湖南棕红壤的研讨*

杨 锋 (湖南省农业厅)

摘 要

本文研究了湖南省洞庭湖东西两侧丘岗地区的棕红壤,提出了棕红壤的主要形成特点、特性、类型的一些指标,归纳如下:

- 1. 具有比较弱的脱硅富铝现象,粘粒硅铁铝率为 2.7-3.0; 淋溶弱(碱金属和碱土金属含量比红壤高 0.18-2 倍,风化淋溶系数多在 0.3 以上);粘粒矿物以水云母、高岭石为主; 游离铁含量大于 2%,游离度 50-60%。
- 2. 颜色为红黄一暗红棕色;粉/粘比和砂/粘比一般都小于 1,粘化值大于 1; pH 4.8-5.8; CEC 8-14 毫克当量/100克土; ECEC 16.5-23.3 毫克当量/100克粘粒;盐基饱和度 40-60%。
- 3. 参照上述指标,结合母质与地域特点,将其划分若干土属,并提出其利用改良上的相应 差异。

关于红壤的研究已有很多报道^[1,2,3],对棕红壤的研究较少棕红壤是 1957—1959 年中国科学院土壤队在进行长江流域土壤调查时提出来的,是红壤向黄棕壤过渡的一个土壤类型,第二次土壤普查初期仍有争论。1984 年 5 月,我省组织了调查,确认了棕红壤的存在,分布范围与性质。并初步提出划分的主要指标。1984 年 12 月昆明土壤分类会议期间,被定为红壤的棕红壤亚类。并列人"全国土壤分类系统(第二次土壤普查分类系统)(修订稿)"之中。1985 年 12 月中国科学院南京土壤所将它作为独立的土类划分出来^[4]。最近对棕红壤及其类似土壤的矿物性质进行了研究^[5,6]。

一、棕红壤的成土特点

棕红壤主要分布于我省北部、洞庭湖两侧的广大丘岗地区。全省共有面积 222.7 万亩,约占红壤总面积的 1.76%。分布于中亚热带向北亚热带的过渡地带,气候温暖湿润,干湿交替,四季分明。年均温 16-17°C,年降水量 1300-1400 毫米,蒸发量在 1219-1424 毫米之间,部分地区,蒸发量大于降水量。 ≥ 10 °C 积温 5198-5360°C,月最低气温 < 4.4°C,极端最低气温-11.8°C--18.1°C,植被为常绿阔叶或常绿针阔叶混交林,由于人类的砍伐,自然植被几已绝迹,人工植被以马尾松、杉树、油茶为主,柑桔、油桐也有生长,近几年来引进的国外松生长良好,但柑桔容易受冻害,油桐开花时间则比红壤地区推

^{*} 场辛农、尹文华、危长宽及常德、岳阳地区土肥站的同志参加调查研究。"长沙土壤测试中心"化验。龚子同、李学 堰、王振权等老师指导整理材料。特此一并致谢。

迟一星期左右;成土母质以第四纪红土为主,也有花岗岩、砂岩、板页岩发育的土壤。 其成土过程有如下特点。

1. 具有比红壤弱的脱**硅富铝作用。在温暖湿润的气候条件下, 硅受**淋失,铁铝相对富集,但比红壤为低。而棕红壤的粘粒硅铝率及硅铁铝率又比红壤为高(表 1)。

	Tak	ole 1 Chemic	cal composit	ion of brown	a-red earth :	and red earth	
土 填 Soil	地 点 Location	深度 (cm) Depth	Si O, (%)	Fe ₂ O,	Al ₂ O ₃ (%)	SiO,/R,O,	\$iO,/Al,O,
棕	澧	025 2545	45.65 45.77	11.77	26.16 26.33	2.30 2.29	2.96 2.95
红	县	4580 80- 110	46.48	11.77	26.23 25.89	2.34	3.01 3.01
壤	临湘	0-36 36-78 78-110	45.34 44.52 44.19	12.21	26.34 26.35 27.18	2.26 2.21 2.11	2.92 2.89 2.76
<u>a</u>	衡* 阳	0-10 10-30 30-50	38.49 40.06 38.80	11.03 10.91 11.57	30.02 24.33 28.62	1.77 1.81 1.83	2.18 2.32 2.30

