砖红壤及其矿物表面对重金属 离子的专性吸附研究

陆雅海

(中国水稻研究所土化系, 310006)

黄昌勇 袁可能 朱祖祥 (浙江农业大学±化系,310029)

摘 要

本文对 Cu²⁺、Zn²⁺、Co²⁺、Ni²⁺ 和 Cd²⁺ 在砖红壤、针铁矿、无定形氧化铝和高岭石表 面上的专性吸附进行的研究结果表明: pH 是影响重金属离子吸附过程的最重要因素,而表面 带电性质对吸附过程的影响不大。砖红壤表面的吸附顺序是 Cu²⁺ > Zn²⁺ > Co²⁺ > Ni²⁺ > Cd²⁺; 针铁矿表面的吸附顺序是 Cu²⁺ > Zn²⁺ > Cd²⁺ > Ni²⁺ > Co²⁺; 而无定形氧化铝和高岭 石表面的吸附顺序是 Cu²⁺ > Zn²⁺ > Ni²⁺ > Co²⁺ > Cd²⁺。重金属离子在四种材料上的吸附过 程符合三层络合模式:

 $2SOH + M^{2+} = (SO)_2M + 2H^+$

$K_{M}(int) = Q_{M} exp[-2e(\psi_{0} - \psi_{\beta})/RT]$

(式中 S 为表面; M 为重金属离子; $K_M(int)$ 是本征络合常数; Q_M 是表观络合常数; exp 为指数函数; e 为电子电荷; θ_0 为表面电位; θ_0 为 Stern 层电位; R 为气体常数; T 为绝对温度。 用吸附数据求得的 $-\log Q_M = \sigma_0$ (表面电荷密度)之间呈极显著直线相关($\alpha = 0.01$)。模型 参数 $K_M(int)$ 和内层电容 θ_1 可用来表征表面与 M^{2+} 吸附亲和力的大小。在本文所测试的 五种离子中, Cu^{2+} 与表面有最大的 $K_M(int)$ 和 θ_1 , 说明 Cu^{2+} 与表面的吸附亲和力最大, Cu^{2+} 吸附面离表面最近。

关键词 专性吸附,三层络合模式,重金属阳离子,可变电荷表面

土壤及其矿物对重金属元素的专性吸附作用,不仅影响植物对微量元素的吸收作用, 而且对许多重金属污染物在自然界中的迁移与富集也起重要控制作用。许多吸附试验 证明:水合氧化物对重金属离子的专性吸附过程强烈地依赖于体系 pH 的变化,在某一 狭窄 pH 范围内,随着 pH 的升高,吸附百分率可以发生从 0 到 100% 的变化¹⁰⁰。为解释 吸附机制并对吸附过程作定量描述,不同研究者已提出了许多吸附模型。如: 1.离子交 换模型^[9]; 2.吸附-水解模型^[11]; 3.离子-溶剂反应模型^[9]; 4. Lagmuir 模式及其扩展方 程^[1,3]; 5.恒容络合模式^[16,13]; 6.三层络合模式^[4]等。这些模型都应用了化学热力学的基 本原理,有的侧重于表面配位化学作用,有的侧重于静电作用,有的则侧重于离子的溶剂 化作用来解释离子在固/液界面的吸附过程。本文对重金属离子 Cu²⁺、Zn²⁺、Co²⁺、Ni²⁺ 和 Cd²⁺在砖红壤及其矿物表面上的吸附过程进行了研究,并用三层络合模式理论解释了 吸附数据。

4 期

一、材料与方法

(一) 材料制备与鉴定

砖红壤采自云南昆明,土壤经自然风干过 30 目筛后备用;针铁矿按 Hingston 等(1972)合成针铁 矿的方法制备⁽⁷⁷;无定形氧化铝;在 1.0 mol/L AlCl,溶液中,逐滴加入 1.0 mol/L NaOH 至 PH4.6,沉 淀在 80℃ 下老化 5 小时,在室温下用去离子蒸馏水渗析到无 Cl⁻ 离子,60℃ 干燥;高岭石系自然矿 状,采自江苏阳山。三种纯矿物均过 100 目筛备用。四种材料的基本性质见表 1_●

