土壤中离子扩散的动力学研究

李 航

(西南农业大学资源环境学院, 630716)

家 薛 骅

(南京农业大学基础部)

摘 要

本文首先从理论上分析了土壤中离子扩散的动力学问题,提出了土壤中离子扩散的三种 动力学类型,即扩散的一级动力学、零级动力学和负一级动力学,并且还指出,一级动力学是 土壤中离子扩散的普遍形式,负一级动力学只出现在过程的初期阶段,而扩散的零级动力学 则存在于有快速表面反应的情况下。在此基础上进行了 Mg²⁺ 在土壤和石英砂中的扩散动 力学实验研究,结果发现不论在 298K 还是在 308K 的温度下,两个体系中 Mg²⁺ 扩散的动力 学为一级动力学过程,但在 298K 的温度下,在扩散的初期阶段,Mg²⁺ 在土壤中的扩散存在 负一级动力学过程。并且实验结果与理论模型吻合很好。

关键词 土壤,离子扩散,动力学

由于土壤体系的化学过程大都处于热力学不平衡态,因此近年来有关土壤化学动力学问题开始受到人们的重视,并认为土壤化学动力学仍是 90 年代土壤化学研究的前沿¹¹。目前在土 壤离子(配位子)交换的动力学方面已揭示出离子的扩散过程往往成为控制速度步骤^[5,7],并常采 用抛物型扩散方程^[238],液膜扩散动力学方程^[5]等来处理实验数据。但这些方程的土壤学应用有 两大缺陷:一是这些方程大都是直接引用其它体系里的物质扩散方程,那么这些方程是否适合 于土壤体系里呢?其应用条件又如何?二是这些方程未考虑土壤是一个带电体系和土壤本身 的不均匀性等方面的问题。另外,现在的动力学实验结果往往反映的也是既包含离子扩散过程 又包含离子(配位子)交换过程的一个总包过程。所以有必要仔细考察土壤这个非均一的带电 体系的离子扩散动力学,以及用于说明离子(配位子)交换反应动力学的有关问题。

1 理论部分

土壤中的离子扩散是离子在电场中的扩散,因此在用 Fick 扩散定律来处理这个体系 的离子扩散问题时必须进行一定的修改,使其适合于土壤这个非均一的带电体系的离子 扩散。根据"等温等压条件下,物质自发运动方向始终指向自由能降低的方向"这一热力 学原理,首先将以浓度形式表示的 Fick 扩散定律转变成自由能形式的 Fick 扩散定律,然 后再将以自由能形式表示的 Fick 扩散定律推广到外力场体系中,并同时考虑土壤中离子 分布的不均一性,可得如下方程¹⁾:

通量方程:
$$j = -\frac{D}{V} \int_{0}^{V} e^{-\frac{\theta(x,t)}{RT}} dV \cdot \nabla \psi(x,t)$$
 (1)

质量守恒方程:
$$\frac{\partial \psi(x,t)}{\partial t} = - \bigtriangledown \cdot J, (J = -D \bigtriangledown \psi(x,t))$$
 (2)

非稳态扩散方程:
$$\frac{\partial \psi(x,t)}{\partial t} = \bigtriangledown (D \bigtriangledown \psi(x,t))$$
 (3)

式中,*j* 是离子通量, *D* 是离子在水溶液中的扩散系数, *V* 是土粒固定液膜总体积, $\theta(x,t)$ 是 坐标为 x, 时间为 t 时的离子摩尔电势能, *R* 是 Boltzmann 常数, *T* 是绝对温度。其中:

$$\psi(x,t) = c(x,t) \cdot e^{\frac{\theta(x,t)}{RT}}$$
(4)

c(x,t)是 x 处, t 时刻的离子浓度。

1.1 土壤中离子扩散的物理模型与假定

假定采用流动法^[2.7]来研究土壤中的离子扩散,因此当土壤样品层足够薄时,土样中 纵向上的浓度梯度可以忽略^[9],这时整个体系从宏观上可近似成离子的横向上的一维流 动。同时假定流动液的离子浓度恒为 c₀,土粒固定液膜的平均厚度为 *l*,流动液与固定液 的界面的总面积为 *S*,且坐标原点选在此界面处,体系内电场不随时间变化。这时离子扩 散可分成如下三种不同的情况:

第一,离子流的前沿还没有到达土粒表面时,此时的离子扩散相当于在一个无限长的 一维空间中进行,因而离子扩散应满足如下条件:

① $\psi(\infty,t) = 0$ (根据 (4) 式,因此时 $c(\infty,t) = 0$) ② $\psi(0,t) \approx c_0$ (因 $\theta(0,t) \approx 0, c(0,t) = c_0$)

③
$$\psi(x,t) \approx 0$$
 (因 $t = 0$ 时, $c(x,t) = 0$)

第二,离子流前沿已到达土粒表面,并且离子一到达表面立即被取走(如快速表面反应),此时表面处的离子浓度为一趋于零的常数,很明显,这时的离子扩散为一稳态过程, 表示成:

(4)
$$\frac{\partial}{\partial t} \left[\frac{\partial \psi(x,t)}{\partial x} \right] = 0$$

(5) $\frac{\partial}{\partial x} \left[\frac{\partial \psi(x,t)}{\partial x} \right] = 0$

第三,离子流前沿已到达土粒表面,同时到达表面的离子没有被其它过程所取走,离 子开始在表面附近堆积,因此这时离子扩散的定解条件为:

> ⑥ $\psi(0,t) \approx c_0$ (因 $\theta(0,t) \approx 0, c(0,t) = c_0$) ⑦ $\psi(l,t) = f(t)$ (x = l处的离子浓度是时间的确定函数) ⑧ $\psi(x,0) \approx 0$ (因t = 0时,c(x,t) = 0)

¹⁾ 李航,薛家骅,1995;土壤中离子扩散的基本方程与实验验证(待发表)。

从土壤中离子扩散的三种类型的分析还可看出以下两点:

首先,前述第三种类型应是土壤中离子扩散的主要形式,因为第一种情况只会在过程 的初期阶段出现,离子扩散的平均路程越短,离子运动速度越快,这种情况出现的时间就 越短。而当体系中有第二种情况出现时,当快速反应达到平衡后,必发生第三种情况的扩 散。

其次,对于土壤体系,由于离子扩散的路径在有的地方可能短而直,在另外的地方可 能漫长而曲折,因此在过程的初期,第一种情况和第三种情况有可能同时并存。

1.2 土壤中离子扩散的动力学理论

1.2.1 模型的离子通量 根据方程(1),离子通过 *x* = 0 的界面进入土粒固定液膜的通量方程为:

$$j = -\frac{D}{l} \int_{0}^{l} e^{-\frac{\theta(x,t)}{RT}} dx \cdot \left. \frac{\partial \psi(x,t)}{\partial x} \right|_{x=0}$$
(5)

即:

$$\frac{\partial N}{\partial t} = -S \frac{D}{l} \int_0^l e^{-\frac{\theta(x,t)}{RT}} dx \cdot \left. \frac{\partial \psi(x,t)}{\partial x} \right|_{x=0}$$
(6)

式中, $\frac{\partial N}{\partial t}$ 是单位时间通过界面 S进入固定液膜的离子数量,N为离子数量的摩尔数,其 它符号与前面意义相同。

1.2.2 土壤中离子扩散的动力学理论模型如下列三种:

a. 前述第一种类型的离子扩散动力学,应用条件①、②和条件③对方程(3)求解 得^[6]:

$$\psi(x,t) = c_0 \left(1 - \frac{2}{\sqrt{\pi}} \int_0^{\frac{x}{2\sqrt{Dt}}} e^{\mu^2} d\mu \right)$$

