对溴偶氮胂光度法测定土壤 浸出液和天然水中的微量钙^{*}

杨罗清 刘汉芳

土壤分步浸出液中钙的浓度有时很低,EDTA 滴定法难以满足微量分析的要求。近来已有人将对溴偶氮胂用于稀土测定¹¹,但对钙的显色反应尚未见报道。 我们研究了该试剂在强碱性介质中与钙的反应,认为可用于土壤分步浸出液和天然水中微量钙的测定。

一、实验部分

(一) **仪器和药品** 本试验所用的仪器为 721 型分光光度计和 25 型酸度计。对 溴 偶 氮 胂^[1](简 称 R)结构式如下:

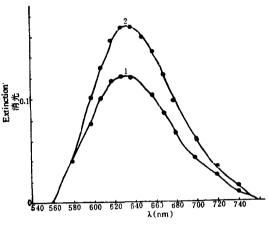
此试剂系作者根据文献[1]自制(Na₂CO₃为催化剂)。本实验所用 R 溶液的浓度为 0.0625%。

钙标准溶液: 碳酸钙(分析纯)配成含 Ca2+ 125ppm 的氯化钙溶液。

氢氧化钠为优级纯;氧化钇为光谱纯;其它试剂皆为分析纯。

(二)实验方法 在 25 ml 比色管中按计量依次加入钙标准液、R 溶液及 2.00 ml 1.000 M 的 NaOH 溶液(做离子干扰实验时,在加入 NaOH 溶液前先加入计量的干扰离子),用蒸馏水稀释至刻度,pH 值为 12.9。在 721 型分光光度计上比色, $\lambda = 635$ nm,空白试验为参比。

土壤浸出液: 土样(采自山东省平原县和泰安市)经去杂,磨碎,干燥,取 10 克加水 200ml 浸提 12 小时,离心分离,取 0.80ml 定容至 25ml 比色。

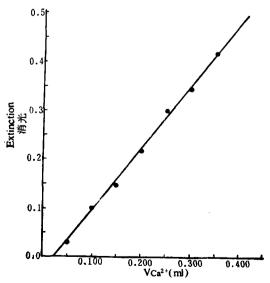

水样: 采自本院的井水。取 6.2ml 定容比色。

二、结果和讨论

(一)最大吸收峰 当介质的 pH 在 12—13 之间时,形成绿色络合物,最大吸收峰在635nm(图 1)。

^{*} 杭州大学仉兆艾副教授、本校黄天栋副教授曾提出宝贵意见,并给予大力支持,谨致谢忱。

(二) 摩尔消光系数 固定 $[Ca^{2+}] = 25\mu g/25ml$, pH = 12.9,逐渐增加 R 的用量,发现当 R 溶液的体积 $V_R \ge 2.75ml$ 时,吸光度 A 保持在 0.450 (2cm 比色器),由此求得摩尔消光系数为 9.0×10^3 。



1. $[Ca^{2+}] = 1.0$ ppm; 2. $[Ca^{2+}] = 1.5$ ppm $V_R = 2.00$ mi

图 1 络合物的光吸收曲线(pH = 12.9)

Fig. 1 The light-absorption curves of the complex

(三)时间的影响 络合物稳定的时间比较长。在发色后 5 分钟到 24 小时的区间内对络合物的消光进行了测定,未发现明显变化。但试剂 R 本身在强碱性溶液中久置后色度加深。因此空白试剂最好在比色时现配。如测试液中 R 过量很多,建议在 2 小时内比色。

 $V_R = 5.25$ ml pH = 12.9 at room temperature 图 2 $\begin{bmatrix} Ca^{z+} \end{bmatrix}$ 的标准曲线