表 1 四种材料的基本性质

Table 1	Basic	properties	of	the	four	material	tested
---------	-------	------------	----	-----	------	----------	--------

材 料 Material	ZPC	比 函 Specific surface area (m²/g)	总酸度 Total acidity (mol/kg)	矿物组成 Mineral composition
砖红壤	3.6	81.4	未 测	三水铝石,赤铁矿、高岭石
针铁矿	7.1	90.3	0.443	针铁矿含微量杂质
无定形氧化铝	3.9	625	3.28	无定形氧化铝
高岭石	4.5	43.6	0.0436	

·注; ZPC:电位滴定法^[3]; 比面: 乙二醇乙醚吸附法^[3]; 总酸度: 酸碱中和法^[3]; 矿物组成: X-衍射物相鉴定 法^[1]。

(二) 吸附试验

用 0.05mol/L KClO, 作为支持电解质。重金属离子起始浓度为 $10^{-t}mol/L 左右$ 。吸附体系 的 固 液比:砖红壤为 1:20; 针铁矿为 1:200; 无定形氧化铝为 1:400; 高岭石为 1:40。具体步骤: 取砖红壤 样本 1.0g、针铁矿 0.1g、无定形氧化铝 0.05g 和高岭石 0.5g 各若干份于一系列 50ml 塑料离心管中, 每份加入适量 0.05mol/L KClO, 溶液,再加入不等量浓度已知的稀 HClO, 或 KOH 调节 pH 至不同 值,注意使 KClO, 加入量和 HClO, (或 KOH) 加入量之和恰好为 10ml, 将制成的胶体悬液振摇数 分钟,静止过夜,第二天再取 10ml 含 $2 \times 10^{-t}mol/L$ 重金属离子的 0.05mol/L KClO, 溶液加入到胶体 悬液。25℃下平衡 24 小时,其间振荡几次。用 Corning-120 型酸度计测定平衡 pH。以 8000 转/分 离心 5-10 分钟。用原子吸收法测定清液中的重金属离子浓度。根据平衡前后重金属离子浓度变化和 H⁺ 离子(OH⁻) 浓度变化计算重金属离子吸附量和 H⁺(或 OH⁻) 离子吸附量。

二、结果与讨论

(一) 重金属离子的吸附过程

1. 体系 pH 的影响 图 1 是砖红壤、针铁矿、无定形氧化铝和高岭石对 Cu²⁺、Zn²⁺、 Co²⁺、Ni²⁺、Cd²⁺ 的吸附量 随 pH 的变化曲线,从图可见在低 pH 时,砖红壤对金属离子的 吸附量很少或几乎不产生吸附,但随 pH 的上升,吸附量迅速增加,其纯矿物的吸附趋势 基本相同。但从曲线形状看,砖红壤曲线的坡度较小,无明显转折点,而纯矿物曲线陡、转 折点清晰。上述结果说明砖红壤及其矿物对重金属离子的吸附过程有一个较敏感的 pH

范围,在此范围内,微小的 pH 变化即可引起吸附量的显著变化。但是不同金属离子在同一材料表面,或同一金属离子在不同材料表面,吸附的敏感 pH 范围有较大差异。砖红壤 表面吸附过程对 pH 的敏感性比其纯矿物要小。

从图 1 和表 1 可看出,表面带电性质对吸附过程的影响较小。如对砖红壤、无定形氧 化铝和高岭石,尽管体系 pH 已大于 ZPC,甚至超过 ZPC 1--2 个单位,表面已带负电 荷,但只要还未达 pH 敏感范围,表面对五种离子的吸附量仍然很少。而对针铁矿体系, 五种离子的吸附都在 pH < ZPC 时完成,其中 Cu²⁺ 全部被吸附时其 pH 小于 ZPC 约 2.5 个单位。此时针铁矿应带有正电荷。可见,表面带电性质对 Cu²⁺、Zn²⁺、Co²⁺、Ni²⁺、 Cd²⁺ 吸附过程的影响不大。

