风干水稻土氮矿化过程的相对稳定性

陶勤南 吴良欢 方 萍

(浙江农业大学,310029)

RELATIVE STABILITY OF MINERALIZATION PROCEDURE OF NITROGEN IN AIR-DRIED PADDY SOIL

Tao Qinnan, Wu Lianghuan and Fang Ping

(Zhejiang Agricultural University, 310029)

关键词 风干水稻土,矿化氮,相对稳定性

在前文^[4]中确定了风干水稻土淹水密闭培养矿化氮有效积温式中 K,n 值计算方法后,我们对自己及其他作者来源于浙江、江苏、上海、湖南等省市共 81 个土壤矿化氮淹培试验资料作了分析,发现将矿化量转化为相对量形式后,不同土样间的氮矿化过程具有较高的相对稳定性,现报道如下。

1 材料与方法

供试土样、淹水密闭培养方法及其 K, n 值的计算方法见前文^[4]。设风干土淹培每周有效积温数为 Te, 淹培周数为 i. 则有效积温式可表示为:

$$Y_i = K[Te \cdot i]^n$$
 $(i = 1, 2, \dots, 12)$ (1)

当淹培温度为 30°时, Te=105 \mathbb{C} 。 i=2 时, 即有效积温 210 \mathbb{C} 时的氮矿化量 Y_2 作为干土效应值。淹培时间从 i 周延长到 j 周之间的氮矿化量记作 Y_{i-j} :

$$Y_{j-i} = K[Te \cdot j]^{n} - K[Te \cdot i]^{n}$$

$$(i, j = 1, 2, \dots, 12; i < j)$$
(2)

例如 Y_{3-2} 表示为淹培第 2 周到第 3 周间的氮矿化量。由于以 Y_2 为干土效应值, Y_{3-2} 即为扣除干土效应后第一周氮的矿化量。 Y_{j-2} 表示淹培时间达第 j 周时扣除干土效应的氮累积矿化量,在前文 [4] 中曾将 Y_{12-2} 作为土壤氮矿化能力指标。

本文定义淹培时间 j-2 周内的氮累积矿化量 Y_{j-2} 相当于 Y_{12-2} 氮累积矿化量的比值作为 j 时段的

氮累积矿化比值 Y_{j-2}/Y_{12-2} (The Ratio of Accumulated Mineralized Nitrogen, 简称 RAMN),记作 RAMN $_j$ 。

$$RAMN_{j} = \frac{Y_{j-2}}{Y_{12-2}}$$
(3)

淹培达12周时该比值等于1。

2 结果与讨论

2.1 氮矿化过程的相对稳定性

对前文[4]中 25 个土样用式(3)计算出从第 3 周到第 12 周的氮累积矿化比值如表 1 所示。

表 1 j 时段土壤氮累积矿化比值 RAMN $_i$ (Y_{i-2}/Y_{12-2})