11.59

11.41

12.96

13.69

30.77

29.91

29.00

.29 .83

1.81

1.92

1.93

41.88

2.25 2.39

2.48

2.43

表 1 棕红装与红装部分硅、铁、铝及其比值

0 - 50

50 - 100

100-150

150 - 200

40.70

42.04

42.36

42.68

2. 具有比红壤弱的淋溶作用。 棕红壤的淋溶作用比红壤弱,表现于以下两个方面: 一是在矿物风化分解过程中,容易风化淋溶而流失的碱金属和碱土金属的含量比红壤为高,一般高出 18—200%;二是风化淋溶系数 (ba 值) 比红壤大。其 ba 值一般在 0.3—0.4 之间,平均为 0.36,而红壤一般却在 0.3 以下,平均为 0.27 (见表 2)。土壤的风化淋溶系数越大,说明它的风化淋溶度越小,也说明棕红壤的发育程度比红壤弱。

表 2 棕红莲的风化淋溶系数

Table 2 Weathering eluvial indexes of brown-red earth

± t	样品数 Sample No.	Al ₂ O, (%)	CaO (%)	MgO (%)	K ₁ O (%)	Na ₂ O (%)	ba 值
棕红壤 7		15.06	0.21	0.77	1.96	0.55	0.36
红壤	红 填 6		0.01		1.66		
增数	量 -	+0.24	+0.20	0.15	0.30	0.16	0.09
tu (%) -	+1.61	+200	24.19	18.07	41.03	33.3

3. 具有以水云母、高岭为主的矿物组成。根据 X 衍射图谱分析,棕红壤的矿物组成以水云母、高岭石为主,含有少量的 14 Å 过渡矿物及痕量的 12 Å 混层矿物 (图 1)。而红壤

^{*} 引自"华中亚热带土壤"。

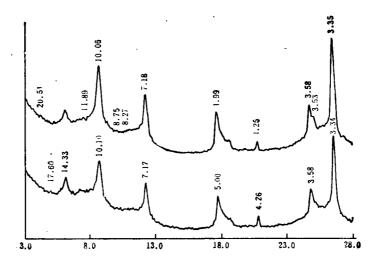


图 1 棕红壤 (84-1318) X 衍射图谱

Fig. 1 XRD Patterns of brown-red earth (84-1318)

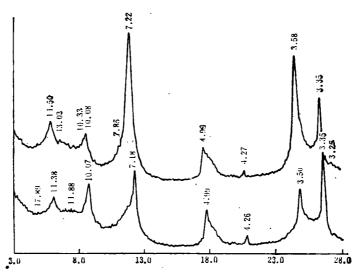


图 2 红壤 (84-1284) X 衍射图谱

Fig. 2 XRD Patterns of red earth (84-1248)

则以高岭石或高岭石、水云母为主,有一定量 14 Å 过渡矿物和痕量蒙脱(图 2),也证明棕红壤的发育程度比红壤低。

4. 铁的游离度比红壤低,活化度比红壤高。铁的游离度可以说明红壤脱硅富铁铝作用的强弱,游离度越高,土壤富铁作用越显著。根据铁的形态分析结果计算, 棕红壤铁的游离度比红壤要低(表 3)。说明棕红壤的脱硅富铁作用比红壤为弱。

铁的活化度则随成土时间的增长而减少。从上表的活化度看,棕红壤比红壤大,也说明棕红壤的发育度比红壤为弱。

棕红壤同黄棕壤也有一定差异: (1) 棕红壤水浸 pH (5.13) 比黄棕壤 (5.55) 低, (2) B层粘粒有效交换量棕红壤在 16.5—23.3 毫克当量/100 克粘粒之间,黄棕壤则稍离,

3.0

2.0

1.0

1.0

1.0

Ą

编号

Sample

number

8403

8411

红

壤

红

壤

45-80

80 - 110

0 - 12

12 - 41

41-110

4.28

4.96

4.30

5.53

5.14

Table	Table 3 Degree of segregation and activation of iron in brown-earth											
土 填 Soil	深度 (cm) Depth	全铁(%) Total iron (a)	l .	活性铁(%) Active iron . (c)	游离度 (b/a×100%) Degree of segregation	活化度 (c/a×100%) Degree of activation						
棕	0—24 24—45	4.28	2.34 2.60	0.06	55 58	3.0 3.0						

2.56

3.56

2.62

4.10

3.85

0.07

0.06

0.03

0.03

0.03

60

72

61

74

表 3 棕红壤和红壤铁的游离度和活化度

一般 > 32 毫克当量/100 克粘粒。(3) 粘土矿物组成不同,棕红壤以水云母、高岭石为主(见图 1),黄棕壤则以蛭石、水云母、高岭石为主。这说明黄棕壤发育度比棕红壤为低。