式中, μ 为一积分变量。将这个结果代入方程(6)并整理得:

$$\frac{\partial \left(\frac{N}{N_{\infty}}\right)}{\partial t} = \frac{2D}{\pi l^2} \left(\frac{N}{N_{\infty}}\right)^{-1}$$
(7)

式中: $N_{\alpha} = Sc_0 \int_0^t e^{-\frac{\theta(x)}{RT}} dx$

从(7)式可看出,此时的离子扩散动力学将表现负一级动力学特征。

将(7)式积分,并考虑 t=0 时, N=0 得:

$$N = \frac{2}{\sqrt{\pi}} \sqrt{\frac{D}{l^2}} N_{\infty} t^{\frac{1}{2}}$$
(8)

这就是离子扩散动力学的抛物型方程,从前面的分析可知,这种扩散只出现在过程的初期 阶段。从方程(8)可看出,此时用 N 对t¹ 作图应为一直线,且直线通过坐标原点。

b. 前述第二种类型的离子扩散动力学,根据条件④、⑤得:

$$\frac{\partial \psi(x,t)}{\partial x} = 常数$$

即:

$$\frac{\partial \psi(x,t)}{\partial x} \approx \frac{c_1 e^{-\frac{\theta(l)}{RT}} - c_0 e^0}{l} \approx \frac{c_0}{l}$$

式中, $c_l \neq x = l$ 处的离子浓度, 此时 $c_l \approx 0$ 。

将这个结果代入(6)式整理得:

$$\frac{\partial \left(\frac{N}{N_{\infty}}\right)}{\partial t} = \frac{D}{l^2} \left(\frac{N}{N_{\infty}}\right)^0 \tag{9}$$

式中, $N_{\infty} = Sc_0 \int_0^t e^{-\frac{\theta(x)}{RT}} dx$.

从(9)式可看出,存在快速表面反应的离子扩散动力学为零级动力学。 对(9)式积分,并考虑 *t*=0时,*N*=0得:

$$N = \frac{D}{l^2} N_{\infty} t \tag{10}$$

此时,用 N 对 t 作图应为一直线。

c. 前述第三种类型的离子扩散动力学,应用条件⑥、⑧对方程(3)求解得^[4]:

$$\psi(x,t) = c_0 \left[1 - \sum_{n=0}^{\infty} \frac{4}{\pi(2n+1)} e^{-\frac{x^2 D}{4t^2}(2n+1)^2 t} \cdot \sin \frac{x}{l} (2n+1)\frac{\pi}{2} \right]$$

式中, n=0,1,2……

将这个结果代入(6)式后整理得:

$$\frac{\partial N}{\partial t} = N_{\infty} \sum_{n=0}^{\infty} \frac{2D}{l^2} e^{-\frac{\pi^2 D}{4t^2} (2n+1)^2 t}$$
(11)

式中, $N_{\infty} = Sc_0 \int_0^l e^{-\frac{\theta(x)}{RT}} dx$.

由于(11)式右方级数的收敛速度很快,所以在较大 t 时,仅需考虑 n=0 的项,此时(11)式可转变成:

$$\frac{\partial \left(\frac{N}{N_{\infty}}\right)}{\partial t} = \frac{\pi^2 D}{4t^2} \left(1 - \frac{N}{N_{\infty}}\right)$$
(12)

表明,此时的离子扩散将表现出一级动力学特征。

对(11)式和(12)式积分,并考虑 t=0 时,n=0 得:

$$N = N_{x} \left[1 - \sum_{n=0}^{\infty} \frac{8}{\pi^{2} (2n+1)^{2}} e^{-\frac{\pi^{2} D}{4t^{2}} (2n+1)^{2} t} \right]$$
(13)

$$N = N_{\infty} \left[1 - \frac{8}{\pi^2} e^{-\frac{\pi^2 D}{4l^2}} \right]$$
(14)

于是用 $\ln\left(1-\frac{N}{N_{\infty}}\right)$ 对时间 t 作图应得图 1 所示的曲线,并且从图 1 可看出,当 $t > t_0$ 时, 曲线为方程(14)式所示的直线。从(14)式还可看出,直线段与纵轴 $\ln\left(1-\frac{N}{N_{\infty}}\right)$ 相截于 $\ln\frac{8}{\pi^2}$ (约为-0.2)这一点。

