计分析。单因素方差 分析(One-way ANOVA)检验不同处理间植株生物 量及地上部氮、磷、钾含量的差异。三因素方差分 析比较根际作用、氮形态及磷肥水平对土壤理化性 质、磷酸酶活性、微生物多样性指数和优势属相对 丰度的影响。如果差异具有统计学意义(P<0.05), 再使用单因素方差分析或T检验进行差异比较。使 用皮尔森(Pearson)分析土壤理化性质与磷酸酶活 性、phoC和 phoD 细菌多样性之间的相关性。

2 结果

2.1 氮形态和磷肥水平对玉米生物量和土壤理化 性质的影响

相同磷肥水平下,相比铵态氮肥,施用硝态氮 肥显著提高了玉米生物量;而相同氮形态处理下, 施用磷肥明显提高玉米生物量(表 1)。铵态氮和 磷肥配施处理(NH₄-P100)有更高的地上部氮和磷 含量(表 1),而所有处理中地上部钾含量均无显 著差异。

三因素方差分析表明,不同氮肥形态处理显著 (P<0.05)影响了土壤 pH、全氮、全磷、铵态氮、 硝态氮、有效磷和速效钾含量,磷肥处理影响了全 磷、有机质、铵态氮和有效磷含量(P<0.05),而根 际作用显著影响了全磷、全钾、有机质、铵态氮、 速效钾和有效磷含量(P<0.05,表2)。与铵态氮肥 相比,硝态氮肥处理显著提高了土壤 pH,而且硝态 氮和磷肥配施处理(NO₃-P100)具有最高的土壤全 磷、有机质和有效磷含量。铵态氮肥处理下根际铵 态氮含量显著小于非根际。所有处理根际速效钾含 量均显著低于非根际。

ねん 工田	地上部生物量	地下部生物量	氮含量	磷含量	钾含量
处理	Shoot biomass	Root biomass	N content	P content	K content
Ireatment	$/ (g \cdot pot^{-1})$	/ $(g \cdot pot^{-1})$	/ $(mg \cdot g^{-1})$	/ $(mg \cdot g^{-1})$	/ ($mg \cdot g^{-1}$)
NH ₄ -P0	$6.27 \pm 0.57c$	$2.68\pm0.16c$	$7.18\pm0.92ab$	$1.70\pm0.15b$	$17.17 \pm 3.01a$
NH ₄ -P100	$7.37 \pm 0.16c$	$3.87 \pm 0.2ab$	$7.92 \pm 1.47a$	$2.87\pm0.54a$	$16.43\pm0.82a$
NO ₃ -P0	10.45 ±0.97b	$3.61 \pm 0.37b$	$6.62 \pm 1.05 ab$	$1.34\pm0.09b$	$19.52 \pm 1.25a$
NO ₃ -P100	$14.05 \pm 1.68a$	$4.34 \pm 0.63a$	$5.47 \pm 1.48b$	$1.55 \pm 0.44b$	$18.51 \pm 2.96a$

Table 1 Maize biomass and the content of N, P, K in maize shoots under nitrogen forms and phosphorus fertilizer levels

注: NH₄-P0: 铵态氮不施磷; NH₄-P100: 铵态氮施磷肥; NO₃-P0: 硝态氮不施磷; NO₃-P100: 硝态氮施磷。表中数值为平均 值 ± 标准差(n = 4)。同列不同小写字母表示四个施肥处理间差异达 P < 0.05 显著水平。下同。Note: NH₄-P0: ammonium nitrogen without phosphorus fertilizer; NH₄-P100: ammonium nitrogen with phosphorus fertilizer; NO₃-P0: nitrate nitrogen without phosphorus fertilizer; NO₃-P100: nitrate nitrogen with phosphorus fertilizer. The values are the mean ± SD (n = 4). Different letters followed by values within each column indicate a significant difference among different treatments (P < 0.05). The same below.

表 2 不同氮形态与磷肥水平处理下玉米根际与非根际土壤理化性质

 Table 2
 Soil physicochemical characteristics in the bulk and rhizosphere soils of maize under different nitrogen forms and phosphorus fertilizer levels

