1986年5月

冷浸田类型与改良研究

林增泉 徐 朋 彭加桂 郑仲登 范起涛(福建省农业科学院)

摘 要

冷浸田是因长期浸水、土层糊烂与还原作用强烈而造成的一种低产田。采取"深沟"排水, 降低地下水位,以改善土壤环境,同时防治水稻因缺钾而引起的赤枯病,可收到显著改良效果。

冷浸田是我国南方稻区主要的低产水稻土之一。福建省的冷浸田大部分分布于丘陵或低山的峡谷(即"山垅田"),占全省稻田总面积 30% 左右。因此研究冷浸田综合改良措施是提高本省中、低产田生产潜力的重要课题。在前人的工作基础上[1,2],于 1979—1982年建立研究基点进行试验。现将试验结果总结如下。

一、冷浸田的类型

冷浸田由于承受地面和地下水的汇集,使土壤长期渍水,从而造成土层糊烂、土温低、还原作用强烈等低产因素。1980年在顺昌县城关"井垅"一千多亩冷浸田上,共设置37个地下水位观察管进行了观察,发现冷浸田的地下水位活动规律大致可分为四种类型:

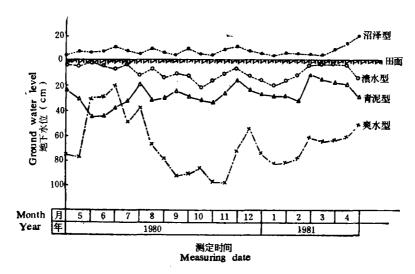


图 1 冷浸田地下水周年动态变化

Fig. 1 Annual fluctuation of ground water level of cold spring paddy soils

一是地下水位高出田面的沼泽型,约占 32%,二是地下水位活动在 0—20 厘米的渍水型,约占 40%,三是活动在 20—50 厘米的青泥型,约占 16%,四是活动在 50 厘米以下的爽水型,约占 12%(图 1)。

从图 1 地下水位周年动态变化来看,沼泽型冷浸田周年波动小,需要加强排水设施才能降低地下水位;而爽水型周年波动大。

沼泽型冷浸田烂泥层深度平均为 45.5 厘米, 渍水型为 27.4 厘米, 而爽水型仅 17.0 厘米, 可见冷浸田的烂泥层与地下水位有密切关系。

晚稻收获后 37 个点土壤测定结果表明,沼泽型冷浸田表土 (0-20 厘米)平均有机质和全氮量分别为 4.73% 和 0.250%,而青泥型仅 4.47% 和 0.222%。 土壤速效氮、磷、钾含量有随地下水位升高而下降的趋势。

据 37 个点晚稻分蘖期测定,沼泽型冷浸田的氧化还原电位平均 70mV,还原性物质总量平均 13.3 毫克当量/100 克土;而青泥型的达到 185mV,还原性物质总量为 1.83 毫克当量/100 克土。还原性物质的累积必然对水稻生长产生有害作用。

二、冷浸田的低产原因

在冷浸田中还原性有害物质累积到一定程度,对水稻根系产生毒害。 1981 年在顺昌县"井垅"一千多亩冷浸田中,选有代表性的 25 丘 (1 丘约 5 亩)田,在晚稻收获期采集稻株和表土 (0一20 厘米)进行测定发现: 稻株钾素含量随还原物质总量增加而急剧下降,其相关系数 r = -0.6409,达显著水准;稻株含铁量和土壤还原性物质总量则是呈极显著的正相关,r = 0.8047,而与稻株含 N, P_2O ,无明显相关。说明冷浸田还原性物质毒害主要是铁引起的,从而降低了水稻对钾素的吸收,致使水稻发生赤枯病 (表 1)。

Table 1 Effect of reducing substance on the nutrient content of rice plant 稻株养分含量(%) 还原性物质总量 土壤个数 (meg/100g) Nutrient content of rice plant Reducing Soil number substance K,O Ν P₂O, Fe $K_{2}O/N$ 3.09 2.37 0.93 0.21 0.18 2.54 5 0.26 6.89 2.04 0.90 0.15 2.27 8 8.79 1.68 1.06 0.16 0.34 1.59 7 11.65 1.08 0.33 1.53 5 1.66 0.18

表 1 土壤还原性物质对稻株养分含量的影响

由于土壤还原性物质中占绝对数量是亚铁,因而还原性物质含量越高亚铁含量也越高,说明还原性物质对水稻毒害主要是亚铁引起的(图 2)。

由于冷浸田速效钾含量低,水稻普遍发生缺钾赤枯病,赤枯病的严重程度(指数)与水稻植株含钾量也有很好的相关性,即含钾量越低赤枯病越严重(图 3)。

随着土壤还原性物质的增加,水稻由于受铁的毒害而发生缺钾赤枯病,产量迅速下降。据调查结果,还原性物质含量由 2.27 毫克当量/100 克土增加到 13.16 毫克当量/100

