估算有机化合物土壤吸着系数 Koc 的 片段常数法^{*}

朴海善 陶 澍** 胡海瑛 卢晓霞 叶生发

(北京大学城市与环境学系,北京 100871)

摘 要 根据 592 种有机化合物实测 Koc 数据,研究了用片段常数法估算有机化合物 土壤吸着系数的可能性。将 592 种化合物随机划分为建模组和验证组。前者用于模型建立, 后者用于模型检验。计算结果证明,包括 74 种结构片段和 24 个结构校正因子的回归模型能 够很好地预测有机化合物的吸着系数。对所有 592 种化合物而言,模型的可决系数高达 0.9696。估算结果的平均绝对误差仅为 0.37 个对数单位。

关键词 Koc,吸着,土壤,有机污染物,片段常数 中图分类号 S153

土壤和沉积物对化学物质的吸着是影响化学物质迁移与转化等环境行为的主要过程 之一。在环境污染研究中,准确测定或估算有机化合物的吸着系数对评价其在环境中的 行为具有很重要的意义。有机化合物在土壤或沉积物上的吸着平衡一般用吸着系数 K_d描述。它指达到吸附平衡时固相与水相浓度之比。有关研究表明,多数情况下,吸着过程中 起主导作用的吸着剂是天然有机物。假定土壤或沉积物其他组分的贡献可以忽略不计, 有机物的吸着可以用单一有机组分的吸着系数 Koc 与土壤有机物含量两者表征。可见, Koc 实际上是按照土壤有机质含量标准化了的吸着系数。

任何条件下,实测总是最可靠的 Koc 获取方法。然而在大多数情况下不可能对所有化 合物进行这样的测定。通过各类模型预测有机化合物的 Koc 具有重要的应用前景。目前 已建立的估算方法包括利用相关物理化学参数的统计模型和直接根据有关结构参数的统 计模型。前者包括 Koc 与溶解度和水一辛醇分配系数等定量关系的对数线性模型^{[1,2],(1)}, 后者主要包括取代基常数法、分子连接性指数法和片段常数法。直接利用分子结构参数的 方法在实际应用中的优越性不言而喻。从理论上说,任何有机分子的吸着特性从根本上取 决于其组成和结构特征,这方面研究实际上也是所谓有机物结构效应定量关系研究 (QSAR)的一部分。取代基常数法因依赖于结构相似母体物质的相关参数,其使用受到极 大限制。分子连接性指数是目前研究最多的方法,他根据分子拓扑关系建立估算模型,然

^{*} 国家自然科学基金重点项目 (49632060) 和国家杰出青年基金 (49525102) 资助

^{**} 通讯联系人

⁽¹⁾ 朴海善,陶澍,胡海瑛,李杭,卢晓霞.根据水/辛醇分配系数估算有机化合物的吸着系数.待发表 收稿日期:1998-10-20;收到修改稿日期:1999-08-10

后直接计算吸着系数^{[3].(2)}。片段常数法实际上可视为一种"彻底的"取代基常数法。 Karickhoff指出,"在计算某些热力学参数的时候,可以将一个分子看作多种片段的集合体, 其中每一种片段对这些热力学参数都起着相对独立的作用。这种把一个分子拆分成多种 片段的方法不仅可以应用于辛醇一水相分配系数等参数的计算,还可以应用于化合物吸着 系数的计算。"^[4] Leo 曾提出根据片段常数法估算化合物水/辛醇分配系数的模型,根据 76 种化合物的实测水/辛醇分配系数,计算了 200 多种片段的片段常数和 11 类结构校正系 数。用这种方法建立的模型的平均估算误差仅 0.14 个对数单位^[5]。张建平等利用从文献中 收集到的 300 种化合物的实测 Koc 数据,建立了包括 53 种片段和 15 种结构因子的回归模 型,初步探讨了用片段常数法估算 Koc 的可能性。但由于实测数据较少,因此模型估算误 差较大⁽³⁾。

本研究的目的是根据从文献中得到的近 600 种化合物的实测 Koc 资料,以 Leo 提出的 估算水/辛醇分配系数的片段常数模型为参照,用线性多元回归方法建立了估算有机化合 物 Koc 的统计模型。