处理	取样位点	-11	$TN/(\alpha lra^{-1})$	$TP/(a ha^{-1})$	$TV/(\alpha k a^{-1})$	$SOM/(a k a^{-1})$
Treatment	Sampling site	рн	IN/ (g·kg)	IP/(g·kg)	$\mathbf{I}\mathbf{K}$ (g·kg)	SOM/ (g·kg)
NIL DO	非根际	$4.23\pm0.05b$	$0.77 \pm 0.02a$	$0.38 \pm 0.03c$	$10.79 \pm 0.17a$	$8.93 \pm 1.92 b$
NH4-PU	根际	$4.23\pm0.02b$	$0.72 \pm 0.01a$	$0.36 \pm 0.02c$	$10.84\pm0.19a$	$10.68\pm0.41b$
NUL DIOO	非根际	$4.23\pm0.05b$	$0.74 \pm 0.02a$	$0.48\pm0.01b\texttt{*}$	$10.84\pm0.19a$	$9.87 \pm 0.66a$
NH ₄ -P100	根际	$4.22\pm0.04b$	$0.76\pm0.08a$	$0.42\pm0.02b$	$10.64\pm0.30a$	$11.33 \pm 0.33a^*$
	非根际	$4.46\pm0.05a$	$0.70\pm0.04b$	$0.36\pm0.02c$	$10.99 \pm 0.23a^*$	$9.52\pm0.21ab$
NO ₃ -P0	根际	$4.64 \pm 0.23a$	$0.74\pm0.02a$	$0.36 \pm 0.02c$	$10.59 \pm 0.00a$	$10.86 \pm 0.39ab*$
NO 8100	非根际	$4.39\pm0.04a$	$0.70\pm0.03b$	$0.53\pm0.05a$	$10.84 \pm 0.19a$	$10.98\pm0.38a$
NO ₃ -P100	根际	$4.52 \pm 0.16a$	$0.73\pm0.05a$	$0.51 \pm 0.06a$	$10.64 \pm 0.10a$	11.71 ± 1.82a
		N: <i>P</i> =0.000, P: <i>P</i> =	N: <i>P</i> =0.034, P: <i>P</i> =	N: P=0.010, P: P=	N: <i>P</i> =0.853, P: <i>P</i> =	N: <i>P</i> =0.385, P: <i>P</i> =
一田志	上 米 八 FC	0.205, R: <i>P</i> =0.052,	0.925, R: <i>P</i> =0.489,	0.000, R: <i>P</i> =0.031,	0.359, R: <i>P</i> =0.010,	0.050, R: <i>P</i> =0.000,
二四系。	力 差 分 竹	$N \times P: P=0.255$,	$N \times P: P=0.690$,	N× P: <i>P</i> =0.001,	$N \times P: P=0.836$,	$N \times P: P=0.847$,
Three-way	analysis of	$N \times R: P=0.039$,	$N \times R: P=0.061$,	$N \times R: P=0.291$,	$N \times R: P=0.105$,	$N \times R: P=0.933$,
variance statistic		$P \times R: P=0.726$,	$P \times R: P=0.340$,	$P \times R: P=0.180$,	$P \times R: P=0.839$,	$P \times R: P=0.951$,
		$N \times P \times R$: <i>P</i> =0.776	$N \times P \times R$: <i>P</i> =0.212	$N \times P \times R$: <i>P</i> =0.724	$N \times P \times R$: <i>P</i> =0.109	$N \times P \times R$: <i>P</i> =0.635
处理	取样位点	$\mathrm{NIII}^{+} \mathrm{N}/(\mathrm{ma} \mathrm{ka}^{-1})$	$NO^{-}N/(malas^{-1})$	$\Delta \mathbf{D}/(ma_1 ka^{-1})$	$Alt/(malta^{-1})$	
处理 Treatment	取样位点 Sampling site	NH_4^+ -N/ (mg·kg ⁻¹)	$NO_3^-N / (mg \cdot kg^{-1})$	AP/ ($mg \cdot kg^{-1}$)	Ak/ ($mg \cdot kg^{-1}$)	
处理 Treatment	取样位点 Sampling site 非根际	$NH_4^+-N/(mg\cdot kg^{-1})$ 60.39 ± 12.07a*	$NO_3^-N / (mg \cdot kg^{-1})$ 16.26 ± 5.37b	AP/ ($mg \cdot kg^{-1}$) 2.54 ± 0.26c	Ak/ (mg·kg ⁻¹) 228.40 \pm 7.54a*	
处理 Treatment NH4-P0	取样位点 Sampling site 非根际 根际	$NH_4^+-N/(mg\cdot kg^{-1})$ 60.39 ± 12.07a* 13.68 ± 5.41a	$NO_{3}^{-}N / (mg \cdot kg^{-1})$ 16.26 ± 5.37b 20.29 ± 9.29b	AP/ ($mg \cdot kg^{-1}$) 2.54 ± 0.26c 1.96 ± 0.19c	Ak/ (mg·kg ⁻¹) 228.40 ± 7.54a* 118.08 ± 13.27a	
处理 Treatment NH4-P0	取样位点 Sampling site 非根际 根际 非根际	$NH_4^+-N/(mg\cdot kg^{-1})$ 60.39 ± 12.07a* 13.68 ± 5.41a 23.47 ± 2.35bc*	$NO_{3}^{-}N / (mg \cdot kg^{-1})$ 16.26 ± 5.37b 20.29 ± 9.29b 13.95 ± 2.38b	AP/ (mg·kg ⁻¹) 2.54 \pm 0.26c 1.96 \pm 0.19c 18.82 \pm 1.96b	Ak/ ($mg \cdot kg^{-1}$) 228.40 ± 7.54a* 118.08 ± 13.27a 226.80 ± 7.65a*	
处理 Treatment NH4-P0 NH4-P100	取样位点 Sampling site 非根际 根际 非根际 根际	$NH_{4}^{+}-N/(mg\cdot kg^{-1})$ 60.39 ± 12.07a* 13.68 ± 5.41a 23.47 ± 2.35bc* 8.78 ± 1.42bc	$NO_{3}^{-}N / (mg \cdot kg^{-1})$ $16.26 \pm 5.37b$ $20.29 \pm 9.29b$ $13.95 \pm 2.38b$ $14.58 \pm 0.44b$	AP/ (mg·kg ⁻¹) 2.54 \pm 0.26c 1.96 \pm 0.19c 18.82 \pm 1.96b 16.26 \pm 2.62b	Ak/ (mg·kg ⁻¹) $228.40 \pm 7.54a^*$ $118.08 \pm 13.27a$ $226.80 \pm 7.65a^*$ $109.69 \pm 8.36ab$	
处理 Treatment NH4-P0 NH4-P100	取样位点 Sampling site 非根际 根际 非根际 根际 非根际	$NH_{4}^{+}-N/(mg\cdot kg^{-1})$ 60.39 ± 12.07a* 13.68 ± 5.41a 23.47 ± 2.35bc* 8.78 ± 1.42bc 13.17 ± 5.53cd	$NO_{3}^{-}N / (mg \cdot kg^{-1})$ $16.26 \pm 5.37b$ $20.29 \pm 9.29b$ $13.95 \pm 2.38b$ $14.58 \pm 0.44b$ $28.44 \pm 19.86b$	AP/ ($mg \cdot kg^{-1}$) 2.54 ± 0.26c 1.96 ± 0.19c 18.82 ± 1.96b 16.26 ± 2.62b 3.13 ± 0.57c	Ak/ ($mg \cdot kg^{-1}$) 228.40 ± 7.54a* 118.08 ± 13.27a 226.80 ± 7.65a* 109.69 ± 8.36ab 204.02 ± 7.94b*	
处理 Treatment NH4-P0 NH4-P100 NO3-P0	取样位点 Sampling site 非根际 根际 非根际 非根际 非根际 非限际	$NH_{4}^{+}-N/(mg\cdot kg^{-1})$ $60.39 \pm 12.07a^{*}$ $13.68 \pm 5.41a$ $23.47 \pm 2.35bc^{*}$ $8.78 \pm 1.42bc$ $13.17 \pm 5.53cd$ $5.56 \pm 1.51c$	$NO_{3}^{-}N / (mg \cdot kg^{-1})$ $16.26 \pm 5.37b$ $20.29 \pm 9.29b$ $13.95 \pm 2.38b$ $14.58 \pm 0.44b$ $28.44 \pm 19.86b$ $40.51 \pm 19.80a$	AP/ (mg·kg ⁻¹) 2.54 \pm 0.26c 1.96 \pm 0.19c 18.82 \pm 1.96b 16.26 \pm 2.62b 3.13 \pm 0.57c 2.43 \pm 0.22c	Ak/ (mg·kg ⁻¹) 228.40 \pm 7.54a* 118.08 \pm 13.27a 226.80 \pm 7.65a* 109.69 \pm 8.36ab 204.02 \pm 7.94b* 109.29 \pm 12.82ab	
处理 Treatment NH4-P0 NH4-P100 NO3-P0	取样位点 Sampling site 非根际 根际 非根际 非根际 机际 根际 机际	$NH_{4}^{+}-N/(mg\cdot kg^{-1})$ 60.39 ± 12.07a* 13.68 ± 5.41a 23.47 ± 2.35bc* 8.78 ± 1.42bc 13.17 ± 5.53cd 5.56 ± 1.51c 11.53 ± 5.51d	$NO_{3}^{-}N / (mg \cdot kg^{-1})$ $16.26 \pm 5.37b$ $20.29 \pm 9.29b$ $13.95 \pm 2.38b$ $14.58 \pm 0.44b$ $28.44 \pm 19.86b$ $40.51 \pm 19.80a$ $62.04 \pm 13.05a^{*}$	AP/ (mg·kg ⁻¹) 2.54 \pm 0.26c 1.96 \pm 0.19c 18.82 \pm 1.96b 16.26 \pm 2.62b 3.13 \pm 0.57c 2.43 \pm 0.22c 28.08 \pm 4.48a*	Ak/ ($mg \cdot kg^{-1}$) 228.40 ± 7.54a* 118.08 ± 13.27a 226.80 ± 7.65a* 109.69 ± 8.36ab 204.02 ± 7.94b* 109.29 ± 12.82ab 217.61 ± 6.19a*	
处理 Treatment NH4-P0 NH4-P100 NO3-P0 NO3-P100	取样位点 Sampling site 非根际 根尿 非根际 相限际 非根际 4 根际 非根际 4	$NH_{4}^{+}-N/(mg\cdot kg^{-1})$ $60.39 \pm 12.07a^{*}$ $13.68 \pm 5.41a$ $23.47 \pm 2.35bc^{*}$ $8.78 \pm 1.42bc$ $13.17 \pm 5.53cd$ $5.56 \pm 1.51c$ $11.53 \pm 5.51d$ $9.86 \pm 3.23bc$	$NO_{3}^{-}N / (mg \cdot kg^{-1})$ $16.26 \pm 5.37b$ $20.29 \pm 9.29b$ $13.95 \pm 2.38b$ $14.58 \pm 0.44b$ $28.44 \pm 19.86b$ $40.51 \pm 19.80a$ $62.04 \pm 13.05a^{*}$ $17.93 \pm 12.96b$	AP/ (mg·kg ⁻¹) 2.54 \pm 0.26c 1.96 \pm 0.19c 18.82 \pm 1.96b 16.26 \pm 2.62b 3.13 \pm 0.57c 2.43 \pm 0.22c 28.08 \pm 4.48a* 20.28 \pm 2.86a	Ak/ (mg·kg ⁻¹) 228.40 \pm 7.54a* 118.08 \pm 13.27a 226.80 \pm 7.65a* 109.69 \pm 8.36ab 204.02 \pm 7.94b* 109.29 \pm 12.82ab 217.61 \pm 6.19a* 95.30 \pm 10.36c	
