土壤有效磷的测定方法 及其与磷素形态关系的研究

傅绍清 宋金玉 (四川省本业科学院+境肥料研究所)

土壤有效磷的化学速测法,目前仍是了解土壤磷素肥力水平的主要手段之一。大半个世纪以来,出现过几十种浸提法,但发展到今天,基本上统一到少数几种方法,如 Olsen 法 (pH8.5,0.5M NaHCO, 浸提), Bray I 法 (0.03N NH₄F + 0.025N HCl 浸提), Bray II 法 (0.03N NH₄F + 0.1N HCl 浸提), Al-Abbas 法 (NaOH + Na₂C₂H₄ 浸提), Mehlich 法 (0.025N H₂SO₄ + 0.05N HCl 浸提)等^[8,11,12],其中尤以 Olsen 法和 Bray I 法,目前为国内外广为应用的方法^[1,4,9]。

为了选择适合我省主要土壤类型的最适有效磷的测定方法,并结合土壤磷素形态的研究,了解土壤供给作物磷素的磷源[2,3,7],特进行本试验。

一、试 验 方 法

(一)盆栽试验

取四川省三种主要土类:冲积土、紫色土和黄泥共23个水旱两季田土壤供试,供试土壤的基本化学性质见表1。

土壤经风干,碎成粒径小于 2 厘米的土粒,每钵盛土 9 公斤,有施磷(每钵施过磷酸钙 2.7 克)与不施磷(对照)处理,氮、钾每钵施用量相等,重复三次。每钵播小麦 22 粒,一月后每钵定苗 18 株,成熟后收获,60 欠烘干称籽粒重和干草重。

(二) 分析測定

- 1. 磷素分组测定: 张守敬——Jackson 法[6,10]。
- 2. 土壤有效磷测定: 采用 (1) Olsen 法^[5]; (2) Bray I 法^[5]; (3) Bray II 法^[6]; (4) Al-Abbas 法^{[1]1)}。
 - 3. 土壤有机质、全磷、pH、碳酸盐反应的测定^[5]。

二、试验结果

(一) 土壤的磷素形态

由表 2 可见: 我省土壤有机磷含量在 272-712ppm 范围,为全磷的 17.0%-50.6%。

¹⁾ 周鸣铮等: 浙江省稻田施用磷肥的效果与土壤速效磷含量的关系(资料), 1965。

表 1 供试土壤的化学性质

Table 1 Chemical properties of the soils investigated

土壤		有机质(%)			pH(H ₂ O)			
Soil	Sample No.	О. М.	Total P2O,	Olsen	Bray I	Bray II	Al-Abbas	
	1	2.66	0.239	166	41	233	401	6.7
	2	2.46	0.244	163	30	246	486	6.3
	. 3	2.84	0.236	52	38	126	174	6.9
冲积土	4	2.79	0.183	30	24	201	95	7.0
Fluvisol	5	2.89	0.142	30	17	192	93	6.5
	6	3.39	0.158	52	24	146	139	6.8
	7	3.25	0.177	26	6	200	92	6.2
	8*	2.99	0.249	49	35	128	193	6.3
	9	2.59	0.105	33	36	149	143	7.2
	10	2.62	0.069	20	7	32	57	6.5
黄 泥	11	2.63	0.077	17	7	36	68	7.0
Yellow soil	12	3.70	0.125	43	54	111	280	5.9
	13	2.35	0.130	40	54	103	267	6.5
	14	1.73	0.087	18	6	20	150	6.6
	15	2.19	0.177	96	23	152	190	6.8
	16	1.70	0.098	37	17	122	99	6.5
	17	2.67	0.093	50	38	140	140	6.6
紫色土	18	1.62	0.117	36	32	153	43	7.5
	19	4.77	0.117	25	10	3	39	7.7
Purple soil	20	4.89	0.095	106	12	28	229	5.9
	21	1.20	0.090	51	48	118	216	6.4
	22**	1.60	0.175	15	-	<u> </u>	0	8.0
	23**	1.02	0.160	16	_	_	5	8.4

^{*} 当地水稻有施石灰的习惯,同时灌溉水中也含有碳酸盐,所以有轻微的碳酸盐反应。

无机磷为全磷的 49.4%-83.0%。多数冲积土和紫色土钙磷最高,铁磷次之,铝磷最少。黄泥则多数以铁磷最高,钙磷次之,铝磷最少。

(二) 磷素形态与施磷效应的关系

盆栽小麦籽粒和干草的施磷效应(增产百分率)计算方法如下:

施磷效应 = $\frac{$ 施磷产量 - 对照产量 \times 100(%)

由表 3 可见,冲积土、紫色土的铁磷、铝磷与施磷效应呈显著负相关,黄泥的钙磷与施磷效应呈负相关,说明前两类土壤的作物磷源是铁磷、铝磷,而黄泥是钙磷。 但在冲积土、紫色土中,却是钙磷含量最高,黄泥中铁磷最高。值得注意的是紫色土钙磷含量与施磷效应呈极显著正相关,说明该类土壤钙磷含量愈高,愈需施用磷肥。我们同时发现紫色土的 pH 与钙磷亦呈极显著正相关(r=0.841,P<0.01),这是因为随着土壤 pH 增高,钙磷溶解度降低,造成钙磷积累。因此可以认为,某种形态的磷素在土壤中含量高,并不

^{**} 有较多的碳酸盐反应。

Table 2 Phosphorus form of soils 表 2 土壤的磷素形态

							•									
	11 23				无 Inorg	无机 磷 (P ₂ O ₅) Inorganic phosphorus (P ₂ O ₅)	phorus (P	,0,) P,0,)						有机磷 (P ₂ O,)	(P ₂ O,)	(4) (2) (4) (4) (4) (4) (4) (4)
士 Soil	Sample No.	Ca-P	d,	AI-P	ė,	Fe-P	٠.	还原态磷 Reductive-P	改 Ve-P	包闭态 Closed-Al-P	AI-P	总 【Total	事—	phosphorus	norus	P ₂ O,
		udd	%	mdd	%	mdd	%	undd	%	mdd	8	ıııdd	%	mdd	%	mdd
	-	641	25.8	265	11.1	474	19.8	284	11.9	13	0.5	1678	70.2	712	29.8	2390
	2	794	32.5	240	8.6	479	9.61	506	8.4	10	0.4	1729	70.9	711	29.1	2440
	3	1227	52.0	94	4.0	174	7.4	173	7.3	13	0.5	1891	71.2	629	28.8	2360
4.000	4	696	53.0	51	2.8	120	9.9	152	8.3	12	9.0	1304	71.3	526	28.7	1830
Fluvisol	2	169	48.7	41	2.9	77	5.4	118	8.3	12	8.0	939	66.1	481	33.9	1420
	9	631	40.0	78	4.9	131	8.3	123	7.8	12	8.0	975	61.7	909	38.3	1580
	_ ′	712	40.2	28	1.6	26	5.5	131	7.4	11	9.0	626	55.3	791	44.7	1770
	•	1373	55.1	106	4.2	175	7.0	155	6.2	80	0.3	1817	73.0	673	27.0	2490
	6	309	29.4	77	7.3	184	17.5	85	8.1	9	9.0	199	63.0	389	37.0	1050
	10	103	14.9	34	4.9	901	15.4	86	14.2	10	1.4	351	50.9	339	49.1	069
黄	- =	108	14.0	39	5.1	116	15.1	106	13.8	11	1.4	380	49.4	390	50.6	770
•	12	146	11.7	68	7.1	292	21.0	196	15.7	11	6.0	704	56.3	546	43.7	1250
	13	183	14.1	98	9.9	304	23.4	285	21.9	11	8.0	698	8.99	431	33.2	1300
	14	68	10.2	38	4.4	230	26.4	200	23.0	10	1.1	292	65.2	303	34.8	870
	15	884	49.9	170	9.6	183	10.3	19	3.4	4	0.2	1302	73.6	468	26.4	1770
	16	300	30.6	52	5.3	136	13.9	58	5.9	3	0.3	549	26.0	431	44.0	086
	17	135	14.5	104	11.2	184	19.8	112	12.0	9	9.0	541	58.2	389	41.8	930
1 4 68	18	453	38.7	09	5.1	26	8.4	8	7.7	01	8.0	699	57.2	501	42.8	1170
T 20 ₩	19	512	44.5	39	3.4	36	3.1	113	8.6	9	0.5	206	61.4	444	38.6	1150
Purple soil	20	180	18.9	75	7.9	272	28.6	89	7.2	9	9.0	109	63.3	349	36.7	950
	21	159	17.7	88	8.6	525	25.4	901	11.8	4	0.4	586	65.1	314	34.9	006
	22	1233	77.1	36	2.2	0	0	26	3.5	3	0.2	1328	83.0	272	17.0	1600
	23	1164	66.5	56	1.5	7	0.4	45	2.6	9	0.3	1248	71.3	202	28.7	1750

注: 1) % 系占全磷的百分数。 2) 有机磷 (P₂O₃) 系全磷磺去无机磷的差数。 Note: 1) % in total P (P₂O₃). 2) Organic P is estimated by deducting inorganic P from total P (P₂O₃).