	, -`	,	- 7 X ! .	四天工	根外がか	W PLFC			1 12-21					
土样	K	n	j (周)											
号	, A	"	3	4	5	6	7	8	9	10	11	12		
1	5.5442	0.2228	0.19	0.34	0.46	0.57	0.66	0.74	0.81	0.88	0.94	1.00		
2	9.0114	0.1569	0.20	0.35	0.48	0.58	0.67	0.75	0.82	0.88	0.94	1.00		
3	0.3542	0.2570	0.20	0.35	0.48	0.58	0.67	0.75	0.82	0.88	0.94	1.00		
4	1.3601	0.4063	0.17	0.30	0.42	0.53	0.62	0.71	0.79	0.86	0.93	1.00		
5	11.3038	0.1017	0.21	0.37	0.49	0.59	0.68	0.76	0.83	0.89	0.95	1.00		
6	6.1618	0.1808	0.20	0.35	0.47	0.57	0.66	0.74	0.82	0.88	0.94	1.00		
7	2.9813	0.3132	0.18	0.32	0.44	0.55	0.64	0.72	0.80	0.87	0.94	1.00		
8	6.3726	0.1765	0.20	0.35	0.47	0.58	0.67	0.75	0.82	0.88	0.94	1.00		
9	3.9707	0.1977	0.20	0.35	0.47	0.57	0.66	0.74	0.81	0.88	0.94	1.00		
10	2.6757	0.2342	0.19	0.34	0.46	0.56	0.65	0.74	0.81	0.88	0.94	1.00		
11	3.8978	0.2471	0.19	0.34	0.46	0.56	0.65	0.73	0.81	0.88	0.94	1.00		
12	2.1128	0.2873	0.18	0.33	0.45	0.55	0.64	0.73	0.80	0.87	0.94	1.00		
13	2.6629	0.2310	0.19	0.34	0.46	0.56	0.65	0.74	0.81	0.88	0.94	1.00		
14	1.7316	0.2907	0.18	0.33	0.45	0.55	0.64	0.73	0.80	0.87	0.94	1.00		
15	2.4342	0.2754	0.19	0.33	0.45	0.55	0.65	0.73	0.80	0.87	0.94	1.00		
16	2.3090	0.2950	0.18	0.33	0.45	0.55	0.64	0.73	0.80	0.87	0.94	1.00		
17	2.3042	0.3012	0.18	0.33	0.44	0.55	0.64	0.72	0.80	0.87	0.94	1.00		
18	4.3564	0.2313	0.19	0.34	0.46	0.56	0.65	0.74	0.81	0.88	0.94	1.00		
19	1.6757	0.2614	0.19	0.33	0.45	0.56	0.65	0.73	0.81	0.88	0.94	1.00		
20	2.9944	0.2468	0.19	0.34	0.46	0.56	0.65	0.73	0.81	0.88	0.94	1.00		
21	1.9481	0.2920	0.18	0.33	0.45	0.55	0.64	0.73	0.80	0.87	0.94	1.00		
22	2.4682	0.2570	0.19	0.33	0.45	0.56	0.65	0.73	0.81	0.88	0.94	1.00		
23	5.6913	0.1655	0.20	0.35	0.47	0.58	0.67	0.75	0.82	0.88	0.94	1.00		
24	1.5884	0.3300	0.18	0.32	0.44	0.54	0.63	0.72	0.82	0.87	0.94	1.00		
25	2.2184	0.2593	0.19	0.33	0.45	0.56	0.65	0.73	0.81	0.88	0.94	1.00		
			0.19	0.34	0.46	0.56	0.65	0.73	0.81	0.88	0.94	1.00		
标准差 S			0.0093	0.0138	0.0151	0.0141	0.0139	0.0116	0.0093	0.0064	0.0029	0		
变异系数 CV(%)			4.9	4.1	3.3	2.5	2.1	1.6	1.2	0.7	0.3	0		
**************************************			<u>.</u>	L						L				

表 1 中 K, n 值有所变动,但淹培 j 时段的累积矿化比值却具有极高的相对稳定性。例如第 3 周的平均值为 19%,标准差仅 0.0093, $\overline{X}\pm 2S$ 的幅度为 0.1714 至 0.2086,与试验值甚为吻合,其变异系数较小,仅 4.9%,并且随淹培时间延长,变异系数愈来愈小,说明累积矿化比值随淹培时间延长趋于更加稳定。式(1)的物理意义已表明 n 值较小时,淹培初期的氮累积矿化比值较大,但在干土淹培实得 n 值的变动幅度 (0.1017 至 0.4063)内,它只能在较为稳定的范围内变化,因此表现了这比值高度的相对稳定性。 25 个土样中包括了囊水型和非囊水型土壤,可见氮矿化过程的相对稳定性适用于爽水性不同的土壤。

2.2 氮矿化过程相对稳定性的普遍意义

为了验证氮矿化过程相对稳定性的普遍意义,收集有关学者公开发表资料,用本文方法计算淹培j时段的氮累积矿化比值 Y_{j-2}/Y_{12-2} ,并将其算术平均值、标准差及变异系数与表 1 资料一起列于表 2 作一对比。