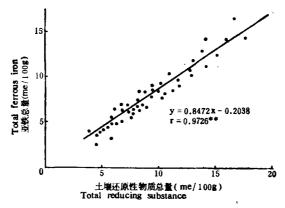


图 2 土壤还原性物质总量与亚铁总量的相关

Fig. 2 Relationship between ferrous iron and total reducing substance of paddy soil

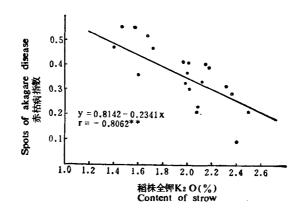


图 3 稻株全钾含量对赤枯病的影响 Fig. 3 Relationship between K₂O content of rice and spots of akagare disease

克土,水稻亩产则由 437.6 斤下降到 133.6 斤,可见还原性物质对水稻为害相当严重 (表 2)。

表 2 土壤还原性物质对水稻产量的影响

Table 2 Effect of total reducing substance in soil on rice yield

还原性物质总量 (meq/100g)	水稻产量 平	Rice yield
Total reducing substance	jin/mu	%
2.27	437.6	100
4.92	273.6	62.5
7.66	242.4	55.4
9.42	142.0	32.5
13.16	133.6	30.5

1981 年晚稻田间试验表明: 增加土壤通气性对防治还原性物质毒害的效果较为明显,在水稻分蘖后期排水烤田,抽穗期土壤氧化还原电位可由 123mV 上升到 200mV,活

性还原性物质则由 18.2 毫克当量/100 克下降到 11.5 毫克当量/100 克, 稻株含钾量由 2.16%增加到 2.47%, 水稻增产 20.3%。

三、冷浸田的改良措施

为了治理冷浸田,于 1979 年在顺昌县郑坊"兴元垅"建立 960 亩水改实验区。修建了 深 1 米底宽 30 厘米的"石砌深窄沟" 3 条共 600 多米(图 4)。 在距离沟边 2,5,9 米各埋

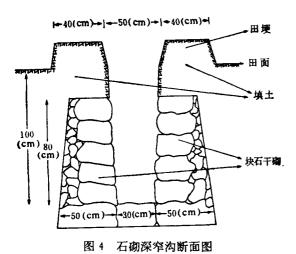


Fig. 4 The sectional drawing of deep and narrow stone ditch

一个地下水位观察管;同时在实验区内设置浅沟(沟深 30—50 厘米)和不开沟田块作为对照;另外还进行了埋暗管对比试验(用直径 10 厘米的瓦管,埋深 70 厘米,管距 10 米)。试验结果表明,深沟排水可降低地下水位 30—50 厘米,而挖半米浅沟的对地下水位影响较小(图 5)。另外从暗管排水效果看,虽比深沟排水的效果差,但仍有降低地下水位20—40 厘米的效果,因为深沟能同时排除地面水和地下水,而暗管主要排除地下水,而且容易堵塞,故降低了排水价值。

1981 年晚稻生长期间在实验区内距离 "石砌深窄沟" 2, 5, 9 米定位测定土壤渗漏量,结果表明,深沟和暗管都有提高土壤渗漏量的明显效果,离沟(管)边越近,土壤渗漏量增加越明显,这和排水后形成的三角形水位差有密切的关系(表 3)。

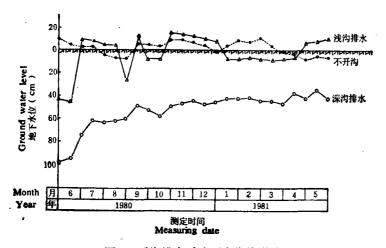


图 5 开沟排水对地下水位的影响 Fig. 5 Effect of drainage ditch on level ground water

表 3 深沟和暗管对土壤渗漏量的影响

Table 3	Effect	of	deep	ditch	and	tile-pipe	drainage	on	soil	seepage	discharge
---------	--------	----	------	-------	-----	-----------	----------	----	------	---------	-----------

	29		土壤	渗漏量 (mm/	日)	
处 五 Treatment	<u>#</u>	Seep	age discharge	of water in	in soil (mm/date)	te)
Headment		5/8	23/8	4/9	26/9	平均
距离排水沟 (m)	2	1.07	2.94	4.74	3.73	3.12
Distance form	5	0.56	1.22	4.31	1.63	1.93
drainage ditch	9	0.37	0.20	1.07	2.10	0.93
	СК	0.34	0.18	0.86	2.24	0.91
暗管 Tile-pip	e	0.90	0.49	2.47	3.34	1.80
对照 CK		0.26	0.29	0.48	2.29	0.83