表 3 磷素形态与旋磷效应的相关系数

Table 3 Correlation coefficient between phosphorus form of soil and response of crops to superphosphate

土 壤 Soil		冲积土 Fluvisol n = 8		,	黄 泥 Yellow soi n = 6	1	P	紫色土 urple so n = 9	il
磷素形态 Phosphorus form	Ca-P	Al-P	Fe-P	Ca-P	Al-P	Fe-P	Ca-P	Al-P	Fe-P
施磺效应 Response of crops to super- phosphate	-	-0.823** -0.594		-0.733 -0.780]		0.840** 0.814**	İ	

注: 1. * P<0.05: **P<0.01。 2. n为样品数。

n is sample number.

说明它一定是作物的主要磷源,相反,却说明它的活性小,不能为植物吸收而造成积累。

(三)磷素形态与土壤有效磷的关系

从表 4 可见, Olsen 法与三种土壤类型的铝磷、铁磷都呈显著正相关,说明 Olsen 法能 按土壤铝磷、铁磷含量,成比例的提取这些磷素。但 Olsen 法和三种土类的钙磷都无相关 性。这些供试土壤,虽多数钙磷含量都较高,但大多数为非碳酸盐土壤,因此可以认为,对 于非碳酸盐土壤,Olsen法主要是按比例提取铝磷和铁磷。

表 4 磷素形态与土壤有效磷的相关系数

Table 4 Correlation coefficient between phosphorus form and available P2O, of soils

±so	壤 il		中积土 Fluvisol n=8		١	黄 泥 Yellow soi n=6	1	P	紫色土 urple soi 9 or n =	
磷素 Phosphor		Ca-P	Al-P	Fe-P	Ca-P	Al-P	Fe-P	Са-Р	Al-P	Fe-P
测定方法 Testing method	Olsen Bray I Bray II Al-Abbas	-0.271 0.307 0.606 -0.088	0.988** 0.722 0.267 0.972**	0.660 0.647	0.543 0.898*	0.980** 0.989** 0.916* 0.870*	0.765 0.478	-0.423 -0.328 0.165 -0.330	0.750* 0.247 0.500 0.714*	0.846** 0.343 0.025 0.983**

注: *P<0.05, **P<0.01: n为样品数。 n is sample number.

① 两个碳酸盐紫色土未用 Bray I 法和 Bray II 法测定。

Two calcareous purple soils were not tested by Bray I and Bray II.

Bray I 法与黄泥的铝磷、铁磷呈显著相关。 Bray II 法与黄泥的钙磷、铝磷呈显著相 关。说明 Bray I 法能按比例提取黄泥中的铝磷、铁磷,而 Bray II 法提取钙磷、铝磷。

Al-Abbas 法与土壤磷素形态的相关性,基本与 Olsen 法相同。

(四)土壤有效磷与施磷效应的关系

从表 5 可见,冲积土 Olsen 法, Al-Abbas 法, Bray II 法与施磷效应呈负相关, 黄泥 Bray II 法与施磷效应呈负相关。通常认为,测定方法与施磷效应呈负相关,则可选用该 种方法为土壤有效磷的测定方法。但紫色土的 Bray II 法虽与施磷效应呈负相关,但从

表 5 土壤有效磷与施磷效应的相关系数

Table 5 Correlation coefficient between available P of soil and response of crops to superphosphate

土壤	测定方法 Testing method	施磷效应 Response of crops to superphosphate			
Soil	resting method	麦 粒 Wheat grain	麦草 Wheat straw		
	Olsen	-0.693	-0.487		
冲积土 Fluvisol	Bray I	-0.593	-0.543		
n = 8	Bray II	0.152	-0.070		
	Al-Abbas	-0.674	-0.449		
	Olsen .	-0.526	-0.555		
黄 泥 Yellow soil n = 6	Bray I	-0.067	-0.050		
	Bray II	-0.619	-0.643		
	Al-Abbas	-0.030	-0.077		
	Olsen	-0.700*	-0.713*		
紫色土 Purple soil	Bray I	-0.067	-0.050		
$n = 9$ or $n = 7^{\circ}$	Bray II	-0.745	-0.969**		
	Al-Abbas	-0.632	-0.621		

注: *P<0.05; **P<0.01。 n为样品数。 n is sample number.