1 研究方法

1.1 Koc 数据收集与选取

从截止目前的多篇文献中收集了 592 种有机化合物的 Koc 实测数据^{(6~10],(2)}。对于文献中报道了一 个以上 Koc 测定值的化合物,尽可能选取其中位数。对于以 Kom 表达的数据,取 Koc = 1.724Kom。收集 的化合物包含环境中常见的各类有机污染物,如农药、有机染料、多环芳烃、多氯联苯以及酚类化合物等。 从 592 种化合物中随机抽取 430 种化合物用于建立模型(建模组),剩余的 162 种化合物用于模型检验。

1.2 Koc 片段常数预测模型建立与验证

假定结构片段和有关校正因子对 log Koc 的贡献具有简单的线性加和性,可以建立以下多元线性回 归模型:

$$\log Koc = \sum_{i=1}^{a} n_i f_i + \sum_{j=1}^{b} m_j F_j, \qquad (1)$$

式中 a 和 b 分别是结构片段和校正因子种类总数。f,为第 i 种结构片段的片段常数;n_i表示化合物中第 i 种结构片段的个数。F_,代表第 j 种结构因子校正系数,而 m_,表示第 j 种结构因子的数目。模型建立过程包 括以下主要步骤:

(1)根据结构片段和校正因子的初步划分和确定原则,对建模组430种化合物进行片段和因子计数。在此基础上用多元回归分析方法建立初步模型;

(2)分析拟合结果,对不合理的片段和校正因子进行修正。同时采用逐步回归方法进一步分析校正因子的合理性。重新拟合建模组实测数据;

(3) 根据验证组 162 种化合物的实测数据对上述回归模型进行验证,籍以对模型的可推广性进行分

⁽²⁾ Tao S, Lu X X. Estimation of organic carbon normalized sorption coefficient (K_{ac}) for soils by topological indices and polarity factors. 待发表

⁽³⁾ 张建平. 用片段常数法估算 Koc 值. 北京大学学士论文, 1990

析;

(4) 在模型的合理性得以验证的前提下,利用全部实测数据对模型进行最终修正,得到估算模型和 所有回归系数(结构片段常数和结构校正因子)。

1.3 结构片段划分原则

在 Leo 片段划分原则的基础上适当修改和补充^[5]。片段指外部键与"孤立碳原子"相连的基团。如果 一个碳原子有一个与其它碳原子共享的多键或者有四个单键,且其中至少两个单键与碳原子或氢原子相 连,该碳原子为"孤立碳原子"。根据这一定义,可将片段分为单原子片段(如一C一、一H、一O一)、基本 多原子片段(如一C(O)一、一NH一、一SO₂一)、和衍生多原子片段(如一CH₃、一CH₂一)等基本类型。考 虑到连接在不同类型母体(如脂链和芳环)上的片段所起的作用有很大差别,将它们视为不同片段,并以 不同上标符号表示。按照不同连接位置分为与脂链相连(无上标)、与芳环相连,包括不对称片段从左侧 与芳环相连(上标φ)、不对称片段从右侧与芳环相连(上标 1/φ)、两侧同时与芳环相连(上标φφ),芳环或 类芳环内部片段(上标 AR)。

表1 基于全部数据(592种)的估算模型的片段常数

	Ladie 1	Fragent co	nstants (r		e model based on whole	uata set	(392)		
片段常数 FC					片段常数 FC				. 4 4
Fragent constants	f	F	$F^{1/\phi}$	$f^{\phi\phi}$	Fragent constants	f	f^{\bullet}	F''	f ••
不含C或H					含H, 不含C		-		
—F	1.149	0.087			—н	1.487			
Cl	0.523	0.439			—ОН	-0.300	-0.176		
-Br	0.558	0.404			OP(O) (NH)O		-1.715		
N=	-0.545	-0.626		-0.562	<u>含C,含H</u>				
-0	-0.584	-0.723		-0.719	—С(О)Н	-1.109			
—S—	-0.074	-0.307			—С(О)ОН	-0.678	-0.425		
 NO2		0.168			-C(0)NH-	-1.406	-0.534	-0.875	-2.515
—SO2—	-0.970	-1,153					-0.315		
S(O)	-0.709	-1.133			-OC(0)NH-		-0.837	-0.600	-0.522
—SP(S)(O—)S—	0.002				C(O)ONH2		-0.479		
-OP(O) (O-)O-	-0.964				-CH=N-		-1.738		
OP(S)(O)O		-0.456			-HNC(O)NH		-1.158		
-OS (O) O		-1.455			-HNC(O)NH2		-0.219		
P(S)(O)O	-0.934				-CH=NOC(0)NH-	-0.533			
SP(O) (O) O	-1.309	-1.204			-HNC(O)N-		-1.476	-1.204	
-P(O)-	-1.906				-HNC(O)NO-		-1.026		
-P(S)-	-1.160								-1.571
含C,不含H									
C	0.519	0.423		0.010	芳香环或类芳香环上的片	段(f ^{AR})		
-CF3		0.521			-C(H) =	0.305			
-CN		0.075			C=	0.251			
C(0)N==	-1.767		-1.833		-N=	-0.308			
-C(O)-	-1.355	-0.839			—s—	0.748			
	~0.434	-0.427			-C(0) =	-0.898			
-C==N	-0.272				—N —	-0.739			
$-OC(O)N \equiv$	-1.831				-NH-	0.413			
$-SC(0)N \equiv$	-0.365				-0	0.533			