Fig.2 The standard concentration curve of calcium ion

(四) 比尔定律 在 $5-40\mu g/25ml$ Ca²⁺ 的浓度范围内作 Ca²⁺ 的标准曲线,线性 关系良好(图 2)。

表 1 25µg/25ml Ca2+ 中加入各种离子的干扰情况

Table 1 Interference of other ions added in solution of 25µg Ca2+/25ml

离 子 Ion	加 人 形 式 Added form of ion	加人浓度 (µg/25ml) Added concentration of ion	相对误差 (%) Relative error 3.8	
Na+	NaNO ₃	1150	3.8	
K+	KNO ₃	1950	7.8	
NH‡	NH₄CI	900	0.0	
Mg ²⁺	MgCl ₂	48	3.8	
Sr2+	Sr(NO ₃) ₂	176	1.4	
Ba ²⁺	Ba(NO ₃) ₂	275	1.4	
Zn^{2+}	ZnSO ₄	326	3.4	
Al³+	Al ₂ (SO ₄) ₃	135	-7.2	
Mn ²⁺	Mn(NO ₃) ₂	275	-4.6	
Fe³+	Fe2(SO4),	280	-58.6	
Cu²+	CuSO₄	64	-100.0	
Ag+	AgNO ₃	108	20.8	
Pb2+	Pb(NO ₃) ₂	207	1.7	
Hg2+	Hg(NO ₃) ₂	503	5.8	
Co²+	CoSO,	59	- 62.2	
Sn ⁴⁺	\$nCl₄	119	-44.2	
Bi³+	Bi(NO ₃) ₃	1045	20.9	
Y3+	YCl ₃	89	2.3	
Cd2+	CdSO₄	112	2.9	
Cr3+	CrCl ₃	52	34.4	
NO ₃	NaNO ₃	3100	3.8	
SO4 -	ZnSO ₄	480	3.4	
Cl-	NH₄C1	1775	0.0	
F-	NH ₄ F	95	7.1	
抗坏血酸 As corbic		1760	2.3	
a cid				

表 2 Fe3+、Cu2+ 的掩蔽

Table 2 Screen of Fe³⁺ and Cu²⁺([Ca²⁺] = $25\mu g/25ml$)

干扰离子	干扰离子浓度 (μg/25ml) Concentration of interference ion	掩 蔽 剂 Screening agent	掩蔽剂浓度 (μg/25ml) Concentration of screening agent	相对误差 (%) Relative ersor
Fe³+	56	F-	189	0.9
Fe³+	56	PO}-	485	0.5
Cu ²⁺	640	抗坏血酸	1760	4.2

(五)干扰离子 常见阳离子、稀土 Y^{3+} 及几种常见阴离子的干扰 情况 列于表 1。 从表 1 可见, Fe^{3+} 、 Cu^{2+} 、 Ag^+ 、 Co^{2+} 、 Sn^{4+} 、 Bi^{3+} 、 Cr^{3+} 对本法有干扰。碱金属、碱土金属及其它所试主、付族元素无干扰。稀土 Y^{3+} 在强碱性介质中无干扰。

当体系中存在 Fe³+ 时,可用 F⁻或 PO҈ 掩蔽。Cu²+ 则可用抗坏血酸掩蔽(表 2)。

表 3 三乙醇胺对干扰离子的掩蔽

Table 3 Screen of triethanolamine on some interference ions

干 扰 离 子 Interference ion		三乙醇胺体积	相对误差	
种 类 Species	液 度 (µg/25ml) Concentration	(ml) Volume of triethanolamine	(%) Relative error	备 注
Co ²	59	1.0	6.25	立即比色
Ag+	108	0.5	0.00	
Bi³+	208	0.5	3.18	
Si ⁴⁺	119	0.5	5.88	
Cr3+	52	0.5	4.60	

表 4 井水中加入 Ca2+ 的回收试验

Table 4 Recovery of Ca2+ added in well-water

编 号 No.	水样中Ca ²⁺ 浓度 (µg/25ml) Concentration of Ca ²⁺ in water samples	(μg/25ml) Concentration of Ca ²⁺ added	(µg/25ml) Total concentration	检出加人Ca ²⁺ 浓度 (µg/25ml) Tested concentration of Ca ²⁺ added in	回收率 (%) Recovery ratio	相对误差 (%) Relative errors
1	29.38	12.5	42.80	13.42	107.36	7.36
2	30.00	12.5	42.75	12.75	102.00	2.00
3	30.00	18.75	47.75	17.75	94.67	-5.33