处理 Treatment NH4-P0 NH4-P100 NO3-P0 NO3-P100	取样位点 Sampling site 非根际 根际 非根际 非根际 非根际 非根际 非根际 根际	$NH_{4}^{+}-N/(mg\cdot kg^{-1})$ $60.39 \pm 12.07a^{*}$ $13.68 \pm 5.41a$ $23.47 \pm 2.35bc^{*}$ $8.78 \pm 1.42bc$ $13.17 \pm 5.53cd$ $5.56 \pm 1.51c$ $11.53 \pm 5.51d$ $9.86 \pm 3.23bc$ $N: P=0.000, P: P=$	$NO_3^-N / (mg \cdot kg^{-1})$ $16.26 \pm 5.37b$ $20.29 \pm 9.29b$ $13.95 \pm 2.38b$ $14.58 \pm 0.44b$ $28.44 \pm 19.86b$ $40.51 \pm 19.80a$ $62.04 \pm 13.05a^*$ $17.93 \pm 12.96b$ N: P=0.000, P: P=	AP/ (mg·kg ⁻¹) 2.54 \pm 0.26c 1.96 \pm 0.19c 18.82 \pm 1.96b 16.26 \pm 2.62b 3.13 \pm 0.57c 2.43 \pm 0.22c 28.08 \pm 4.48a* 20.28 \pm 2.86a N: P=0.000, P: P=	Ak/ (mg·kg ⁻¹) 228.40 \pm 7.54a* 118.08 \pm 13.27a 226.80 \pm 7.65a* 109.69 \pm 8.36ab 204.02 \pm 7.94b* 109.29 \pm 12.82ab 217.61 \pm 6.19a* 95.30 \pm 10.36c N: P=0.000, P: P=	
处理 Treatment NH4-P0 NH4-P100 NO3-P0 NO3-P100	取样位点 Sampling site 非根际 根际 非根际 非根际 非根际 非根际 和根际	$\begin{split} \mathrm{NH}_{4}^{+} \mathrm{-N/} &(\mathrm{mg} \cdot \mathrm{kg}^{-1}) \\ & 60.39 \pm 12.07 \mathrm{a}^{*} \\ & 13.68 \pm 5.41 \mathrm{a} \\ & 23.47 \pm 2.35 \mathrm{bc}^{*} \\ & 8.78 \pm 1.42 \mathrm{bc} \\ & 13.17 \pm 5.53 \mathrm{cd} \\ & 5.56 \pm 1.51 \mathrm{c} \\ & 11.53 \pm 5.51 \mathrm{d} \\ & 9.86 \pm 3.23 \mathrm{bc} \\ & \mathrm{N:} \ P = 0.000, \ \mathrm{P:} \ P = \\ & 0.000, \ \mathrm{R:} \ P = 0.000, \end{split}$	$NO_3^N / (mg \cdot kg^{-1})$ $16.26 \pm 5.37b$ $20.29 \pm 9.29b$ $13.95 \pm 2.38b$ $14.58 \pm 0.44b$ $28.44 \pm 19.86b$ $40.51 \pm 19.80a$ $62.04 \pm 13.05a^*$ $17.93 \pm 12.96b$ N: P=0.000, P: P= 0.867, R: P=0.134,	AP/ (mg·kg ⁻¹) 2.54 \pm 0.26c 1.96 \pm 0.19c 18.82 \pm 1.96b 16.26 \pm 2.62b 3.13 \pm 0.57c 2.43 \pm 0.22c 28.08 \pm 4.48a* 20.28 \pm 2.86a N: P=0.000, P: P= 0.000, R: P=0.001,	Ak/ (mg·kg ⁻¹) 228.40 \pm 7.54a* 118.08 \pm 13.27a 226.80 \pm 7.65a* 109.69 \pm 8.36ab 204.02 \pm 7.94b* 109.29 \pm 12.82ab 217.61 \pm 6.19a* 95.30 \pm 10.36c N: <i>P</i> =0.000, P: <i>P</i> = 0.451, R: <i>P</i> =0.000,	
处理 Treatment NH ₄ -P0 NH ₄ -P100 NO ₃ -P0 NO ₃ -P100 三因素	取样位点 Sampling site 非根际 根限际 非根际 化 根 根际 非根际 方差分析	$\begin{array}{c} \mathrm{NH}_{4}^{+}\mathrm{-N/}\ (\mathrm{mg\cdot kg^{-1}}\)\\ \\ 60.39 \pm 12.07\mathrm{a}^{*}\\ 13.68 \pm 5.41\mathrm{a}\\ 23.47 \pm 2.35\mathrm{bc}^{*}\\ 8.78 \pm 1.42\mathrm{bc}\\ 13.17 \pm 5.53\mathrm{cd}\\ 5.56 \pm 1.51\mathrm{c}\\ 11.53 \pm 5.51\mathrm{d}\\ 9.86 \pm 3.23\mathrm{bc}\\ \mathrm{N}:\ P{=}0.000,\ \mathrm{P}:\ P{=}\\ 0.000,\ \mathrm{R}:\ P{=}0.000,\\ \mathrm{N}\times\mathrm{P}:\ P{=}0.000,\\ \end{array}$	$NO_3^N / (mg \cdot kg^{-1})$ $16.26 \pm 5.37b$ $20.29 \pm 9.29b$ $13.95 \pm 2.38b$ $14.58 \pm 0.44b$ $28.44 \pm 19.86b$ $40.51 \pm 19.80a$ $62.04 \pm 13.05a^*$ $17.93 \pm 12.96b$ N: P=0.000, P: P= 0.867, R: P=0.134, N × P: P=0.291,	AP/ (mg·kg ⁻¹) 2.54 \pm 0.26c 1.96 \pm 0.19c 18.82 \pm 1.96b 16.26 \pm 2.62b 3.13 \pm 0.57c 2.43 \pm 0.22c 28.08 \pm 4.48a* 20.28 \pm 2.86a N: <i>P</i> =0.000, P: <i>P</i> = 0.000, R: <i>P</i> =0.001, N×P: <i>P</i> =0.001,	Ak/ (mg·kg ⁻¹) 228.40 \pm 7.54a* 118.08 \pm 13.27a 226.80 \pm 7.65a* 109.69 \pm 8.36ab 204.02 \pm 7.94b* 109.29 \pm 12.82ab 217.61 \pm 6.19a* 95.30 \pm 10.36c N: <i>P</i> =0.000, P: <i>P</i> = 0.451, R: <i>P</i> =0.000, N \times P: <i>P</i> =0.486,	
处理 Treatment NH ₄ -P0 NH ₄ -P100 NO ₃ -P0 NO ₃ -P100 三因素: Three-way	取样位点 Sampling site 非根际 根际 非根际 非根际 非根际 和根际 非极际 方差分析 (analysis of	$\begin{array}{l} \mathrm{NH}_{4}^{+} \mathrm{-N/} \ (\mathrm{mg} \cdot \mathrm{kg}^{-1} \) \\ \\ 60.39 \pm 12.07\mathrm{a}^{*} \\ 13.68 \pm 5.41\mathrm{a} \\ 23.47 \pm 2.35\mathrm{bc}^{*} \\ 8.78 \pm 1.42\mathrm{bc} \\ 13.17 \pm 5.53\mathrm{cd} \\ 5.56 \pm 1.51\mathrm{c} \\ 11.53 \pm 5.51\mathrm{d} \\ 9.86 \pm 3.23\mathrm{bc} \\ \mathrm{N}: \ P = 0.000, \ \mathrm{P}: \ P = \\ 0.000, \ \mathrm{R}: \ P = 0.000, \\ \mathrm{N} \times \mathrm{P}: \ P = 0.000, \\ \mathrm{N} \times \mathrm{R}: \ P = 0.000, \end{array}$	$NO_{3}^{-}N / (mg \cdot kg^{-1})$ $16.26 \pm 5.37b$ $20.29 \pm 9.29b$ $13.95 \pm 2.38b$ $14.58 \pm 0.44b$ $28.44 \pm 19.86b$ $40.51 \pm 19.80a$ $62.04 \pm 13.05a^{*}$ $17.93 \pm 12.96b$ $N: P=0.000, P: P=$ $0.867, R: P=0.134,$ $N \times P: P=0.291,$ $N \times R: P=0.048,$	AP/ (mg·kg ⁻¹) 2.54 \pm 0.26c 1.96 \pm 0.19c 18.82 \pm 1.96b 16.26 \pm 2.62b 3.13 \pm 0.57c 2.43 \pm 0.22c 28.08 \pm 4.48a* 20.28 \pm 2.86a N: <i>P</i> =0.000, P: <i>P</i> = 0.000, R: <i>P</i> =0.001, N×P: <i>P</i> =0.001, N × R: <i>P</i> =0.100,	Ak/ (mg·kg ⁻¹) 228.40 \pm 7.54a* 118.08 \pm 13.27a 226.80 \pm 7.65a* 109.69 \pm 8.36ab 204.02 \pm 7.94b* 109.29 \pm 12.82ab 217.61 \pm 6.19a* 95.30 \pm 10.36c N: <i>P</i> =0.000, P: <i>P</i> = 0.451, R: <i>P</i> =0.000, N \times P: <i>P</i> =0.486, N \times R: <i>P</i> =0.451,	
处理 Treatment NH4-P0 NH4-P100 NO3-P0 NO3-P100 三因素 Three-way variance	取样位点 Sampling site 非根际 根际 非根际 非根际 非根际 非根际 方差分析 r analysis of e statistic	$\begin{array}{l} \mathrm{NH}_{4}^{+}\mathrm{-N/}\ (\mathrm{mg\cdot kg^{-1}}\)\\ \\ 60.39 \pm 12.07\mathrm{a}^{*}\\ 13.68 \pm 5.41\mathrm{a}\\ 23.47 \pm 2.35\mathrm{bc}^{*}\\ 8.78 \pm 1.42\mathrm{bc}\\ 13.17 \pm 5.53\mathrm{cd}\\ 5.56 \pm 1.51\mathrm{c}\\ 11.53 \pm 5.51\mathrm{d}\\ 9.86 \pm 3.23\mathrm{bc}\\ \mathrm{N}:\ P=0.000,\ \mathrm{P}:\ P=\\ 0.000,\ \mathrm{R}:\ P=0.000,\\ \mathrm{N}\times\mathrm{P}:\ P=0.000,\\ \mathrm{N}\times\mathrm{R}:\ P=0.000,\\ \mathrm{N}\times\mathrm{R}:\ P=0.000,\\ \mathrm{P}\times\mathrm{R}:\ P=0.000,\\ \mathrm{P}\times\mathrm{R}:\ P=0.000,\\ \end{array}$	$NO_{3}^{-}N / (mg \cdot kg^{-1})$ $16.26 \pm 5.37b$ $20.29 \pm 9.29b$ $13.95 \pm 2.38b$ $14.58 \pm 0.44b$ $28.44 \pm 19.86b$ $40.51 \pm 19.80a$ $62.04 \pm 13.05a^{*}$ $17.93 \pm 12.96b$ $N: P=0.000, P: P=$ $0.867, R: P=0.134,$ $N \times P: P=0.291,$ $N \times R: P=0.048,$ $P \times R: P=0.002,$	AP/ (mg·kg ⁻¹) 2.54 ± 0.26c 1.96 ± 0.19c 18.82 ± 1.96b 16.26 ± 2.62b 3.13 ± 0.57c 2.43 ± 0.22c 28.08 ± 4.48a* 20.28 ± 2.86a N: P =0.000, P: P = 0.000, R: P =0.001, N×P: P =0.001, N×R: P =0.100, $P \times R$: P =0.008,	Ak/ (mg·kg ⁻¹) 228.40 \pm 7.54a* 118.08 \pm 13.27a 226.80 \pm 7.65a* 109.69 \pm 8.36ab 204.02 \pm 7.94b* 109.29 \pm 12.82ab 217.61 \pm 6.19a* 95.30 \pm 10.36c N: <i>P</i> =0.000, P: <i>P</i> = 0.451, R: <i>P</i> =0.000, N \times P: <i>P</i> =0.486, N \times R: <i>P</i> =0.451, P \times R: <i>P</i> =0.018,	