Table 1 Fragent constants (FC) of the model based on whole data set (592)

建立初步模型时选用了 86 个结构片段。建模过程中为修正某些片段正负取值的偏差,对片段选取 方案修正后得到 74 种片段(见表 1)。

1.4 校正因子确定

对于结构复杂的化合物,仅使用片段不能反映化合物的全部结构特征,诸如分子的不饱和性,卤原子的重叠作用,分子空间构型,极性片段之间的相互影响以及卤原子与极性片段之间的相互影响等。因此, 要引进能够反映主要结构特征的结构因子。选择的结构因子如表1所列。

初步模型建立时仅用 19 个校正因子(1~19),在作上述修正后增至 24 个。

1.5 数据整理与统计分析

用 Excel®建立了 Koc 数据库。各类回归模型计算在 SPSS®下实现。

2 结果与讨论

2.1 Koc 预测模型建立

根据建模组中 430 种化合物的片段和结构因子计数以及它们各自的实测 log Koc 值 进行多元回归分析,得到以下包含 86 种片段常数和 24 个校正因子的方程式如(2)。

 $\log Koc = \sum_{i=1}^{86} n_i f_i + \sum_{j=1}^{19} m_j F_j, \quad n = 430, \quad R^2 = 0.9729, \quad s = 0.5633$ (2)

用式 2 求得建模组中所有 430 种化 合物的计算 Koc。图 1 为计算值与实测 值的关系。

图 1 表明,片段常数模型可以很好 地表述化合物结构与其吸着系数的定 量关系。然而,拟合得到的回归参数中 个别片段常数的正负关系与理论不符。 有机化合物在土壤/沉积物有机质上的 吸着可近似地视为相似相溶,因此,在 母体化合物上加合一个疏水官能团的 结果可以使新化合物的吸着系数增加, 这样的官能团的片段常数应当为正。反 之,亲水官能团的片段常数则应为负,

但包括在内的9种官能团的正负取值与预想的相反。虽然其中一些出现频率很低的片段 (如一SP(S)(O—)S—)的此类偏差可能与个别化合物的实测误差有关。它们对模型的总 体精度影响不大。但其他一些在数据库中出现频率很高的片段则不然。如亲水的一NH₂ 的片段常数取 + 0.1722,而憎水的一C片段常数却为 – 0.2851。类似的片段还包括 — NH 和 — CH等。其原因可能是方案中有关片段拆分不合理。因此,对上述方案进行修正,将 — N—, — NH—和 — NH₂当作等价片段处理,同时针对 — NH—和 — NH₂分别引进新的校 正因子 F_{NH}和 F_{NH2}。同样,将 — C, — CH, — CH₂和 — CH₃看作相同的片段,再对 — C, — CH 和 — CH, 引进校正因子 F_c, F_{CH}和 F_{CH}。对 430 种化合物实测数据,以重新划分的片段(74 模组中的 430 种化合物,估算 Koc 值与实 测值的平均绝对误差为 0.36 个对数单 位。

2.2 校正因子确认

为进一步判断初步选定的 24 个结构 校正因子在模型中的有效性,用逐步回归 方法对它们各自的贡献进行检验。以对 模型贡献大小为序,将 24 个因子逐一引 入回归模型中,图 2 即为因子引入过程中 模型可决系数的变化趋势。

从图中结果可见,所有因子的引人均 可在某种程度上提高模型的拟合程度。 引人 24个因子后,模型可决系数从无校 正的 0.963 增至 0.973。此外,与其余因子 相比,前 14个因子对模型的贡献相对较 大。事实上,拟合系数的绝对值的大小同