表 5 土壤水浸出液中加入 Ca2+ 的回收试验

Table 5 Recovery of Ca2+ added in extracting solution of soil samples

编 号 No.	水浸出液中Ca ²⁺ 浓度 (µg/25ml) Concentration of Ca ²⁺ added in extracting solution	加人Ca ²⁺ 的浓度 (μg/25ml) Concentration of Ca ²⁺ added in extracting solution	Total concentration	检出加人Ca ²⁺ 的浓 度 (μg/25ml) Tested concentration of Ca ²⁺ added in	回收率 (%) Recovery ratio	相对误差 (%) Relative crrors
1	17.50	18.75	36.88	19.38	103.34	3.34
2	38.75	12.50	51.63	12.88	103.04	3.04
3	12.25	12.50	25.63	13.38	107.04	7.04
4	18.50	12.50	31.88	13.38	107.04	7.04
5	17.50	12.50	30.00	12.50	100.00	0.00

当体系中有 Co²⁺、Ag⁺、Bi³⁺、Cr³⁺、Sn⁴⁺ 时,可用三乙醇胺 掩蔽(表 3)。但三乙醇胶系与水混溶的有机溶剂,这类溶剂能加大络合物和偶氮胂类试剂本身的消光系数。因此,在使用三乙醇胺时应另作标准曲线。

- (六) 准确度、回收试验 为确定方法的准确性,我们用土壤水浸出液和井水进行了回收试验,回收率在94.67%—107.96%之间(表4,表5),符合比色分析的要求。
 - (七) 精密度 取 0.20ml Ca²⁺ 标准溶液 10 份,测得其消光为:

No. 1 2 3 4 5 6 7 8 9 10 A 0.223 0.228 0.224 0.225 0.224 0.218 0.220 0.214 0.232 0.218 标准偏差为 0.527%。

三、小 结

对溴偶氮胂在强碱性溶液中与 Ca^{2+} 形成绿色络合物,最大吸收峰在 635nm 处,摩尔 消光系数为 9.0×10^3 , Fe^{3+} 、 Cu^{2+} 、 Ag^+ 、 Co^{2+} 、 Sn^{4+} 、 Bi^{3+} 、 Cr^{3+} 对钙的测定有干扰。 Fe^{3+} 、 Cu^{2+} 的干扰可分别用 F^- (或 PO_4^{3-})和抗坏血酸消除,其余的干扰离子可用三乙醇胺掩蔽。该法可用于水样、土壤浸出液中 Ca^{2+} 的测试,准确度、精密度、灵敏度和选择性均较为满意。

参考文献

[1] 余席茂、蔡汝秀、梁汉琼、刘东、曾云鹗,1983: 催化剂对变色酸双偶氮试剂合成的影响。化学试剂,第5卷1期,第1页。

SPECTROPHOTOMETRIC METHOD FOR DETERMINATION OF TRACE CALCIUM IN WATER AND EXTRACT OF SOIL WITH p-Br-ARSENAZO

Yang Luoqing and Liu Hanfang (Shandong Agricultural University)

Summary

The reagent p-Br-arsenazo,

AsO₃H₂ OH OH
$$-N = N - \bigcirc -Br,$$

$$HO_3S$$

$$SO_3H$$

can react with calcium cation (Ca²⁺) in strong basic medium and form a stable green complex with a maximum light absorption at 635nm. The molar extinction coefficient is 9.0×10^3 . The curve of standard concentration of Ca²⁺ is a straight line in the range of $5-40\mu g$ Ca²⁺/25 ml. The interference of Fe³⁺ and Cu²⁺ can be eliminated by adding F⁻(or PO₄³⁻) and ascorbic acid respectively, while Ag⁺, Co²⁺, Sn⁴⁺, Bi³⁺, Cr³⁺ can be screened by adding triethanolamine. The relative errors for determination of Ca²⁺ in well water and extracting of soil samples range from -5.33% to 7.96%.