注: TN: 全氮; TP: 全磷; TK: 全钾: SOM: 有机质; NH4⁺-N: 铵态氮; NO3-N: 硝态氮; AP: 有效磷; AK: 速效钾。同 列不同小写字母表示非根际或根际样品在四个施肥处理间差异达 *P*<0.05 显著水平。*表示同一个处理中非根际和根际样品间差异达 *P*<0.05 显著水平。N: 氮形态; P: 磷肥水平; R: 根际效应。下同。Note: TN: total nitrogen; TP: total phosphorus; TK: total potassium; SOM: soil organic matter; NH4⁺-N: ammonium nitrogen; NO3-N: nitrate nitrogen; AP: available phosphorus; AK: available potassium. Different letters followed by values within each column indicate significant a difference among different treatments for bulk or rhizosphere soil samples (*P*<0.05).* indicates a significant difference between bulk and rhizosphere soil samples under the same treatment. N: nitrogen form; P: phosphorus fertilizer levels; R: rhizosphere effect. The same below.

际土壤磷酸酶活性均显著高于非根际(P<0.05)。 NO₃-P0 处理根际酸性磷酸酶活性显著高于 NO₃-

P100。NH₄-P0 处理根际碱性磷酸酶活性显著高于

NO3-P0 和 NO3-P100。NO3-P0 处理非根际酸性磷酸

酶活性显著高于 NH₄-P0, 并且 NO₃-P0 和 NO₃-P100

处理非根际碱性磷酸酶活性均显著高于 NH₄-P100

2.2 氮形态和磷肥水平对非根际和根际土壤磷酸 酶活性的影响

三因素方差分析显示,磷肥水平和根际作用显 著(P<0.05)影响土壤酸性磷酸酶和碱性磷酸酶活 性,而氮形态仅显著影响了碱性磷酸酶活性;并且 根际作用对磷酸酶活性的影响强度要明显高于氮肥 和磷肥水平(图1)。除了 NO₃-P100 处理,施肥根

120 75 a) N: P=0.335 P: P=0.018 R: P=0.000 b) $N \cdot P = 0.003 P \cdot P = 0.003 R \cdot P = 0.000$ N×P: P=0.112 P×R: P=0.026 N×P: P=0.278 P×R: P=0.038 非根际 Bulk 非根际 Bulk N×R: P=0.000 N×P×R: P=0.700 N×R: P=0.450 N×P×R: P=0.957 鹹性磷酸酶 Alkaline phosphatase/(µg·g⁻¹·h⁻¹) 根际 Rhizosphere 根际 Rhizosphere 酸性磷酸酶 Acid phosphatase/(µg·g⁻¹·h⁻¹) 100 60 а ab 80 *: ab 45 ab b ** bc Ŧ 60 30 ab 40 а ab h ab b 15 20 0 0 NO₃-P100 NH₄-P0 NH₄-P0 NH₄-P100 NO₃-P0 NH₄-P100 NO₃-P0 NO₃-P100 处理 Treatment 处理 Treatment

(P<0.05)_o

注:磷酸酶单位以每克土壤(干物质量当量)在1小时内释放对硝基苯酚量(微克)计。图中柱子上不同小写字母表示非根际或根际样品在四个施肥处理间的差异显著性(P < 0.05)。星号表示同一处理下非根际和根际样品间差异达显著水平(*P < 0.05, **P < 0.01)。使用三因素方差分析检验氮形态、磷肥、根际作用对磷酸酶活性的影响。下同。Note: The potential enzyme activities were defined as µg of p-nitrophenol released by per g of soil(dry weight equivalent) within 1 h. Different lowercase letters above the bars indicate significant difference among different treatments for bulk or rhizosphere soil samples (P < 0.05). Asterisk indicates the significant influence (*P < 0.05 or **P < 0.01) between bulk and rhizosphere soil samples under the same treatment. A three-way analysis was conducted to examine the effects of nitrogen form, phosphorus fertilizer and rhizosphere effect on soil phosphatase activities. The same below.