随着深沟或暗管的季节性间歇排水,改善了土壤中通气状况,从而提高氧化还原电位。1980年测定结果是:深沟排水的氧化还原电位都比对照高,平均高 28.9mV;采取暗管排水的氧化还原电位也比对照高 33.8mV,土壤氧化还原电位提高必然有利于土壤生物、化学等性质的改善(表 4)。

表 4 深沟和暗管排水对土壤氧化还原电位的影响

Table 4 Effect of deep ditch and tile-pipe drainage on Eh of soil

排水方式			4	氧化还原电位	(m V) E	h		
Drainage type	5/7	20/7	5/8	20/8	5/9	20/9	1/10 (日/月)	平均
深沟 (Deep ditch)	155	83	113	156	135	143	88	124.7
对照 (CK)	123	83	105	98	106	98	58	95.8
暗管 (Tile-pipe)	131	78	149	123	96	84	86	106.7
对照 (CK)	138	23	106	82	66	83	77	82.1

降低冷浸田地下水位,改善土壤理化性质,从而明显地提高了水稻产量。实验区田间对比试验结果表明: 1979 年底修建"石砌深窄沟"的田块,1980 年早、晚稻就获得明显增产,水稻年亩产平均增加 358 斤,增产 34%;1981 年年亩产又增 130 斤,增产 16%。而开 浅沟排水的处理,水稻仅增产 9% 左右;暗管排水的增产稻谷 10% 左右(表 5)。

同时采用稻草还田与选用需钾低的水稻品种也是有效改良措施。稻草还田处理,水稻植株中含钾量由 1.17% 提高到 2.23%,水稻无赤枯病发生,增产 34.6%。

冷浸田选用耐低钾的水稻品种也是增产水稻的重要途径,据 1982 年在顺昌"井垅"的试验,试验田的速效钾为 48ppm,活性还原性物质 9.46 毫克当量/100 克,供试早稻品种 62 个中,仅有"姬糯"、"玉山占 5 号"及"453"等三个品种基本未发生赤枯病。晚稻供试 60 个品种中仅有"岗 4 号"、"角西矮选 74-6"、"马坝晚占"、"派溪一号"等品种未发生赤枯病,因而这些都是耐低钾的水稻品种,应因地制宜的予以推广应用。

表 5 不同排水方式对水稻增产效果

Table 5 Effect of different of	drainage on	rice viel	d
--------------------------------	-------------	-----------	---

#11+ ↓ → >	:	1980年(ji	n/mu) Year		1981 年 (jin/mu) Year			
排水方式 Drainage type	早稻 Early rice	晚稻 Late rice	全年 Total yeat	%	早稻 Early rice	晚稻 Late rice	全年 Total year	%
深沟 (Deep ditch)	728	656	1384	134	570	706	1276	116
浅沟 (Shallow ditch)	588	537	1125	109	505	690	1195	109
对照 (CK)	430	596	1026	100	480	616	1096	100
暗管 (Tile-pipe)	480	668	1148	108	530	750	1280	106
对照 (CK)	472	582	1054	100	570	638	1208	100

四、小结

冷浸田地下水位的活动可分为沼泽型、渍水型、青泥型和爽水型四个类型,前两种占**70%**以上。

冷浸田还原性物质的累积,加剧了土壤缺钾,导致了水稻赤枯病的发生。采用石砌一 米深窄沟的工程措施,有降低地下水位 30—50 厘米的效果,是治理冷浸田渍害的根本措施。同时排水、烤田、增施钾肥、稻草返田及选用耐低钾水稻品种等,是防治还原性物质障害的有效措施。

参 考 文 献

- [1] 福建省农科院土肥系顺昌基点,1964: 山垅低产田改良试验研究, I 水利改良, II 肥料改良。福建农业科研专刊,第3,4期。
- [2] 李治、陈家驹等,1963: 冷浸田肥力性状与改良利用途径。福建农业,第4期。

STUDY ON THE TYPES AND AMELIORATION OF COLD SPRING PADDY SOILS

Lin Zengquan, Xu Peng, Peng Jiagui, Zheng Zhongdeng and Fan Qitao
(Fujain Academy of Agricultural Science)

Summary

Cold spring paddy soils are the low yielded soils with puddling soil layer formed under strongly reducing condition induced by persistent submergence. Experiment results showed that lowing the ground-water level by deep ditch drainage and controlling the rice disease by applying potassium fertilizer are the effective measures for the improvement of the soils.