2. 重金属离子种类的差异 本文所研究的吸附体系实际上属于包含 H⁺ 离子和 重 金属离子的两离子体系, H⁺ 离子和 M²⁺ 离子相互竞争与表面活性位置进行配位。因此 在重金属离子起始浓度基本相等的情况下,各离子在同一材料上的吸附顺序可以定性说 明该材料表面对重金属离子的相对亲和力大小。图 1表明,对砖红壤及其矿物表面,Cu²⁺ 有特别强的吸附亲和力其吸附量发生迅速增加时的 pH 比其它四种离子 要 提 前 1-2 个 pH 单位; 其次 Zn²⁺ 的吸附亲和力大于 Co²⁺、Ni²⁺、Cd²⁺; 而 Co²⁺、Ni²⁺、Cd²⁺ 之间 的差异较小,但因表面种类不同也有一定变化,砖红壤表面的吸附顺序是 Co²⁺ > Ni²⁺ ≥ Cd²⁺ (图 1A), 针铁矿是 Cd²⁺ > Ni²⁺ > Co²⁺ (图 1B), 而无定形氧化铝和高 岭 石 是 Ni²⁺ > Co²⁺ ≥ Cd²⁺ (图 1C 和 D)。说明对 Co²⁺、Ni²⁺、Cd²⁺ 三种离子而言,砖红壤可 能对 Co²⁺ 有一定偏性;针铁矿可能对 Cd²⁺ 有偏性,而无定形氧化铝和高岭石则可能对 Ni 有偏性,产生偏性的原因可能与砖红壤还含有其它矿物如 MnO₂ 或不同材料之间表 面构造的差异有关,尚需进一步研究。

(二) 三层络合模式

用配位化学观点来解释表面化学反应机制已日益引起土壤化学工作者的兴趣。Hohl 及 Stumm (1976) 和 Schinder (1981) 认为氧化物胶体可以看作是多质子的聚合含 氧 弱酸^[8,13]。在水溶液中,它们和简单的多元弱酸(如 H₄SiO₄ 等)一样也可发生与金属离子 的络合反应,其反应式可写成:

$$SOH + M_{*}^{2+} \Longrightarrow SOM + H_{*}^{+}$$
(1)

$$2SOH + M_{\star}^{2+} \iff (SO)_{2}M + 2H_{\star}^{+}$$
(2)

两式中, s 为表面; M 为重金属; SOM 和 (SO)₂M 称为表面络合物; 下标 s 表示离子 是 在胶体界面区域。在确定(1)、(2)两式中何者为界面反应模式时, H⁺ 离子释放量与 M²⁺ 离子吸附量的比值 z 是一个重要参数。许多工作者已在水化氧化物表面得到过 z = 2 的 结果^[6,8,13]。我们在针铁矿表面,用电位滴定法测得的 z 值也为 2。我们进一步假定砖 红 壤及无定形氧化铝和高岭石表面的 z 值 也 等于 2。

所以本文选择(2)式作为界面模式的基础。(2)式的反应常数为:

K_M(int) = [(SO)₂M][H⁺]²/[SOH]²[M²⁺]。(3) 式中 K_M(int) 称为本征络合常数;下标 s 表示界面 区域的离子浓度; [(SO)₂M] 即是重金属离子的吸 附量; [SOH] 代表表面 OH 位置的浓度。

表面位置和表面电荷之间存在如下平衡:

$$N_{\bullet} = [SOH] + [SOH_{2}^{+}] + [SOH_{2}^{-}] + [SOH_{2}L] + [SOM]$$
(4)

$$\sigma_0 = [SOH_2^+] - [SO^-] + [SOH_2L] - [SOM]/A \times 10^3$$

式中 N. 为表面位置的总浓度即等于表面总酸度; σ_0 是表面电荷密度; A 为比表面积(m^2/g) SOH、SOH; 和 SO⁻ 代表三种不同的表面位置; [SOH₂L] 代表 阴离子专性吸附量; [SOM] 代表阳离子专性 吸 附 量。在本研究中不存在 阴 离 子 专 性 吸 附,所以 [SOH₂L] = 0。假定在 pH>ZPC 时,忽略[SOH;], 则由(4)和(5)式可得;