图 1 不同氮形态与磷肥水平处理下非根际和根际土壤酸性磷酸酶(a)和碱性磷酸酶(b)活性

Fig. 1 Activities of acid phosphatase (a) and alkaline phosphatase (b) of bulk and rhizosphere soils under different nitrogen forms and phosphorus fertilizer levels

2.3 phoC 和 phoD 细菌群落优势属和 α 多样性

表 3 展示了 phoC 和 phoD 细菌群落各优势属的 相对丰度。三因素方差分析显示,根际作用和磷肥水 平未影响 phoC 细菌优势属的相对丰度,而不同氮形 态显著(P<0.05)影响了克雷伯氏菌属(Klebsiella) 的相对丰度。根际作用显著影响了所有 phoD 细菌优 势属的相对丰度,尤其是山冈单胞菌属(Collimonas), 由非根际的 7.84%~10.92%增加至根际的 48.76%~ 86.78%。然而,其他 phoD 细菌优势属在根际中的 相对丰度均不同程度地低于非根际。氮形态显著 (P<0.01)影响了山冈单胞菌属(Collimonas)和假 单胞菌属(Pseudomonas)的相对丰度,磷肥水平并 未显著影响 phoD 细菌的优势属。硝态氮肥处理根 际山冈单胞菌属(Collimonas)相对丰度显著高于铵 态氮肥的根际样品。

三因素方差分析显示,氮形态和根际作用显著 (*P*<0.01)影响了 *phoC* 细菌 OTU 数目,但是氮形态、 磷肥水平和根际作用未影响 *phoC* 细菌的香农指数 (图 2a 和图 2c);氮形态、磷肥水平和根际作用均显 著(P<0.05)影响了 phoD 细菌 OTU 数目和香农指 数(图 2b 和图 2d)。磷肥处理下根际 phoC 细菌 OTU 数目显著大于非根际,而根际 phoD 细菌 OTU 数目 在所有处理中均显著高于非根际。除了 NH₄-P0 处 理外,施肥根际 phoD 细菌香农指数均显著低于非 根际。

2.4 phoC 和 phoD 细菌群落组成结构

采用 PCoA 可视化了 phoC 和 phoD 细菌群落 组成结构(图 2e 和图 2f), phoC 和 phoD 细菌群落 在非根际和根际样品中明显分开。PERMANOVA 分析表明,根际作用显著影响了 phoC 和 phoD 细 菌群落组成,其中对 phoD 细菌群落(F=17.358, P=0.001)的作用强度高于 phoC 细菌群落(F= 1.906, P=0.003; 表 4)。氮形态显著(P<0.05)影 响了 phoD 细菌群落组成,但是未影响 phoC 细菌 群落;磷肥水平均未影响 phoC 和 phoD 细菌群落 组成。不施磷肥处理(NH₄-P0和NO₃-P0)根际 phoC 细菌群落组成显著(P<0.05)不同于非根际; phoD 细菌群落组成在所有处理非根际与根际样品间均 差异显著(P<0.05)。氮形态显著(P<0.05)影响 了根际 phoD 细菌群落组成。

2.5 磷酸酶活性、phoC和 phoD 细菌群落多样性 和组成与土壤理化性质的相关性

相关性分析显示,磷酸酶活性和相关功能细菌 群落 OTU 数目与土壤有机质显著(P<0.05)正相 关,与土壤铵态氮和速效钾显著(P<0.05)负相关 (表 5)。此外,phoC细菌 OTU 数目与土壤 pH 显著 正相关。phoD 细菌香农指数与土壤全钾、铵态氮和 速效钾显著正相关,与土壤 pH 和有机质显著负相 关。然而,phoC 细菌香农指数与土壤理化因子无显 著性相关。phoC 和 phoD 细菌群落组成结构与速效 钾显著相关,而且 phoD 细菌群落结构与有机质和 铵态氮显著相关。

表 3 不同氮形态与磷肥水平处理下非根际和根际中优势 phoC 和 phoD 细菌属(相对丰度>1%)的相对丰度

Table 3	The relative abundances of dominant phoC- and phoD-genera	(>1%)	in bulk a	and rhizospher	e soils under	different	nitrogen	forms and
	phosphorus fer	tilizer le	vels/%					

	处理	取样位点	贪铜菌属	寡养单胞菌属	克雷伯氏菌属	黄单胞菌属
	Treatment	Sampling site	Cupriavidus	Stenotrophomonas	Klebsiella	Xanthomonas
<i>phoC</i> 细菌	NH ₄ -P0	非根际	54.73 ± 38.18a	$8.47 \pm 13.14a$	2.09 ± 4.06a	0.73 ± 1.41a
phoC-harboring		根际	35.83 ± 21.23a	$15.32 \pm 19.84a$	$0.04\pm0.01a$	2.34 ± 4.16a
bacteria	NH ₄ -P100	非根际	$70.70 \pm 32.83a$	7.28 ± 11.16a	$0.03 \pm 0.01a$	$0.01 \pm 0.01a$
		根际	$54.18 \pm 36.38a$	$1.89 \pm 2.02a$	$0.69 \pm 1.28a$	$0.08\pm0.02a$
	NO ₃ -P0	非根际	$45.78\pm39.04a$	$4.17\pm7.63a$	$1.88 \pm 3.69a$	$3.30\pm6.45a$
		根际	$48.90 \pm 4.49a$	$3.00 \pm 2.73a$	10.17 ± 11.41a	$2.07\pm3.58a$
	NO ₃ -P100	非根际	21.12 ± 25.81a	5.78 ± 11.01a	$1.08 \pm 2.10a$	$0.06\pm0.03a$
		根际	$42.60\pm29.92a$	$1.33 \pm 1.75a$	$10.54 \pm 9.60a$	$7.36 \pm 14.28a$
	三因素	方差分析	N: <i>P</i> =0.259,	N: <i>P</i> =0.221,	N: <i>P</i> =0.016,	N: <i>P</i> =0.198,
	Three-way	y analysis of	P: P=0.912,	P: <i>P</i> =0.334,	P: <i>P</i> =0.821,	P: <i>P</i> =0.939,
	varianc	e statistic	R: <i>P</i> =0.361,	R: <i>P</i> =0.782,	R: <i>P</i> =0.053,	R: P=0.804,
			$N \times P: P=0.552,$	$N \times P: P=0.337$,	N \times P: P=0.904,	N× P: $P=0.143$,
			$N \times R: P=0.604,$	$N \times R: P=0.638$,	N×R: <i>P</i> =0.026,	$N \times R: P=0.176$,
			$P \times R: P=0.410,$	$P \times R: P=0.307$,	$P \times R: P=0.635$,	$P \times R: P=0.634,$
			$N \times P \times R$: <i>P</i> =0.238	$N \times P \times R$: <i>P</i> =0.552	$N \times P \times R$: <i>P</i> =0.851	$N \times P \times R$: <i>P</i> =0.714