二、棕红壤的主要特性

- 1. 剖面特性: 棕红壤有较深厚的红色风化层,土体颜色干时呈红黄色至红棕色(7.5 YR6/8—5YR5/6),湿时呈棕至暗红棕 (7.5 YR4/6—5YR3/6)。这种颜色因地形、母质、层次深度和干湿不同而异。表土层受生物凋落物的影响色深,底土层受母质影响一般色较浅。一般 A 层为块状、碎块状或团块状结构; B 层多为块状或核状结构; C 层为核块状结构。新生体以铁锰胶膜、斑块为主,间有少量结核,在 C 层往往形成红白相间的网纹层,并夹有少量铁锰斑块。
- 2. 机械组成:由于棕红壤发育的母岩母质不同,土体中的粘粒含量差异较大。根据分析资料看, < 0.002mm 的粘粒含量以第四纪红土母质发育的为最高,一般都在 45% 以上;砂岩、板页岩发育的次之,一般在 30—35% 左右;花岗岩母质发育的粘粒含量最少,一般小于 30%。棕红壤的 B 层一般都有粘粒的淋淀和残积粘化现象。特别是砂性母质发育的土壤,这种现象更为明显。如花岗岩发育的棕红壤,其 Bt/A 值和 Bt/C 值分别可以达到 1.36 和 2.05; 砂岩、板页岩次之,一般在 1.05—1.25 之间;第四纪红土母质发育的土壤则无一定规律,一般 Bt/A 值都大于 1,而 Bt/C 值有大有小,大的达到 1.25,小的只有 0.93 (表 4)。这种现象可能与沉积的时期有关。
- 3. 土壤酸碱度: 棕红壤的酸碱度,无论是水浸或盐浸,无论是上层或是下层,都比附近红壤为高,一般水浸 pH 在 4.8—5.8 之间,盐浸在 3.4—4.4 之间(表 5),比红壤水浸 pH 4.4—5,盐浸 pH3.4—3.6 几乎都高一个单位,个别的高 2 个单位。不论是砂岩、花岗岩、板页岩或是第四纪红土 pH 都较高。但以砂岩最高,花岗岩次之,板页岩最低。
- 4. 土壤阳离子交换容量与组成:由于所发育的母质不同,土壤发育类型及粘土矿物组成不同,致使反映土壤无机胶体的特性如土壤的交换量、盐基总量、交换性酸及其组成各异,盐基饱和度也不一致。一般每百克土的阳离子交换量在8—14毫克当量之间,盐基总量为5—8毫克当量,交换性酸为1—3毫克当量,有效交换量每百克粘粒为16.5—21.8

表 4 棕红壤机械组成及 Bt/A 与 Bt/C 值

Table 4 Particle size distribution and Bt/A and Bt/C ratio of brown-red earth

编 号	母岩母质	土层深度		粒径	: mm		Bt/A 和
Sample number	Parent material	(cm) Depth	2-0.2	0.2-0.02	0.02-0.002	<0.002	Bt/C 值
		0-28	1.25	10.71	42.29	45.75	1.01
8401	第四纪红土	28—68	0.73	9.49	43.55	46.23	
		68110	0.73	9.01	40.34	49.92	0.93
		0 24	0.84	10.74	37.78	50.64	0.97
8403	8403 第四纪红土	2445	0.63	10.76	36.00	52.61	0.94
0100	1 WHATEL	45—80	1.36	11.27	78.08	49.29	-
		80-110	1.67	11.26	37.92	49.15	1.00
		0-20	10.28	27.15	34.37	28.20	1.25
8405	砂岩	2045	5.68	18.92	40.13	35.27	-
4.02		4575	6.28	20.15	40.91	32.26	1.09
		75—90	5.88	24.46	31.95	37.71	0.93
		0-40	26.14	22.72	24.34	26.80	1.36
8415	花岗岩	4083	25.16	15.79	22.64	36.41	-
		83 — 150	46.05	21.75	14.45	17.75	2.05
		0—23	3.81	17.83	39.10	39.26	1.04
8416	页岩	23-44	3.83	15.51	39.71	40.95	_
1.10		44 — 130	4.05	14.28	42.87	38.80	1.06
		130 160	16.00	16.36	44.51	23.13	1.77