(5)

图 2 Stern-Grahame 双电层模型 Fig. 2 The model of Stern-Grahame electric double

(6)

374	土	壤	学	报	32 卷
-----	---	---	---	---	------

同理在 pH < ZPC 时可得:

$$\sigma_0 = (C_A - C_B + [OH^-] - (H^+)/W \cdot A$$
(8)

式中W为吸附体系的固相重量 (g); C_A 和 C_B 是酸和碱加入后的浓度。

假定在有离子专性吸附时,可变电荷胶体的双电层可以用 Stern-Grahame 模式表达 (图 2)则有紧密层的电位-电荷关系为

$$\psi_0 - \psi_\beta = \sigma_0/\theta \tag{9}$$

$$\psi_{\beta} - \psi_{\delta} = -\sigma_{\rm d}/\theta_2 \tag{10}$$

$$\theta_1 - \varepsilon'/\beta$$
 (11)

(9)、(10)和(11)式中(参见图 2 中符号)、 σ_0 和 ϕ_0 是粒子表面的电荷与电位; σ_β 和 ϕ_β 是 Stern 面的电荷与电位; σ_a 和 ϕ_a 为滑动面的电荷与电位; $\theta_i(\varepsilon_1)$ 和 (ε_2)是紧密层内外 两区域的积分电容和介电常数、 ξ' 是 Stern 层电容率; β 是 Strn 层厚度。

离子在双电层中按 Boltzmann 函数分布:

$$[H^+]_{\bullet} = [H^+] \exp(-e \psi_0 / RT)$$
(12)

$$[M^{2+}]_{s} = [M^{2+}] \exp(-e \psi_{\beta}/RT)$$
(13)

(12)和(13)式中 [H⁺] 和 [M²⁺] 是溶液中的 H⁺ 和 M²⁺ 离子浓度; 下标 s 表示界面区 域的离子浓度; R 是气体常数; T 是绝对温度。

将(12)和(13)代人(3)式可得

Ŷ

$$K_{M}(int) = \frac{[(SO)_{2}M][H^{+}]^{2}}{[SOH]^{2}[M^{2+}]} \exp\left[-2e(\phi_{0} - \phi_{\beta})/RT\right]$$
(14)

$$Q_{M} = \frac{[(SO)_{2}M][H^{+}]}{[SOH]^{2}[M^{2+}]}$$

则

 $K_{M}(int) = Q_{M} \exp\left[-2e(\phi_{0} - \phi_{\beta})/RT\right]$ (15)

 Q_M 称为表观络合常数,可从(6)和(7)两式和吸附量及平衡浓度求得。

将(15)式两边进行对数转换并联系(9)式可得

$$\log Q_{\rm M} = \log K_{\rm M}(\rm{int}) + \frac{2e}{2.303\theta_1 \rm{RT}}$$
(16)

(16)式表明:如果胶体表面对重金属离子的吸附过程符合上述 三层 络 合 模式,则用 $-\log Q_{M}$ 对 σ_0 作图将得一直线,直线的截距为 $-\log K_{M}$ (int),斜率为 $2e/\theta RT_{0}$ 我们对 砖红壤及其矿物表面的吸附数据的 $-\log Q_{M}/\sigma_0$ 关系作了计算,结果列于表 2。由表可见, $-\log Q_{M} = \sigma_0$ 的直线相关关系均达到极显著水平($\alpha = 0.01$),说明三层络合模式 不仅适合于 $Cu^{2+}, Zn^{2+}, Co^{2+}, Ni^{2+}$ 和 Cd^{2+} 在三种纯矿物表面的吸附过程,而且也适合于这些离子在砖红壤表面的吸附过程。同时也说明对(2)式的假定是可行的。