土 壤 学 报

						续表
	处理	取样位点	山冈单胞菌属	链霉菌属	慢生根瘤菌属	假单胞菌属
	Treatment	Sampling site	Collimonas	Streptomyces	Bradyrhizobium	Pseudomonas
phoD 细菌	NH ₄ -P0	非根际	8.30 ± 4.60a	29.07 ± 4.18a*	11.99 ± 1.88b	$16.72 \pm 6.45a$
phoD-harboring		根际	$48.76 \pm 10.16b*$	$14.41 \pm 4.19a$	$10.56 \pm 4.58a$	$11.46 \pm 5.32a$
bacteria	NH ₄ -P100	非根际	$10.92 \pm 5.91a$	$20.82 \pm 6.35a$	24.30 ± 2.30a*	$16.65 \pm 5.14a*$
		根际	55.02 ± 7.45 b*	$11.28 \pm 1.92ab$	$10.72 \pm 3.57a$	8.06 ± 1.11a
	NO ₃ -P0	非根际	$7.84 \pm 3.02a$	$28.89 \pm 17.78a$	19.35 ± 12.51ab	$7.09 \pm 5.55 ab$
		根际	86.78 ± 6.19a*	$5.06 \pm 2.84c$	$2.72\pm0.97b$	$0.92\pm0.35b$
	NO ₃ -P100	非根际	9.27 ± 3.49a	31.25 ± 8.38a*	15.92 ± 7.37ab*	$5.77 \pm 6.92b$
		根际	$78.39 \pm 4.92a^*$	$8.67 \pm 2.84 bc$	$4.62 \pm 2.26b$	$1.62 \pm 0.52b$
	三因素	方差分析	N: <i>P</i> =0.000,	N: <i>P</i> =0.877,	N: P=0.076,	N: <i>P</i> =0.000,
	Three-wa	y analysis of	P: <i>P</i> =0.826,	P: <i>P</i> =0.627,	P: P=0.187,	P: <i>P</i> =0.544,
	variance statistic		R: <i>P</i> =0.000,	R: <i>P</i> =0.000,	R: P=0.000,	R: P=0.001,
			$N \times P: P=0.079$,	$N \times P$: <i>P</i> =0.127,	$N\times P$: P=0.095,	$N \times P$: <i>P</i> =0.673,
			$N \times R$: <i>P</i> =0.000,	$N \times R: P=0.054,$	$N \times R$: P=0.122,	$N \times R: P=0.599,$
			$P \times R: P=0.483$,	$P \times R: P=0.568$,	$P \times R$: P=0.405,	$P \times R: P=0.846$,
			$N \times P \times R$: <i>P</i> =0.133	$N \times P \times R$: <i>P</i> =0.728	$N \times P \times R$: P=0.040	$N \times P \times R$: <i>P</i> =0.429
	处理	取样位点	芽单胞菌属	红色杆菌属	糖多孢菌属	
	Treatment	Sampling site	Gemmatimonas	Rubrobacter	Saccharopolyspora	Pleomorphomonas
phoD 细菌	NH ₄ -P0	非根际	$7.58 \pm 3.64a$	$12.14 \pm 8.32a$	4.45 ± 3.00 ab	$4.47 \pm 6.42a$
phoD-harboring		根际	$2.64 \pm 1.35b$	2.57 ± 1.61ab	$4.10 \pm 2.71a$	$1.24 \pm 0.79a$
bacteria	NH ₄ -P100	非根际	$9.41 \pm 6.02a$	$5.46 \pm 5.33a$	$0.30 \pm 0.38b$	$3.85 \pm 2.67a$
		根际	$3.90\pm4.83a$	2.81 ± 1.15a	$1.67 \pm 1.04b$	$1.31 \pm 0.87a$
	NO ₃ -P0	非根际	4.23 ± 2.31a*	9.11 ± 9.70a	$8.45 \pm 5.34a*$	$4.66 \pm 7.46a$
		根际	$0.34 \pm 0.12ab$	$0.50 \pm 0.55c$	$0.18 \pm 0.10 \mathrm{b}$	$0.17 \pm 0.08b$
	NO ₃ -P100	非根际	$9.83 \pm 1.37a^*$	$4.81 \pm 3.93a$	$9.08\pm 6.83a$	$3.34 \pm 3.84a$
		根际	$0.82 \pm 0.26a$	1.11 ± 0.53 bc	$0.28 \pm 0.12b$	$0.29 \pm 0.12b$
	三因素	方差分析	N: <i>P</i> =0.079,	N: <i>P</i> =0.316,	N: <i>P</i> =0.134,	N: <i>P</i> =0.663,
	Three-wa	y analysis of	P: P=0.054,	P: <i>P</i> =0.176,	P: <i>P</i> =0.235,	P: <i>P</i> =0.753,
	varianc	e statistic	R: <i>P</i> =0.000,	R: <i>P</i> =0.003,	R: <i>P</i> =0.003,	R: <i>P</i> =0.023,
			$N \times P: P=0.514$,	$N \times P: P=0.709,$	$N \times P: P=0.142,$	$N \times P: P=0.908,$
			N × R: $P=0.592$,	$N \times R: P=0.988,$	$N \times R: P=0.001$,	$N \times R: P=0.752$,
			$P \times R: P=0.221$,	$P \times R: P=0.118$,	$P \times R: P=0.808$,	$P \times R: P=0.701$,
			$N \times P \times R$: <i>P</i> =0.326	$N \times P \times R$: <i>P</i> =0.784	$N \times P \times R$: <i>P</i> =0.645	$N \times P \times R$: <i>P</i> =0.893

注: 实心和空心分别代表非根际和根际土壤。B: 非根际; R: 根际; NH₄: 铵态氮肥; NO₃: 硝态氮肥; P0: 不施磷肥; P100: 施磷肥。下同。Note: The solid and hollow dots represent the bulk and rhizosphere soil samples, respectively. B: bulk soil; R: rhizosphere soil; NH₄: ammonium fertilizers; NO₃: nitrate fertilizer; P0: without phosphorus fertilizer input; P100: with phosphorus fertilizer input. The same below.

图 2 不同氮形态与磷肥水平处理下非根际和根际样品 phoC(a, c)和 phoD(b, d)细菌 α多样性和基于 Bray-Curtis 距离的 phoC(e)和 phoD(f)细菌群落的主坐标分析(PCoA)

Fig. 2 phoC-(a, c) and phoD-(b, d) bacterial α -diversity of bulk and rhizosphere soils under different nitrogen forms and P fertilization treatments; Principal coordinate analysis (PCoA) of phoC-(e) and phoD-(f) bacterial communities under different nitrogen forms and P fertilizer levels

表 4 不同氮形态与磷肥水平处理下非根际和根际 phoC 和 phoD 细菌群落组成的置换多元方差分析(PERMANOVA)

Table 4	PERMANOVA	(global test and pairwise comparison)	analysis of <i>phoC</i> - and <i>phoD</i> -bacterial	community compositions under different						
	nitrogen forms and phosphorus fertilizer levels									

微生物种类	影响因素	整体分析 Global test			分别分析 Pairwise comparison			
Microbial group	Influencing factor	F	R^2	Р	组别 Group	F	R^2	Р
<i>phoC</i> 细菌	根际	1.906	0.060	0.003	NH ₄ -P0 (B vs R)	1.476	0.197	0.045
phoC-harboring	Rhizosphere				NH ₄ -P100 (B vs R)	1.260	0.174	0.155
bacteria					NO ₃ -P0 (B vs R)	1.698	0.221	0.029
					NO ₃ -P100 (B vs R)	1.577	0.208	0.095
	氮形态	1.238	0.039	0.153	B-P0 ($NH_4 vs NO_3$)	1.226	0.170	0.224
	Nitrogen form				$B\text{-}P100~(~\text{NH}_4~\text{vs NO}_3~)$	1.247	0.172	0.156
					R-P0 ($NH_4 vs NO_3$)	1.133	0.159	0.244
					$R\text{-}P100~(~NH_4~vs~NO_3~)$	1.382	0.187	0.135
	磷肥水平	0.607	0.019	0.985	$B-NH_4$ (P0 vs P100)	0.940	0.135	0.580
	Phosphorus				$B-NO_3$ (P0 vs P100)	1.024	0.146	0.396
	fertilizer levels				$R\text{-}NH_4$ (P0 vs P100)	0.918	0.133	0.608
					$R-NO_3$ (P0 vs P100)	0.499	0.077	0.912
<i>phoD</i> 细菌	根际	17.358	0.349	0.001	NH_4 -P0 (B vs R)	3.965	0.398	0.034
phoD-harboring	Rhizosphere				NH ₄ -P100 (B vs R)	4.949	0.452	0.022
bacteria					NO ₃ -P0 (B vs R)	9.016	0.600	0.034
					NO ₃ -P100 (B vs R)	6.616	0.524	0.030
	氮形态	2.873	0.058	0.020	B-P0 (NH ₄ vs NO ₃)	0.965	0.139	0.549
	Nitrogen form				B-P100 (NH ₄ vs NO ₃)	1.446	0.194	0.062
					R-P0 (NH ₄ vs NO ₃)	7.323	0.550	0.022
					R-P100 (NH ₄ vs NO ₃)	3.047	0.337	0.030
	磷肥水平	1.534	0.031	0.118	B-NH ₄ (P0 vs P100)	1.169	0.163	0.229
	Phosphorus				B-NO3 (P0 vs P100)	1.153	0.161	0.365
	fertilizer levels				R-NH ₄ (P0 vs P100)	1.153	0.161	0.352
					R-NO ₃ (P0 vs P100)	5.011	0.455	0.028

1503

表 5 土壤理化性质与磷酸酶活性、phoC和 phoD 细菌多样性及群落结构的相关性

 Table 5
 Correlation analysis between soil physicochemical properties and phosphate activities, phoC- and phoD-gene diversity and bacterial community structure

			phoC 细菌				<i>phoD</i> 细菌	
土壤属性	酸性磷酸酶	碱性磷酸酶	phoC	phoC-harboring bacteria			-harboring bac	eteria
Soil	Acid	Alkaline	のTIL教日	香农指数	群落结构	のTU教日	香农指数	群落结构
properties	phosphatase	phosphatase		Shannon	Community		Shannon	Community
			OIU number	index	structure	010 number	index	structure
pН	0.279	-0.060	0.622**	0.321	-0.142	-0.002	-0.712**	0.059
TN	0.134	-0.088	-0.038	-0.032	0.078	0.197	-0.003	-0.056
TP	-0.291	-0.343	-0.070	-0.158	-0.047	-0.109	0.115	0.045
TK	-0.435*	-0.088	-0.074	0.094	0.045	-0.346	0.390*	0.102
SOM	0.590**	0.451**	0.375*	0.170	-0.014	0.568**	-0.429*	0.244**
NH_4^+-N	-0.551**	-0.435*	-0.394*	-0.065	0.099	-0.418*	0.438*	0.199**
NO ₃ -N	-0.092	-0.180	0.095	-0.117	0.011	-0.326	-0.139	0.089
AP	-0.234	-0.283	-0.132	-0.307	-0.043	-0.035	0.153	0.038
AK	-0.927**	-0.720**	-0.580**	-0.302	0.106*	-0.881**	0.607**	0.688**

注:*表示显著相关(P<0.05); **表示极显著相关(P<0.01)。 Note: * indicates significant correlation at 0.05 level; ** indicates significant correlation at 0.01 level.