表 5 棕红壤 pH 反应表

Table 5 pH value of brown-red earth

编 号 Sample	日 岩 Parent		pH(H ₂ O)		pH(KCl)			
number	material	Α	В	С	A	В	С	
8401	第	4.88	5.10	5.00	3.84	3.83	3.66	
8403	79	4.88	5.10	5.13	3.74	4.02	4.14	
8413	纪红	5.14	4.88	4.78	3.90	3.57	3.52	
8414	±	5.02	5.10	5.26	3.79	3.79	3.92	
8405	砂岩	6.82	5.82	4.89	6,15	4.39	3.88	
8415	花岗岩	5,24	4.98	5.10	4.00	3.73	3.72	
8416	板页岩	4.80	4.95	5.02	3.55	3.56	3.45	

毫克当量。盐基饱和度 40-60% (表 6),阳离子交换量高低,与母质类型关系密切,盐基总量则与土壤中 Ca、Mg 的含量成正比,交换性酸则与土壤 pH 成反比。

5. 土壤化学组成及风化淋溶系数: 棕红壤的化学组成中 SiO₂ 的含量最高,占 60-

70%, Al₂O₃ 次之,约占 12—29%, Fe₂O₃ 较少,一般为 4.5—6.5%。K₂O 也有一定的含量,一般在 1.5—3% 左右。按地球化学组成分,不管是第四纪红土母质发育的土壤,还是砂岩、花岗岩、板页岩发育的土壤,都可称钾硅质红壤(表 7)。

表 6 棕红樓 B 层阳离子交换容量及组成

Table 6 C. E. C. and its components in B horizon of brown-red earth

編号 Sample	雅与 母质 /		文 换 性 盐 基 (me./100g) Exchangeable bases						换性酸 e./100g angeab cidity		盐基饱和度 (%)	有 效 交换量 (me./
number	Parent material	100g) CEC	总量 Total	K	Na	Ca	Mg	总量 Total	н+	A+++	Base satusation	100g) ECEC
840]	第	12.5	6.23	0.25	0.25	3.75	1.98	1.61	0.21	1.40	49.8	16.5
8403	四纪	14.5	10.61	0.26	0.20	6.20	3.95	0.94	0.14	0.80	73.0	21.67
8413	红红	13.1	5.86	0.23	0.13	3.20	2.80	4.25	0.28	3.97	45.0	18.53
8414	±	12.4	8.04	0.20	0.13	3.10	4.61	1.55	0.14	1,41	65.0	21.05
8416	板页岩	12.1	6.30	0.17	0.13	3.20	2.80	2.81	0.91	2.62	52.0	21.78
8415	花岗岩	9.5	5.33	.0.15	0.26	3.60	1.32	2.21	0.31	2.08	56.0	20.35
8405	砂岩	8.0	5.15	0.18	0.09	3.80	1.08	0.52	0.09	0.43	64.0	15.82

表 7 棕紅葉 (B 层) 化学组成 (< 2mm)

Table 7 Chemical composition of brown-red earth (B herizon < 2mm)

编号 Sample number	母质母岩 Paront material	siO,	Al,O,	Fe ₂ O ₃	TiO,	MnÖ	CaO	MgO	K,0	Na,0	P ,O ,	总量 Total
8401	第	69.14	14.91	5.53	0.91	0.13	Tr.	0.86	2.27	0.23	0.092	100.26
8403,	四	69.45	14.26	6.12	0.90	0.11	Tr.	0.77	1.94	0.28	0.066	99.19
8413	纪红	67.23	15.57	6.65	0.93	0.03	0.10	0.74	1.74	0.30	0.063	99.06
8414	±	68.80	14.35	5.42	0.83	0.10	0.10	0.82	2.01	0.67	0.050	98.65
8405 8415	砂岩	73.44	12.15	4.38	0.93	0.08	0.05	0.83	1.67	0.28	0.058	98.34
8416	花岗岩 页 岩	68.31	20.15 - 15.00	6.26	0.86	0.03	Tr	0.21	2.11	0.46	0.042	99.07

土壤的风化淋溶系数一般都在 0.3 以上,只是因母质不同,盐基和 Al₂O₃ 含量不同,从 而有一定的差异(表 8)。

6. 铁的游离度:棕红壤在风化成土过程中,原生矿物风化作用强烈,产生大量的次生粘土矿物和游离氧化物,特别是第四纪红土母质发育的土壤,游离铁可占全铁量的 40—60%,砂岩、板页岩发育的土壤次之,一般在 40—50% 之间,花岗岩母质发育的土壤较低,一般在 30% 以下 (表 9)。