随因子逐个引入的变化

Fig. 2 Variation of coefficient of determination during a stepwise regression (By turns correction factors are $F_{=}$, F_{NH2} , F_{C} , F_{CH} , F_{P3} , F_{NH7} , F_{P0} , F_{P2} , F_{P1} , F_{CH2} , F_{P4} , F_{HP1} , F_{b} , F_{P5} , F_{mbG2} , F_{HP2} , F_{mbG3} , F_{mbv} , F =, F_{CBr} , $F_{=}$, F_{P6} , F_{mbG1} , F_{b})

样反映了不同因子的相对贡献(参见表3中列举的最终模型的校正因子系数)。

2.3 Koc 预测模型验证

利用由随机选取的 162 种化合物构成的验证组检验了据建模组数据得到的估算模型

的可靠性。根据这些化合物的结构片段 和结构特征,计算了各自的片段数及校 正因子个数,用上述估算模型(式2)计 算了它们的 Koc 值。计算 log Koc 值与 实测 log Koc 值的比较如图 3 所示。

图中数据点基本围绕 1:1直线分布, 说明估算模型基本可靠。验证组的计算 log Koc 的平均绝对误差为 0.468 个对数 单位,略高于建模组 (0.358 个对数单 位)。这一结果当在预料之中。尽管如 此,验证组中 60% 化合物的绝对误差仍 小于 0.5 个对数单位。

2.4 基于全部数据的预测模型

在分别用建模组和验证组数据建立初步模型并对其可靠性进行验证后,为提高模型 的预测精度,利用全部数据(592 种)对模型参数进行修正,得到最终预测模型。模型形式 与初步模型(式 2)相似,仅参数个数略有不同,且拟合参数也得以修正。据此得到的片段 常数和结构校正因子列于表 2 和表 3 中。表中参数和式 2 即构成片段常数法估算有机化

表 2 模型的结构校正因子

Table 2 Structural correction factors (SCF) of the model

编号	符号	结构校正因子	计数原则			
No.	Symbol	SCF	Rule of counting			
1	Fь		片段间不与H相连的直链键数减1			
2	F۶	脂环键因子	脂环中不与H相连的直链键数减1			
3	FCBr	支链因子	支链数			
4	F=	直链中双键因子	非(类)芳环中片段间双键数			
5	<u>F</u> -	脂肪环内双键因子	(类)芳环中片段间双键数			
6	F₌	三键因子	片段间参键数			
7	FmbGi	双卤素因子	有2个卤原子取代的碳数			
8	FmhG2	三卤素因子	有3个卤原子取代的碳数			
9	FmbG3	四卤素因子	有4个卤原子取代的碳数			
10	F _{mhv}	相邻两碳多卤素因子	单键相连两碳上卤原子取代数减1			
11	F _{P0}	极性片段相互作用因子	直接相连的极性片段对数			
12	FPI	极性片段相互作用因子	两极性片段取代的脂链碳原子数			
13	Fp2	极性片段相互作用因子	两极性片段取代的相邻脂链碳原子对数			
14	Fp3	极性片段相互作用因子	两极性片段取代的脂环碳原子数			
15	Fp4	极性片段相互作用因子	两极性片段取代的相邻脂环碳原子对数			
16	Fps	极性片段相互作用因子	两极性片段取代的芳环碳原子数			
17	Fp6	极性片段相互作用因子	两极性片段取代的相邻芳环碳原子对数			
18	F _{HP1}	卤原子与极性片段作用因子	卤原子与极性片段取代的脂碳数			
19	Fhp2	卤原子与极性片段作用因子	卤原子与极性片段取代的芳碳数			
20	Fc	四级碳因子	四级碳数			
21	F _{CH}	三级碳因子	三级碳数			
22	F _{CH2}	二级碳因子	二级碳数			
23	FNH	二级氦因子	二级氨数			
24	F _{NH2}	一级氮因子	一级氮数			

合物土壤/沉积物吸附系数(Koc)的 模型。

对本研究收集的所有实测数据 而言,模型拟合精度(R^2 = 0.9696, s = 0.5617, n = 592)与基于 430种 化合物的初步模型没有显著差异。 图 4 为根据 592 种化合物数据建立 的模型的估算结果与实测 log Koc 值关系。从图中可以看出,基于 592 种化合物建立的简单线性模型估算 的结果与实测值相当一致。事实 上,用于建模的 592 种化合物实测

表 3 基于全部数据(592种)的估算模型的结构因子

Table 3 Structural factors of the model based on whole data set (592)