文献中常有用恒容络合模式来解释水合氧化物表面对离子专性吸附反应的 报 道^{μ,a}。 恒容模式和三层模式的主要区别在于:前者认为吸附的 M²⁺ 和 H⁺ 离子分布在同一表 面, Stern 层电容 θ₁恒定不变;而后者则认为吸附的 M²⁺ 和 H⁺ 离子分布在不同的面, 两者相隔 β 距离, Stern 层电容 θ₁随矿物表面和离子种类而变。我们用吸附数据对恒容

- 表 2 - log	Q _x 与	表面电ね	奇密度 여	っ的	1相关性
-------------	------------------	------	-------	----	------

Table 2 Li	near equations	of -logQ	and	σ_{\bullet}
------------	----------------	----------	-----	--------------------

材 料 Material	重金属离子 Heavy metal ion	相关方程 ¹) Linear equation	相关系数 ²⁾ Correlation Coefficient	样本数 (n) Number of sampes
	Cu	y = -2.23x + 6.91	-0.99	6
针	Zn	y = -2.77x + 8.98	-0.99	б
铁	Co	y = -2.71x + 9.80	-0.99	6
ወ	Ni	y = -2.32x + 9.93	-0.96	6
	Cd	y = -2.86x + 9.34	-0.98	6
 于	Cu	y = 0.834x + 4.92	0.98	9
定	Zn	y = 1.16x + 5.43	0.98	10
形复	Co	y = 1.41x + 5.32	0.98	9
花	Ni	y = 1.17x + 6.14	0.98	10
铝	Cd	y = 1.25x + 6.08	0.98	12
	Cu	y = 4.38x + 6.49	0.99	8
高	Zn	y = 6.38x + 7.22	0.99	7
岭	Co	y = 8.58x + 7.54	0.98	6
石	Ni	y = 8.35x + 6.91	0.97	7
	Cd	y = 9.72x + 7.09	0.99	7
	Cu	y = 3.72x + 6.10	1.00	12
砖	Zn	y = 3.89x + 6.85	0.99	12
红	Co	y = 4.22x + 6.52	0.99	12
壤	Ni	y = 4.09x + 6.65	0.99	12
	Cd	y = 4.44x + 6.64	0.99	12

1) y = -logQ_M; x = |σ₀|×10⁶; 2) T 检验,相关系数均达极显著水平(α = 0.01)。

模式进行了拟合测验但没有发现相关性。

在本文吸附试验范围内,只有针铁矿表面带正电荷,其它三种表面都带负电荷。表 2 表明 - log Q_M 与正电荷密度呈负相关, 与负电荷密度呈正相关。因为表面络 合 反 应由 M²⁺离子吸附和H⁺离子解吸两个过程组成,所以上述结果说明表面电荷对H⁺离子解吸 的影响要大于对 M²⁺ 离子吸附的影响。这与 M²⁺ 吸附面离开 H⁺ 吸附面 β 距离 的 观 点 相符合。表 2 中直线方程的截距代表 – $\log K_{M}(int)$, 斜率代表 2 e/θ_{1} RT。 $K_{M}(int)$ 是本征 络合常数,与表面络合反应的化学自由能有关,K_M(int) 愈大,ΔGChem 愈小,利于吸附 进行。θ,是内层电容,(11)式表明θ,愈大,则β愈小,表示 M²⁺吸附面离表面愈近或与表 面的结合力愈强。所以 $K_{M}(int)$ 和 θ_1 都可用来表征表面与 M^{2+} 离子的吸附亲和力。无 论在正电表面或负电表面,在本文所测试的五种离子中, Cu^{2+} 都有最大的 $K_{M}(int)$ 和 θ₁,说明 Cu²⁺ 吸附面与砖红壤及矿物表面的距离最小,吸附亲和力最大。

考 文 献

1. 陈怀满,1988: 土壤对镉的吸附与解吸 II. 吸附势与解吸势。土壤学报,第 25 卷 3 期, 227-235 页。

2. 熊毅主编,1985: 土壤设体(第二册)-土壤胶体研究法。140-168页;380-385页;404-411页。科学出版社。 3. Barrow, N. J., J. W. Bowden, A. M. Posner and J. P. Quirk, 1981: Describing adsorption of

- of
- copper, zinc and lead on a variable charge mineral surface. Aust. J. Soil Res., 19:309-312.
- 4. Davis, J. A., R. O. James and J. O. Leckie, 1978: Surface ionization and complexation at the

oxide/water interface. I. Computation of electrical double layer properties in simple electrolytes. J. Colloid Interface Sci., 63(3): 480-499.