图 1 不同温度时的一级动力学曲线(T₁,T₂为温度,T₂>T₁)

Fig.1 The theoretical curves of $\ln (1-N / N_{\infty})$ vs. time "t" at different temperatures

 $(T_1, T_2: \text{Temperature}, T_2 > T_1)$

2 实验部分

本实验研究了在 298K 和 308K 两种温度条件下, Mg²⁺在土壤和石英砂样品中的扩 散动力学。

2.1 实验方法

2.1.1 样品处理 供试土样(红壤)首先制成镁饱和(以消除扩散实验中存在的离子交换作用)。方法是将土样置于 300ml 离心管中,用 0.5mol/L Mg(NO₃)₂ 溶液浸泡振荡 1 小时,离心分离,倾去上层清液,反复处理至用原子吸收分光光度计检验上部清液中的 Mg²⁺浓度为 0.5mol/L 为止,然后用去离子水反复洗涤样品至上层清液中经检验无 Mg²⁺存在为止,干燥后过 100 目筛。供试石英砂样品先经稀硝酸洗涤后,再用去离子水反复 洗涤,干燥后过 100 目筛。

2.1.2 实验方法 实验采用流动法:在恒温下,用 2g/10⁶g的 Mg(NO₃)₂ 溶液以 1ml/分的恒定流速通过样品,用自动部分收集器按设定时间间隔(10分钟)收集从样品 中流出的流动液,用 HITACH180-80 型偏振塞曼原子吸收分光光度计测定流出液中的 Mg²⁺浓度,从而计算出不同时间扩散进入样品中的 Mg²⁺数量。实验还应注意以下两点:

a. 实验前先用去离子水按设定流速通过样品,使其形成一层固定液膜。

b. 为尽量消除离子扩散受纵向上浓度梯度的影响,样品层应尽可能薄。本实验设计 的样品层厚度为 0.2mm, 样品面积 8.67cm², 土壤容重 1.28g / cm³, 石英砂样品容重为 $2.43 \text{g} / \text{cm}^3$.

结果与讨论 3

由于本实验不存在零级动力学过程,所以仅用扩散的一级和负一级动力学方程进行 处理。

图 2 和图 3 分别是土壤和石英砂样品在 298K 和 308K 两种温度下,直接由实验数 据绘制的 N 对 \sqrt{t} 的图形。图 4 和图 5 分别是石英砂和土样在 298K 和 308K 两种温度

N (mg/g quartz 298 K 0.07 308 K 图 3 石英砂中 Mg²⁺扩散的负一级动力学处理 Fig.3 The negative first-order kinetic approach

 \sqrt{t}

5

3

0.03

0.05

0.06

sand) 0.04

to Mg²⁺ diffusion in quartz sand systems

Fig.5 The first-order kinetic approach to Mg^{2+} diffusion in soil systems 下直接用实验数据绘制的 $\ln(1-N / N_{\infty})$ 对时间 t 的图形。现对这个结果作如下讨论:

第 1,根据理论分析,如存在负一级动力学过程,则用 N 对√t 作图应为直线。从图 3 可看出在两种温度条件下, Mg²⁺在石英砂中的扩散无负一级动力学过程出现,这可能是因石英砂颗粒水膜很薄,且无内部孔隙,使离子扩散路径 l 很小,所以负一级动力学过程在实验中表现不出来。从图 2 可看出,在 298K 的温度下, Mg²⁺在土壤中扩散的初期阶段(约 40 分钟)出现了负一级动力学过程,而在 308K 的温度下,则无此过程出现,这可能是温度升高后, Mg²⁺扩散系数 D 值增大,使离子流的前沿比在 298K 时更早地到达土粒表面,所以负一级动力学过程表现不出来。