3 讨 论

本研究结果显示,酸性红壤上玉米根际作用对 土壤磷酸酶活性及相关功能细菌群落的影响程度要 明显高于施肥作用(氮形态和磷肥水平)(图 1、 图 2 和表 4)。根际是植物养分吸收的主要区域,植 物根系对速效养分的吸收,导致速效养分在根际形 成亏缺区,这是不同施肥处理后玉米根际铵态氮、 有效磷和速效钾等明显低于非根际(表2)的原因。 说明根际和非根际区域养分差异是影响土壤微生物 群落变异的重要因素。此外,根际作为能量和物质 代谢的活跃区域,依靠植物根系释放的分泌物也形 成了不同于非根际的微生物群落特征[20],并激发了 微生物功能。类似地, Lagos 等^[18]研究发现根际效 应对解磷微生物群落的影响要大于磷肥。本研究中, 玉米根际作用对磷酸酶活性的提高应该主要归因于 根系有机物的输入,为解磷微生物功能的发挥提供 必要底物和能量。土壤有机质含量与磷酸酶活性显 著正相关(表 5),充分证明了上述解释。多种生 态系统中也发现了根际对土壤磷酸酶活性的提高

作用^[18.21]。此外,不同于仅仅微生物来源的碱性磷酸酶,植物根系也可分泌酸性磷酸酶,是根际酸性磷酸酶活性提高的另一个重要贡献者^[21]。与之相同的是,根际作用也提高了解磷微生物的物种数,其中对 phoD 细菌的作用更为明显(图 2a 和 2b)。根系分泌物在为微生物生长提供底物的同时,其多样且复杂的组分刺激了不同微生物类群^[22]。根际解磷微生物物种数的增加可能是由于根际环境激活了一些低丰度的 phoC 和 phoD 细菌物种。研究报道,在可控制条件下,新发现的微生物物种应该来自原始环境中的低丰度类群^[23]。因此,根际作用可能激活一些低丰度微生物物种,促进其生长,从而贡献于磷酸酶活性的提高。

解磷微生物物种数的变化直接贡献于群落结构 的改变,因为群落结构主要体现在物种数及物种的相 对丰度。本研究中,根际解磷细菌群落结构的改变主 要归因于根际环境的变化,特别是有机底物的输入和 养分含量的降低。类似的解释已被广泛报道^[24]。而 本研究发现,phoC细菌群落结构改变的主要驱动因 子不同于 phoD 细菌 (表 3)。phoC 细菌更依赖根际

养分 (速效钾), 而 phoD 细菌群落主要是根系分泌 物(有机质)和根系养分(铵态氮和速效钾)综合 作用的结果。Zheng 等^[14]研究发现, 土壤碳含量、 铵态氮和硝态氮含量是 phoD 细菌组成结构变化的 重要驱动因子。本研究结果反映了 phoC 和 phoD 细 菌群落组成对根际作用的差异响应。相比 phoC 细 菌, phoD 细菌群落更易受根际作用和氮形态的影响 (图 2 和表 4), 表现为所有优势属相对丰度均不同 程度地响应于根际作用。这说明 phoD 细菌优势属 可更好地利用根际环境,特别是对分泌物组分可能 存在不同的响应模式。而 phoC 细菌优势属对根系 分泌物的相对不敏感性可能与优势物种特性相关。 phoC细菌优势属(Cupriavidus 和 Stenotrophomonas) 被认为是寡营养类细菌^[25],这些寡营养类细菌通常 表现出较慢的生长速度和较低的养分需求,导致对 富营养环境较低的敏感性[26]。此外,植物根系产生 的酸性磷酸酶在一定程度上负反馈调控根际 phoC 细菌群落^[8],从而降低其对根际环境的响应程度。

尽管根际效应对解磷微生物群落和功能具有较 强的调控作用,但是其作用强度明显依赖于施肥措 施。硝态氮肥处理下,施磷根际酸性磷酸酶活性显 著低于不施磷处理, 而硝态氮肥和磷肥配合施用并 未显著提高根际碱性磷酸酶活性(图1)。上述结果 暗示了根际酸性磷酸酶和碱性磷酸酶对不同施肥措 施的差异响应。硝态氮肥和磷肥配合施用提高了根 际 pH 和有效磷含量。土壤 pH 升高不利于酸性磷酸 酶活性的发挥^[6]。更重要的是,磷酸酶是一类微生 物诱导酶,土壤有效磷会抑制其磷酸酶的分泌^[9]。 因此,磷肥施用减弱了根际对微生物分泌磷酸酶的 促进作用。施肥同样改变了根际效应对 phoC 和 phoD 细菌群落多样性的作用程度。施磷根际 phoC 细菌 OTU 数目明显高于非根际 (图 2a), 这可能是 由于磷肥促进植物生长(表1),从而分泌更多有机 底物, 激发更多低丰度物种的生长^[8]。有意思的是, 相比铵态氮肥处理, 硝态氮肥根际 phoD 细菌香农 指数明显下降。类似地, Liu 等^[27]也发现玉米根际 具有较低的 phoD 细菌多样性。作者推测硝态氮处 理下,一些根系分泌物种类选择性诱导特定类群在 根部定殖,同时抑制了另一些类群的生长,从而降 低根际 phoD 细菌的香农指数。本研究结果发现, 根际中除了山冈单胞菌属外,其他属的相对丰度均 出现下降趋势, 这可能由于根系分泌物中的特定物

质或根际环境对不同 phoD 细菌的选择性诱导作用 不同。例如,根系分泌物中的次生代谢物如酚类化合 物、苯甲酸等物质对土壤微生物生长有抑制作用^[28]。 具体机制尚需进一步研究。此外,本研究中,根际 phoD 细菌群落组成变化明显响应于氮形态和磷肥 水平,但是根际 phoC 细菌并未明显响应,暗示了 施肥对根际两类解磷细菌群落组成不同的影响机 制。phoC 细菌优势属作为寡营养型细菌表现出较低 的养分需求,可能导致群落组成对肥料的低敏感性。

贪铜菌属(Cupriavidus)和寡养单胞菌属 (Stenotrophomonas)作为 phoC 细菌群落的优势菌属 在其他研究中被认为是 phoC 细菌共生网络的关键 物种,并且是重要的酸性磷酸酶生产者^[14],此外, 他们可通过分泌有机酸或产生铁载体来抵抗金属毒 性[2],有助于适应高铝毒害的酸性土壤。然而,本 研究未发现这两个属的相对丰度在根际和非根际样 品间出现显著差异。如上所述,植物分泌的酸性磷 酸酶可能抑制了他们相对丰度的增加,以及寡营养 菌的特性使其无法对根际环境做出有效的响应。而 根际 phoD 细菌优势菌属山冈单胞菌属相对丰度显 著高于非根际,而且占有较大比例,表明山冈单胞 菌属能更好地适应根际环境。先前研究^[14]报道,山 冈单胞菌属是主要的 phoD 细菌类群, 被认为是重 要的碱性磷酸酶生产者。山冈单胞菌属具有很强同 化根际碳源以刺激其生长的能力^[29],并且有较高溶 解无机磷的潜力^[30]。因此,山冈单胞菌属能够同时 矿化有机磷和溶解无机磷来提高土壤磷素有效性。

4 结 论

玉米根际作用对酸性红壤磷酸酶活性及相关功 能微生物群落的影响程度远大于氮形态和磷肥水 平。但是,根际作用强度在一定程度上依赖于氮形 态和磷肥水平。phoC和phoD细菌多样性和群落结 构对根际效应的响应表现出明显差别,phoD细菌更 为敏感。解磷细菌优势菌属的根际富集可能对根际 磷素活化至关重要。此外,硝态氮肥可显著提高土 壤 pH,因此较铵态氮肥更加适用于酸性土壤。

参考文献(References)

[1] Zhao Q G, Huang G Q, Ma Y Q. The problems in red soil ecosystem in southern of China and its countermeasures[J]. Acta Ecologica Sinica, 2013, 33 (24): 7615—7622. [赵 其国,黄国勤,马艳芹.中国南方红壤生态系统面临的 问题及对策[J]. 生态学报, 2013, 33 (24): 7615—7622.]