- Dugger, D. L., J. H. Staton, B. N. Irhy, 1964: The exchange of twenty metal ions with the weakly acidic silanol group of silica gel. J. Phy. Chem., 68(4): 757-760.
- 6. Forbes, E. A., A. M. Posner and J. P. Quirk, 1976: The specific adsorption of divalent Cd, Co, Cu, Pb and Zn on goethite. J. Soil Sci., 27: 154-166.
- Hingston, F. J., A. M. Posner and J. P. Quirk, 1972: Anion adsorption by goethite and gibbsite.
 The role of the proton in determining adsorption envelopes. J. Soil Sci., 23: 177-192.
- Hohl, H. and W. Stumm, 1976: Interaction of Pb²⁺ with hydrous r-Al₂O₃. J. Colloid Interface Sci., 55(2): 281-288.
- James, R. O. and T. W. Healy, 1972: Adsorption of hydrolyzable metal ions'at the oxide-water interface. 3. A thermodynamic model of adsorption. J. Colloid Interface Sci., 40(1): 65 -81.
- Kinniburgh, D. G., M. L. Jackson and J. K. Syers, 1976: Adsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminum. Soil Sci. Soc. Am. J., 40:796-799.
- 11. Matijevic, E., M. B. Abramson, R. H. Ottewill, K. F. Schuiz and M. Kerker, 1961: Adsorption of thorium ions on silver iodide sols. J. Phy. Chem., 65: 1724-1729.
- 12. Norvell, W. A. 1980: Surface reactions of heavy metals with clays, oxides, and humic substances. In "Agrochemicals in soils." (A. Banin and U. Kafkafi, eds.), Int. Irrigation Information Center. Bet. Dagen, Israel.
- 13. Schindler, P. M., 1981: Surface complexes at oxide-water interfaces. In "Adsorption of Inorganics at Solid-Liquid interfaces" (Anderson, M. A. and A. J. Rubin, eds.), Ann Arbor Science Publishers, Inc., Michgan, USA.

SPECIFIC ADSORPTION OF HEAVY METAL IONS ON LATOSOL AND ITS MINERALS

Lu Yahai

(China National Rice Research Institute, Hangzhou 310006)

Huang Changyong, Yuan Keneng and Zhu Zuxiang (Zhejiang Agricultural University, Hangzhou 310029)

Summary

The specific adsorption of divalent Cu^{2+} , Zn^{2+} , Co^{2+} , Ni^{2+} and Cd^{2+} on latosol, goethite, amorphous Al oxide, and kaolinite was measured as a function of pH. The adsorption of heavy metals with increasing pH was in the order of $Cu^{2+} >$ $Zn^{2+} > Co^{2+} > Ni^{2+} \ge Cd^{2+}$ on latosol, $Cu^{2+} > Zn^{2+} > Cd^{2+} > Ni^{2+} > Co^{2+}$ on goethite and $Cu^{2+} > Zn^{2+} > Ni^{2+} > Co^{2+} \ge Cd^{2+}$ on amorphous Al oxide and kaolinite. The adsorption data are consistent with the triple layer model. The interfacial reaction is described by the equation

$$2SOH + M^{2+} \iff (SO)_2 M + 2H^+$$

$$K_{M}(int) = Q_{M} \exp\left[-2e(\psi_{0} - \psi_{\beta})/RT\right]$$

where $Q_M = [(SO)_2M][H^+]^2/[SOH]^2[M^{2+}]$, ϕ_0 is the surface potential and ϕ_β is the mean potential at the plane of specifically adsorbed ions. The affinity of Cu²⁺ for surface was the largest, while the distance between surface and the plane of Cu²⁺ adsorbed was the shortest among the ions tested.

Key words Specific adsorption, Triple layer model, Heavy metal cations, Variable charge surface