第 2,根据理论分析,如存在一级动力学过程,则用 ln(1-N / N_∞)对时间 t 所作的图 形应为图 1 所示的曲线。从图 4,5 可看出,Mg²⁺在两个样品中的扩散均表现出一级动力 学特征。同时从这两个图形还可看出以下几点:

a. 根 据 理 论 分 析, 平 衡 时 扩 散 进 入 体 系 的 Mg^{2+} 总 量 满 足 关 系 式 : $N_{\infty} = Sc_0 \int_0^t e^{-\frac{\theta(x)}{RT}} dx$ 。该式表明,温度升高平衡吸咐量 N_{∞} 值应变小。在石英砂样品

中,298K 时的 N_{∞} 值是 0.11mg / g,308K 时的 N_{∞} 值是 0.092mg / g:在土样中,298K 时的 N_{∞} 值是 0.26mg / g,308K 时的 N_{∞} 值是 0.22mg / g。表明实验结果符合理论推断。

b. 根据理论分析,图形直线段的斜率与 Mg²⁺的扩散系数 D 成正比与扩散路径 l 的 平方成反比,因此,同一样品温度越高斜率越大,同时因石英砂样的 Mg²⁺扩散路径小于土 样,所以同一温度下,由石英砂样得到的 ln(1-N / N_∞)对 t 的直线段斜率应大于土样。从 图 4 和图 5 可知实验结果与理论推断一致。

c. 由方程(14)式可知,用 $\ln(1-N/N_{\infty})$ 对时间 t 作图所得的直线与纵轴 $\ln(1-N/N_{\infty})$ 相截于 $\ln\left(\frac{8}{\pi^2}\right)$ 这一点(约为-0.2)。从图 5 可知, Mg^{2+} 在土壤中扩散时,两种温度条件下 所得结果均与理论预言一致。但从图 4 的石英砂中的 Mg^{2+} 扩散看,截距值与理论预言相 差很大,但整个曲线所反映的数学模型又与理论相符,因此不能断言是理论上的错误。 如果要使理论曲线与实测曲线重合,实际上,根据图形只需作一次坐标平移,将截距变为 -0.2即可。这相当于在实测值上均减去一个常数。根据吸附理论,这个常数代表的那部 分离子必定是不符合扩散分布规律的那部分离子,因此这部分镁离子可能与水合 SiO₂ 表 面的氢发生了置换反应,使其变成了非扩散离子,而用浓度或活度来表示这部分离子是没 有意义的,因此必须从扩散进入体系的 Mg²⁺总量中减去这部分离子才是液膜中符合扩散 分布规律的 Mg²⁺的实际量,才能进一步用方程(13)、(14)式进行处理。

图 6 是 298K 时原 20 分钟以后各实验值减去 0.04 和 308K 时原 20 分钟以后各实验 值减去 0.047 后得到的 $\ln(1-N/N_{\infty})$ 对时间 *t* 的图形(由于这两个值正好是前 10 分钟内 扩散进入样品中的 Mg^{2+} 数量所以时间也相应减去 10)。显然这时直线与纵轴相截于 $\ln \frac{8}{\pi_{\infty}^{2}}(-0.2)$ 这一点。

d. 理论计算与实验数据的吻合情况,为了进一步检验理论模型是否能准确描述土壤 中 Mg²⁺扩散动力学,这里首先应用实验中的部分数据,采用最小二乘法确定出方程(13)、 (14)式中的参数π²D / 4l²的值,从而得到 Mg²⁺扩散的理论方程,然后用这个理论方程所 代表的曲线与实验的所有数据点进行作图比较,看其是否吻合。