Two calcareous purple soils were not tested by Bray I and Bray II.

表 3 可见,小麦是以土壤的铁磷、铝磷为磷源,而 Bray II 法在紫色土上与铁磷、铝磷并无

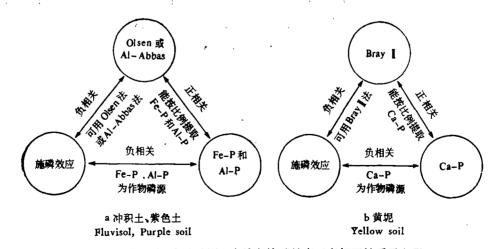


图 1 磷素形态、有效磷测定方法与施磷效应三者相互关系示意图

Fig. 1 The schematic diagram about the relationships among phosphorus forms, testing method of available phosphorus and response of crops to phosphate

① 两个碳酸盐紫色土未用 Bray I 法和 Bray II 法测定。

相关性(表 4)。故若用 Bray II 法为紫色土的有效磷测定方法,在理论上似有不足之处。 本试验关于磷素形态、有效磷测定方法、施磷效应三者的相互关系可用图 1 表示。

三、小 结

本文探讨了四川省三种主要土壤类型的有效磷测定方法,磷素形态及施磷效应三者之间的相互关系。试验结果表明,冲积土、紫色土的有效磷测定方法以 Olsen 法和 Al-Abbas 法为宜,它们能按比例提取这两类土壤中的铁磷和铝磷,而铁磷和铝磷正是供试作物的磷源。 黄泥以 Bray II 法为宜,它能按比例提取该类土壤的钙磷和铝磷,而钙磷正是供试作物的磷源。

参考文献

- [1] 中国科学院南京土壤研究所,1978: 土壤理化分析。上海科学技术出版社。
- [2] Al-Abbas, A. H. 等著(周鸣铮译), 1965: 以土壤磷分级为根据的土壤速效磷测定方法。土壤译丛, 第2期, 62-64页。
- [3] Tyner, E. H. 等著(蒋柏藩译), 1966: 水稻土速效磷测定指标的评价。土壤译丛, 第3-4期, 102-104页。
- [4] 史陶钧、朱荫湄、鲁如坤, 1979: 酸性水稻土有效磷测定方法的研究。土壤学报, 16 卷 4 期, 409-413 页。
- [5] 四川省农业科学院土壤肥料研究所编,1980:土壤农化常规分析法。四川人民出版社。
- [6] 杰克逊著(蒋柏藩等译), 1963; 土壤化学分析。科学出版社。
- [7] 傅明华、承友松, 1979: 上海土壤磷素状况的研究。土壤学报, 16 卷 4 期, 372-379 页。
- [8] Brown, J. R., 1974: Handbook on reference methods for soil testing. U. S. A.
- [9] FAO Soil Bulletin 1980; Soil and plant testing as a basis of fertilizer recommendation, 38/2.
- [10] Hesse, P. R., 1971: A textbook of soil chemical analysis. John Murray (publisher) Ltd. Great Britain.
- [11] North Central Region Publication No. 221, 1975: Recommended chemical soil test procedures for the north central region. Bulletin No. 499.
- [12] Walsh, Leo M. et al., 1973: Soil testing and plant analysis. Soil Science Society of America, Inc. U. S. A.

THE STUDY ON THE METHOD OF DETERMINATION OF SOIL AVAILABLE PHOSPHORUS IN RELATION TO THE PHOSPHORUS FORMS

Fu Shao-qing and Song Jin-yu

(Institute of Soil and Fertilizer, Sichuan Academy of Agricultural Science)

Summary

This paper deals with the relationship among the methods of available phosphorus determination, phosphorus forms and response of crops to superphosphate on three main soils in Sichuan Province. Results obtained from the experiment showed that Olsen and Al-Abbas methods were suitable for fluvisol and purple soil. Fe-P and Al-P could be extracted proportionally by these methods from soils and both of them were the phosphorus resources in the soils for the crops investigated. Bray II method was suitable for yellow soil. Ca-P and Al-P were extracted proportionally by this method, and Ca-P was the phosphorus resource in the soil for the crops investigated.