结构因子	系数	结构因子	系数	结构因子	系数	结构因子	系数
Factor	Coefficient	Factor	Coefficient	Factor	Coefficient	Factor	Coefficient
Fb	0.0884	F_{mhG1}	0.0446	F _{P2}	0.4291	F _{HP2}	-0.1074
<u> </u>	0.2560	F _{mbG2}	0.1314	Fp3	0.6357	Fc	-1.0231
Fсвг	-0.1019	F _{mhG3}	-0.0354	Fp4	-0.0854	Fсн	-0.7309
F-	0.1143	F _{mhv}	0.0085	Fp5	0.1658	F _{CH2}	-0.3764
<u>_</u> F=	0.1264	FP0	0.5604	F _{P6}	0.0748	F _{NH}	0.4302
F₌	- 1.0277	FP1	0.3731	F _{HP1}	-0.1332	$F_{\rm NH2}$	0.7345

200

Koc 的变异的约 98% 可由这一回 归模型描述。

图 5 为估算 log Koc 与实测 值相对误差的分布。所有 592 种 化合物估算和实测 Koc 的平均绝 对误差仅 0.37 个对数单位,其中 74% 的化合物的绝对误差小于 0.5 个对数单位。

与根据相同数据库、用不同 方法进行的估算结果相比,片段 常数法建立的模型的精度最高。 譬如,根据水/辛醇分配系数法估

算 Koc 的经平均相对误差达 0.48 个对数单位。

3 结 论

基于 592 种有机化合物的实测 Koc 值建立的片段常数估算模型估算的 Koc 值平均相 对误差仅 0.37 个对数单位。考虑到实测数据本身的误差,这一模型具有相当高的估算精 度。

参考文献

- Gawlik B M, Sotiriou N, Feicht E A, Schulte-Hostede S, Kettrup A. Alternatives for the determination of the soil adsorption coefficient, Koc, of non-ionic organic compounds-a review. Chemosphere, 1997, 34: 2525~2551
- 2. A Sabljic. QSAR modelling of soil sorption, improvements and systematics of log Koc vs. log Kow correlation. Chemosphere, 1995, (31):4489~4514
- Meylan W, Howard, P H. Molecular topology / fragment contribution method for predicting soil sorption coefficients. Environ Sci & Technol, 1992, 26:1560~1567
- 4. W Karrickhoff. Organic pollutants sorption in aquatic systems. J. Hydraulic Engineering, 1984, 110:707~735

Fig.5 Distribution of relative error of model estimation

- Leo A J. Octanol/water partition coefficient. In Lyman W J, Rosenblatt D H. eds. Handbook of Chemical Property Estimation Method. McGraw-Hill, NY, 1982. 1~54
- Sabljic H, Gusten H, Verhaar H, Hermens J. QSAR modeling of soil sorption, improvements and systematics of log Koc correlations. Chemosphere, 1995, 31:4489~4514
- Kenaga E E, Goring C A. Relationship between water solubility, soil sorption, octanol-water partitioning, and concentration of chemicals in biota. In: Eaton J G, Parish P P, Hendricks A C. eds. Aquatic Toxicology, Proceedings of the Third Annual Symposium on Aquatic Toxicology. ASTM, STP 707, Philadelphia, 1980. 78~115
- 8. Briggs G G. A simple relationship between soil sorption of organic chemicals and their Octanol-water partitioning behavior. Proc 7th British Insecticide and Fungicide Conf, 1973. 11:475~478
- Briggs G G. Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water solubilities, bioconcentration factors, and the parachor. J Agric Food Chem, 1981, 29: 1050~1059
- Karickhoff S W, Brown D S, Scott T A. Sorption of hydrophobic pollutants on natural sediments. Water Res, 1979, 13:241~248

FRAGMENT CONSTANT MODEL FOR Koc ESTIMATION

Piao Hai-shan Tao Shu Hu Hai-ying Lu Xiao-xia Ye Sheng-fa (Department of Urban and Environmental Sciences, Peking University, Beijing 100871)

Summary

Measured *Koc* values of 592 chemicals collected from literature were used to develop a sorption coefficient estimation model based on fragment constants plus structural correction factors. The results showed that *Koc* of organic chemicals can be well estimated based on the fragment constant modeling. For the 592 chemicals, the coefficient of determination of the regression model was as high as 0.9696 with a mean absolute error of 0.37 log-unit.

Key words Koc, Soil, Sediment, Sorption, Fragment constant