图 6 石英砂中 Mg²⁺扩散的一级动力学处理

Fig.6 The first-order kinetic approach to Mg²⁺ diffusion in quartz sand systems 土壤中 Mg²⁺扩散的理论方程是:

$$\frac{N}{N_{x}} = 1 - \sum_{n=0}^{\infty} \frac{8}{\pi^{2} (2n+1)^{2}} e^{-28 \times 10^{-3} (2n+1)^{2} t} \qquad T = 298 \text{K}$$

$$\frac{N}{N_{x}} = 1 - \sum_{n=0}^{\infty} \frac{8}{\pi^{2} (2n+1)^{2}} e^{-7.0 \times 10^{-3} (2n+1)^{2} t} \qquad T = 308 \text{K}$$

石英砂中 Mg²⁺扩散的理论方程是:

$$\frac{N}{N_{x}} = 1 - \sum_{n=0}^{\infty} \frac{8}{\pi^{2} (2n+1)^{2}} e^{-6.3 \times 10^{-3} (2n+1)^{2} t} \qquad T = 298 \text{K}$$

$$\frac{N}{N_{x}} = 1 - \sum_{n=0}^{\infty} \frac{8}{\pi^{2} (2n+1)^{2}} e^{-9.0 \times 10^{-3} (2n+1)^{2} t} \qquad T = 308 \text{K}$$

式中各符号的含义同前。

图 7 土壤中 Mg²⁺扩散的一级动力学曲线与实验值

Fig.7 The first-order kinetic curves and experimental values of Mg²⁺ diffusion in soil systems

图 8 石英砂中 Mg² 扩散的一级动力学曲线与实验值

Fig.8 The first-order kinetic curves and experimental values of Mg²⁺ diffusion in quartz sand systems
 图 7 和图 8 是根据理论方程所绘制的 ln(1-N / N_∞)对时间 t 的理论曲线与实验值
 (图中●、○代表实验值)的对照图,从图形可看出,理论曲线与实验值吻合较好。

参考文献

- 1. 张宏, 1990: 关于土壤电化学未来的初步设想, 土壤, 第五期, 第227-230页。
- 林玉锁、薛家骅,1989: 几种动力学用于描述土壤中锌吸持动力学特性比较,南京农业大学学报,1期,第111--117 页。
- 3. 林玉锁、薛家骅, 1989: 锌在石灰性土壤中吸持动力学初步研究, 环境科学学报, 2期, 144—148页。
- 4. 王良清, 1989: 数学物理方法, 东北工学院出版社, 339—347页。
- 5. 张正斌等, 1989: 海洋物理化学, 科学出版社, 707--723页。
- 6. J. B. 登斯著, 王知群译, 1986: 化学中的数学方法, 科学出版社, 263页。
- 7. Donald L. Sparks, 1990: Kinetics of soil chemical processes, Academic Press, Inc. San Dieog, California, p30-

150.

- 8. Sparks, D. L. 1986; Soil physical chemistry, CRC Press, Bocaraton, F. L., p70-200.
- 9. J. Skopp and D. McCallister, 1986: Chemical kinetics from a thin disk flow system: Theory. Soil Sci. Soc. Am. J., Vol. 50, 617-623.

STUDY ON ION DIFFUSION KINETICS IN SOIL SYSTEMS

Li Hang

(College of Resources and Environment, Southwest Agricultural University, Chongqing 630716)

Xue Jiahua

(Basic Course Department, Nanjing Agricultural University, Nanjing)

Summary

First, this paper discusses ion diffusion kinetics in soil systems theoritically. Ion diffusion kinetics in soils can be classified into three types: negative first-order, zero-order and first-order kinetics. Based on this, an experiment on Mg^{2+} diffusion kinetics was done in soil and quartz sand systems. The results showed that Mg^{2+} diffusion kinetics in the two systems were a first-order kinetic process. But at the temperature of 298K and in the initial stage of diffusion, first-order and negative first-order kinetic processes coexisted in Mg^{2+} diffusion in the soil system. Through the study of Mg^{2+} diffusion in quartz sand systems, we also found that an exchange reaction might take place between Mg^{2+} and hydrogen at the hydration SiO₂ surface, and the Mg^{2+} which took part in exchange reaction was at diffused in the quartz sand within the initial ten minutes.

Key words Soil, Ion diffusion, Kinetics