表 8. 棕红壤的风化淋溶系数(分子比)

Table 8 Weathering eluvial indexes of brown-red earth (molecular ratio)

编 号 Sample number	母质母岩 Parent material	A1,O,	CaO	MgO	к,о	Na,O	ba (/[
84 11	第	14.64	0.03	0.80	2.19	0.26	0.33
8403	四	14.64	0.01	0.77	1.98	0.26	0.31
8413	纪红	13,56	0.09	0.66	1,52	0.36	1.31
5414	±	13.71	0.07	0.75	1.89	0.60	. 37
8405	砂岩	11.95	0.15	0.80	1.60	0.28	0.33
8415	花岗岩	21.73	1.11	0.85	2.23	1.59	5,42
8416	板页岩	15.22	0.01	0.79	2.23	0.47	0.34

表 9 棕红壤的游离铁、活性铁(全剖面加权平均值)

Table 9 Contents of free iron and active iron of brown-red earth (Weighted mean for profile)

编 号 Sample number	母质母语 Parent material	全 铁 Total iron	游离铁 Free iron	活性铁 Active iron	遊 萬 度 Degre of segregation	晶 化 度 Crystall ira-bility	活 化 度 Degree of activation
8401	第	3.92	2.23	0.11	56.9	95.0	5.0
8403	. 四	4.50	2.79	0.07	62.0	97. 0	3.0
8413	纪 红	4.12	1.94	0.08	47.1	95.9	4.1
8414 	. ±	3.57	1.34	0.10	37.5	92.5	7.5
8405	砂岩	3.25	1.65	,0.06	50.8	96.4	3.6
8415	花岗岩	3.33	0.93	0.06	27.9	93.5	6.5
8416	板页岩	4.25	1.64	0.07	38.6	95.7	4.3

7. 粘土矿物及粘粒化学组成: 棕红壤的粘土矿物,由于土壤的脱硅富铁铝程度比较弱,土中粘粒 Sa 值和 Saf 值都较高(表 10),土壤中的粘土矿物则以水云母、高岭石为主,但高岭石结晶不好。

三、主要土属的区分

棕红壤发育的母质不同,土壤的性质各异,据此划分土属。

由第四纪红色粘土发育而成的,以中更新统(Q₁)发育的,也有上更新统和下更新统发育的土壤,但面积不大。主要分布在洞庭湖东西两侧,海拔250米以下,如临澧、澧县、净市、华容、岳阳、临湘等,桃源、汩罗、石门部分地方也有分布。第四纪红土母质发育的棕

表 10 棕红壤的粘粒部分的化学组成和矿物类型

Table 10 Chemical composition and mineral types of clay fraction of brown-red earth

编 号 Sample number	母质母岩 Parent material	siO,	Fe ₂ O,	A12O,	SiO ₂ /Al ₂ O ₃	siO,/R,O,	粘土矿物类型 Mineral types of clay
8401		45.75	7.78	26.31	2.95	2.48	以水云母、高岭 石为主,少量绿 泥石和石英
8403	第 四	46.48	11.77	26.23	3.01	2.34	水云母、高岭为 主,少量石英及 14Å 过渡矿物
8413	纪红	44.52	12.35	26.35	2.87	2.21	以水云母、高岭 为主,少胜 14 Å 过渡矿物微量石英及 12 Å 混层矿物。
8414	±	45.52	11.10	26.61	2.90	2.29	以水云母、高岭 为主,少量 14 Å过渡矿物,少 量石英。
8405	砂岩	47.26	9.79	26.26	3.05	2.47	以水云母、高岭 和14Å 过渡矿 物为主,少量绿 泥石、混层矿物 及石英
8415	花岗岩	44.78	9.49	28.65	2.65	2.19	以高岭(包括埃 洛石)和水云母 为主,一定量 14Å 矿物及混 层矿物
8416	. 页 岩	43.45	13.12	27.54	2.68	2.05	以水云母为主, 其次为高岭及 14Å矿物,微张 蒙脱及混层矿 物

红壤、土层深厚,但质地较粘。一般为壤质粘土到粘土 (国际法),土壤通气透水性较差。 植被以马尾松、油茶林为主,部分荒山草坡,水土流失较为严重,肥力较低,有机质一般都在 2% 以下。 速效养分特别是速效磷相当缺乏,一般只有痕量;但缓效钾含量较高,表耕层一般在 300—560ppm 之间;此种棕红壤,海拔低,温光条件好,是发展麻、烟、茶、果的重要基地。