- Zheng M M, Wang C, Li W X, et al. Soil nutrients drive function and composition of *phoC*-harboring bacterial community in acidic soils of Southern China[J]. Frontiers in Microbiology, 2019, 10: 2654.
- [3] Chen L J, Jiang Y J, Wang H T, et al. Effects of long-term application of organic materials on phosphorus fractions and availability in red soil[J]. Soils, 2020, 52 (3): 451—457. [陈利军,蒋瑀霁,王浩田,等. 长期施用有 机物料对旱地红壤磷组分及磷素有效性的影响[J]. 土 壤, 2020, 52 (3): 451—457.]
- [4] Cordell D, Drangert J O, White S. The story of phosphorus: Global food security and food for thought[J]. Global Environmental Change, 2009, 19(2): 292–305.
- [5] Yu X C, Liu Q, Li C J, et al. Rhizospheric processes and high substrate concentration stimulating mineralization of soil organic P in black earth [J]. Acta Pedologica Sinica, 2019, 56 (4): 953—963. [于星辰,刘倩,李春杰,等. 根际过程和高底物浓度促进黑土有机磷矿化[J]. 土壤 学报, 2019, 56 (4): 953—963.]
- [6] Nannipieri P, Giagnoni L, Landi L, et al. Role of phosphatase enzymes in soil. // Bünemann E K, Oberson A, Frossard E. eds. Phosphorus in action[M]. Berlin Heidelberg, Germany: Springer, 2011: 215-243.
- [7] Tan H, Barret M, Mooij M J, et al. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the *phoD* phosphorus mineraliser group in pasture soils[J]. Biology and Fertility of Soils, 2013, 49 (6): 661-672.
- Fraser T D, Lynch D H, Gaiero J, et al. Quantification of bacterial non-specific acid (*phoC*) and alkaline (*phoD*) phosphatase genes in bulk and rhizosphere soil from organically managed soybean fields[J]. Applied Soil Ecology, 2017, 111: 48-56.
- [9] Fraser T D, Lynch, D H, Bent E, et al. Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management[J]. Soil Biology and Biochemistry, 2015, 88: 137–147.
- [10] Chen X D, Jiang N, Chen Z H, et al. Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials[J]. Applied Soil Ecology, 2017, 119: 197–204.
- [11] Xu R K, Li J Y, Zhou S W, et al. Scientific issues and controlling strategies of soil acidification of croplands in China[J]. Bulletin of Chinese Academy of Sciences, 2018, 33 (2): 160—167. [徐仁扣,李九玉,周世伟,等. 我国农田土壤酸化调控的科学问题与技术措施[J]. 中国科学院院刊, 2018, 33 (2): 160—167.]
- [12] Wang C, Zheng M M, Hu A Y, et al. Diazotroph abundance and community composition in an acidic soil

in response to aluminum-tolerant and aluminum-sensitive maize (*Zea mays* L.) cultivars under two nitrogen fertilizer forms[J]. Plant and Soil, 2018, 424 (1/2): 463-478.

- Zhang H Q, Zhao X Q, Shi Y, et al. Changes in soil bacterial communities with increasing distance from maize roots affected by ammonium and nitrate additions[J]. Geoderma, 2021, 398: 115102.
- [14] Zheng M M, Wang C, Li W X, et al. Changes of acid and alkaline phosphatase activities in long-term chemical fertilization are driven by the similar soil properties and associated microbial community composition in acidic soil[J]. European Journal of Soil Biology, 2021, 104: 103312.
- [15] Luo G W, Sun B, Li L, et al. Understanding how long-term organic amendments increase soil phosphatase activities : Insight into *phoD*- and *phoC*-harboring functional microbial populations[J]. Soil Biology and Biochemistry, 2019, 139: 107632.
- [16] Oldroyd G E D, Leyser O. A plant's diet, surviving in a variable nutrient environment[J]. Science, 2020, 368 (6486): eaba0196.
- [17] Zheng M M, Wang C, Shen R F. Effects of calcium carbonate and rhizosphere on abundance of phosphate-solubilizing microorganisms in acidic red soil[J]. Soils, 2020, 52 (4): 704—709. [郑曼曼, 王超, 沈仁芳. 碳酸钙和根际作用对酸性红壤解磷微生物丰度的影响[J]. 土壤, 2020, 52 (4): 704—709.]
- [18] Lagos L M, Acuña J J, Maruyama F, et al. Effect of phosphorus addition on total and alkaline phosphomonoesterase-harboring bacterial populations in ryegrass rhizosphere microsites[J]. Biology and Fertility of Soils, 2016, 52 (7): 1007–1019.
- [19] Lu R K. Analytical methods for soil and agro-chemistry[M].
 Beijing: China Agricultural Science and Technology Press, 2000. [鲁如坤. 土壤农业化学分析方法[M]. 北 京:中国农业科学技术出版社, 2000.]
- [20] Berendsen R L, Pieterse C M, Bakker P A. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17 (8): 478-486.
- [21] Kuzyakov Y, Razavi B S. Rhizosphere size and shape: Temporal dynamics and spatial stationarity[J]. Soil Biology and Biochemistry, 2019, 135: 343-360.
- [22] Vives-Peris V, de Ollas C, Gómez-Cadenas A, et al. Root exudates: From plant to rhizosphere and beyond[J]. Plant Cell Reports, 2020, 39 (1): 3—17.
- [23] Jiao S, Luo Y T, Lu M M, et al. Distinct succession patterns of abundant and rare bacteria in temporal microcosms with pollutants[J]. Environmental Pollution, 2017, 225: 497-505.
- [24] Ma L, Guo Z B, Wang D Z, et al. Effect of long-term application of phosphorus fertilizer on soil bacterial

community structure and enzymatic activity in lime concretion black soil relative to P application rate[J]. Acta Pedologica Sinica, 2019, 56(6): 1459—1470. [马 垒, 郭志彬, 王道中, 等. 长期三水平磷肥施用梯度对 砂姜黑土细菌群落结构和酶活性的影响[J]. 土壤学报, 2019, 56(6): 1459—1470.]

- [25] Starke R, Kermer R, Ullmann-Zeunert L, et al. Bacteria dominate the short-term assimilation of plant-derived N in soil[J]. Soil Biology and Biochemistry, 2016, 96: 30-38.
- [26] Fierer N, Bradford M A, Jackson R B. Toward an ecological classification of soil bacteria[J]. Ecology, 2007, 88 (6): 1354—1364.
- [27] Liu S, Zhang X Y, Dungait J A J, et al. Rare microbial taxa rather than *phoD* gene abundance determine hotspots of alkaline phosphomonoesterase activity in the Karst

rhizosphere soil[J]. Biology and Fertility of Soils, 2021, 57 (2): 257–268.

- Qin L J, Wang Z H, Chen Q B. Advances of researches on rhizosphere phosphate-solubilizing microorganism[J]. Journal of South China University of Tropical Agriculture, 2006, 12 (2): 44—49. [覃丽金,王真辉,陈秋波. 根 际解磷微生物研究进展[J]. 华南热带农业大学学报, 2006, 12 (2): 44—49.]
- [29] Ai C, Liang G Q, Sun J W, et al. Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils[J]. Soil Biology and Biochemistry, 2015, 80: 70-78.
- [30] Leveau J H J, Uroz S, de Boer W. The bacterial genus *Collimonas*: Mycophagy, weathering and other adaptive solutions to life in oligotrophic soil environments[J]. Environmental Microbiology, 2010, 12 (2): 281–292.

(责任编辑:陈荣府)

1506