土样数	We the	j (周)											
	统计数	3	4	5	6	7	8	9	10	11	12	及原作者	
25	平均值 X	0.19	0.34	0.46	0.56	0.65	0.73	0.81	0.88	0.94	1.00		
	标准差 S	0.0093	0.0138	0.0151	0.0141	0.0139	0.0116	0.0093	0.0064	0.0029	0	本文	
	变异系数 CV(%)	4.9	4.1	3.3	2.5	2.1	1.6	1.2	0.7	0.3	0		
12	平均值 X	0.18	0.33	0.45	0.55	0.64	0.73	0.80	0.87	0.94	1.00		
	标准差 S	0.0062	0.0090	0.0097	0.0079	0.0072	0.0051	0.0062	0.0049	0	0	蔡贵信等[5]	
	变异系数 CV(%)	3.4	2.8	2.2	1.4	1.1	0.7	0.8	0.6	0	0	L	
32	平均值X	0.19	0.34	0.46	0.57	0.66	0.74	0.81	0.88	0.94	1.00	汪寅虎	
	标准差 S	0.0072	0.0088	0.0094	0.0091	0.0087	0.0075	0.0064	0.0047	0.0018	0	生 [1,2]	
	变异系数 CV(%)	3.7	2.6	2.0	1.6	1.3	1.0	0.8	0.5	0.2	0	T)	
12	平均值 <i>X</i>	0.19	0.33	0.45	0.55	0.65	0.73	0.81	0.88	0.94	1.00		
	标准差 S	0.0124	0.0144	0.0162	0.0142	0.0136	0.0104	0.0107	0.0080	0.0029	0	唐玉琢等[3]	
	变异系数 CV(%)	6.5	4.4	3.6	2.6	2.1	1.4	1.3	0.9	0.3	0		
81	平均值 \overline{X}	0.19	0.34	0.46	0.56	0.65	0.73	0.81	0.88	0.94	1.00	上述全部	
	标准差 S	0.0092	0.0125	0.0134	0.0127	0.0120	0.0100	0.0086	0.0061	0.0022	0		
	变异系数 CV(%)	4.8	3.7	2.9	2.3	1.8	1.4	1.1	6.9	2.3	0	, , , , i	

表 2 根据不同作者资料计算出的 j 时段氮累积矿化比值 RAMN $_i$ (Y_{i-2}/Y_{12-2})

不同作者在不同年份、不同地区选用不同土壤(其中包括种植早稻和晚稻的囊水型及非囊水型水稻土在内),在j时段内氮的累积矿化比值几乎有相同的数值。表 2 资料共 81 个土样,其总的平均值与本文几乎相同,而且用各文献资料求得的标准差、变异系数都很小。表 2 是扣除 210℃有效积温预培期后的数据,若不扣除则不存在如此一致的相对稳定性,由此也逆证了蔡贵信等^[5]以预培二周矿化氮作为干土效应期矿化氮是适宜的。表 2 的土样来源于江、浙、沪、湘等省市,具有广泛的代表性,可见只要适用于有效积温式描述矿化过程的土样,并采用由前文^[4]及本文选定的风干土淹培及计算方法,至今尚未看到不

遵循矿化过程相对稳定性的。尽管 RAMN 相对稳定,但不同土样的 Y_{12-2} 值却相差悬殊,各时段的矿化量 Y_{-2} 与各该时期的矿化速率具有极高的正相关。表 1 资料计算得 $Y_{3-2}=0.0253+91.6561\,Y_{210}$,其 $r^2=0.9982$; $Y_{9-8}=-1.87\times10^{-3}+100.9554\,Y_{840}$,其 r^2 为 0.9996。计算文献[1]、[2]、[3]、[4]得到了完全一致的结果。

参考 文献

- 1. 汪寅虎等,1983;上海郊区青紫泥土壤供氮量的预测研究。土壤学报,第20卷3期,262—271页。
- 2. 汪寅虎等,1983: 水稻土氮素释放的初步研究。"土壤养分,植物营养与合理施肥",中国土壤学会农业化学专业会议论文选集,25—30页,农业出版社。
- 3. 唐玉琢等,1991: 不同稻作制下红壤性水稻土氮矿化特性的研究。湖南农学院学报,第17卷增刊(总第58期),233—241 页。
- 4. 陶勤南等,1993;稻田土壤氮矿化速率的研究。土壤学报,第30卷3期,237-244页。
- 5. 蔡贵信等,1979: 测定稻田土壤矿化过程的淹水密闭培养法的条件试验。土壤,第6期,234-240页。