由砂岩发育的棕红壤,主要形成于砂岩沉积物(主要是石英砂岩等)的风化物。分布于石门新关一带的丘陵低山山坡中下部。遭县、岳阳、湘阴等县也有少量分布。土体及粘

粒(<0.002mm)中,SiO,的含量特别高。一般土体可以高达73—74%,粘粒部分的含量为46—47%。土壤质地以0.02—0.002mm的粉粒含量较高,可达19—24%,土层较厚,质地轻,土壤疏松,透气爽水,土壤肥力不高,特别是速效氮、磷、钾含量较低。在利用上,植被覆盖率低,多为荒山疏林,水土流失严重,原有森林多已被破坏,残存部分脞木,映山红、金竹、花竹、白茅、野古草、铁芒基等草灌植被。人工植被以马尾松、杉树为主。

由花岗岩发育的棕红壤发育于燕山期二长花岗岩母质,集中分布于华容的桃花山至岳阳天井山林场,月田、毛田区、临湘白洋田乡等地。土壤砂粒含量较高,占 40—67%,粘粒较少,占 17—36%,使土壤疏松好耕。发育程度较低,抗蚀性差,水土流失严重。其次土壤矿质全量中的 CaO、MgO、K₂O、Na₂O 含量高。土壤风化淋溶系数达 0.42。土壤含铁量低,土壤铁的游离度也低,只有 27.93%,土壤保水、保肥力差,速效养分含量很低,其中速效磷只有痕量,速效氮、钾含量也低,但缓效钾含量高,可达 1243 ppm。 故花岗岩棕红壤适种性仍很广,常见的有松、杉、楠竹、乌桕、油茶、柑桔、苧麻都生长较好。

由板页岩发育的棕红壤: 主要分布于岳阳、临湘、华容、石门、临澧县的部分地区。岳阳地区一般以变质板岩类为主,也有一些页岩。常德地区则以页岩为主,有泥质页岩、碳质页岩、砂质页岩等。土壤质地较粘,粘粒交换量高,全钾量仅次于花岗岩发育的棕红壤。土地利用率较高,植被生长较好,一般有松、杉、栎类、枫香、黄檀、楠竹、油茶、油桐等。种植柑桔、茶叶也较适宜,品质优良。

主要参考资料

- [1] 中国科学院南京土壤研究所主编,1980:中国土壤。科学出版社。
- [2] 龚于同等,1983: 华中亚热带土壤。湖南科技出版社。
- [3] 李庆逵主编,1983;中国红壤。科学出版社。
- [4] 中國科学院南京土壤研究所,1985:中国土壤系统分类初拟。土壤,第 17 卷 6 期。
- [5] 李学垣等, 1986: 湖北省红壤、黄棕壤 14 埃过渡矿物的研究。第十三届国际土壤学会论文集。
- [6] 李学短等,1986: 武汉红壤、黄棕壤粘土矿物组合与表面电荷特征的研究。南京国际旱地土壤与施肥管理学术讨论会论文集。

A STUDY ON BROWN RED EARTH IN HUNAN PROVINCE

Yang Feng
(The Agricultural Department of Hunan Province)

Summary

The Brown red earths on hilly lands east and west of Dongting lake were studied, the results obtained are summarized as follows:

- 1. In comparison with red earth, the main characteristics of formation for brown red earth are weak in desilicification and allitic processes (the content of Fe₂O₃ is lower, Al₂O₃ is higher; the silica-sesquoxide ratio is about 2.7—3.0), weaker in eluviation process (the content of alkali metals and alkali earth metals is as 1.18—3 times as red earth; the coefficient of weathering and eluviation process (the content of alkali metals and alkali earth metals is as 1.18—3 times as red earth; the coefficient of weathering and eluviation is more than 0.3). The dominant clay minerals are illite and kaolinite; the content of free iron oxide is more than 2% and the degree of its segregration is 50—60%.
- 2. The properties of brown red earth are reddish yellow and dark reddish brown in color with the silt/clay and sand/clay ratios of less than 1 the clayization value of larger than 1; pH of 4.8—5.8, CEC 8—14 m.e/100 g soil, and a base saturation about 40—60%.
- 3. According to the indexes mentioned above, parent materials and characteristics of the region, the soil families of typic brown red earth, granite brown earth, slate-cheet brown red earth, sandstone brown red earth are classified.