土层厚度对旱地小麦氮素分配 利用及产量的影响

石 岩¹ 位东斌¹ 于振文² 余松烈² (1 山东莱阳农学院早作研究所,山东莱阳 265200; 2 山东农业大学农学系,山东泰安 271018)

EFFECTS OF SOIL THICKNESS ON NITROGEN DISTRIBUTION AND UTILIZATION AND YIELD IN DRY LAND WHEAT

Shi Yan¹ Wei Dong-bin¹ Yu Zhen-wen² Yu Song-lie²

- (1 Institute of Dry Land Crop, Laiyang Agricultural College, Laiyang 265200;
- 2 Department of Agronomy, Shandong Agricultural University, Taian 271018)

关键词 小麦, 土层厚度, 旱地, 氮素分配利用, 产量中图分类号 S143.1

山东省旱地大多瘠薄, 土层厚度对旱地小麦产量尤为重要, 土层越厚, 其保水保肥效果就越好^[1]。1996~1997年度山东莱阳旱地小麦经省实打验收, 实打面积 1.65 亩 (1hm² = 15 亩), 其土层厚度在 200cm 左右, 创亩产 693.64kg。为了探讨土层厚度对旱地小麦氮素分配利用及其产量的影响, 我们设计了此项试验, 以期为旱地小麦高产高效制定合理的管理措施。

1 材料与方法

试验于莱阳农学院农学系试验站进行土柱栽培。供试土壤基础养分为有机质 1.45%,全氮 0.11%,速 效氮 87.6mg/kg,速效磷 $(P_2O_5)28.1$ mg/kg,速效钾 $(K_2O)81.3$ mg/kg。设 4 个处理,即处理 1 (柱高 80cm),处理 2 (柱高 120cm),处理 3 (柱高 160cm) 和处理 4 (对照, 柱高 200cm)。土柱具体做法如下:先将地表 $0\sim30$ cm 土翻到一边,然后将 30cm 以下的土翻到另一边。用直径 21cm 的铁皮筒作模,将直径 20cm 的塑料管直立放在挖好的坑中 (坑深分别为 80cm、120cm、160cm、200cm),坑底分别铺塑料布,用挖出的 30cm 以下土填至塑料管距管顶 30cm 处,剩余 30cm 填入挖出的地表 $0\sim30$ cm 的土。肥料表施,进行 15N标记,每处理施丰度为 5.07% (硫酸铵,上海化工研究院生产)的 15N 1g,总氮量不足的用普通尿素补齐,使各处理施肥量相等,每柱共施纯 N 1g, P $_2O_5$ 0.7g, K $_2O$ 0.5g。供试品种为鲁麦 21, 10 月 6 日播种,每柱留苗 4 株,每处理 3 个土柱。于成熟期取样,15N 用质谱仪测定,氮素含量用半微量凯氏定氮法测定。

2 结果与讨论

2.1 土层厚度对植株全氮含量中来自肥料氮所占百分率(Ndff%)的影响

由表 1 可以看出,处理 1 (80cm) 各器官 Ndff% 为根 (0~20cm) > 粒 > 颖壳 + 穗轴 > 鞘 > 根 (20~40cm) > 叶 > 茎 > 根 (40~60cm) > 根 (> 60cm);处理 2 (120cm) 各器官 Ndff% 为根 (0~20cm) > 粒 > 叶 > 颖壳 + 穗轴 > 鞘 > 茎 > 根 (20~40cm) > 根 (40~60cm) > 根 (> 60cm);处理 3 (160cm) 各器官 Ndff% 为粒 > 根 (0~20cm) > 颖壳 + 穗轴 > 叶 > 鞘 > 茎 > 根 (20~40cm) > 粮壳 + 穗轴 > 叶 > 鞘 > 茎 > 根 (20~40cm) > 粮壳 + 穗轴 > 叶 > 鞘 > 茎 > 根 (20~40cm) > 根 (40~60cm) > 根 (> 60cm);处理 4 (对照,200cm) 各器官 Ndff% 为粒 > 鞘 > 根 (0~20cm) > 颖壳 + 穗轴 > 叶 > 茎 > 根 (20~40cm) > 根 (40~60cm) > 根 (> 60cm);处理 4 (对照,200cm) > 根 (40~60cm) > 根 (> 60cm)。由上可知,4个处理随土层厚度增大,氮素分配至籽粒的比例增加,根吸收比例降低,且根中 Ndff% 随土层厚度增加而减少。从整株看,处理 (对照) > 处理 3 > 处理 2 > 处理 1,说明土层厚度增加有利于根吸收肥料供地上部分利用;土层过浅不利于植株对肥料吸收利用。

LI THE	器官											
处理	叶	鞘	茎	粒	颖壳+穗轴		不同深度	菱根 (cm)		整株		
						0~20	20~40	40~60	>60	-		
1	7.37	7.82	7.26	8.09	8.05	10.89	7.56	6.30	6.11	8.07		
2	8.26	7.97	7.58	8.57	8.19	9.66	6.05	5.25	5.08	8.19		
3	8.07	8.01	7.42	8.74	8.48	8.63	4.50	3.76	3.59	8.47		
4	8.23	8.63	8.03	8.82	8.39	8.50	4.55	3.79	3.52	8.53		

表1 土层厚度对植株全氨含量中来自肥料氨所占百分率(Ndff%)的影响

2.2 土层厚度对氮素在植株各器官中分配率的影响

由表 2 可见,肥料氮和全氮在植株各器官中分配比率: 粒中均以处理 4(对照,200cm) 最高,处理 3(160cm)次之,处理 1(80cm)、处理 2(120cm)较低;但处理 1 与处理 2 分配至叶、鞘、茎、颖壳和穗轴的比率较高,说明土层加厚利于氮素向籽粒中转移;根中为处理 1 > 处理 2 > 处理 3 > 处理 4(对照),说明土层愈薄分配至根中的趋势增强,分配至籽粒的比率降低。

	处理 -					器	官				
2	化准 -	叶	鞘	茎	粒	颖壳+穗轴	不同深度根(cm)				
							0~20	20~40	40~60	>60	Σ
1	肥料氮	4.77	2.94	4.38	74.24	7.62	4.18	0.84	0.55	0.48	6.05
2		5.84	2.78	5.80	73.46	6.83	3.57	0.71	0.49	0.52	5.29
3		4.73	3.67	5.45	74.33	6.56	3.04	0.92	0.63	0.67	5.26
4		4.78	3.26	5.19	75.52	6.14	2.61	1.02	0.55	0.93	5.11
1	全氮	5.06	3.31	5.27	73.07	7.84	2.98	1.11	0.73	0.63	5.45
2		6.01	2.96	6.52	72.83	6.90	2.39	0.98	0.69	0.72	4.78
3		5.26	3.64	6.23	73.73	6.46	1.87	1.21	0.81	0.79	4.68
4		5,19	3.30	5.65	74,78	6.39	2.39	0.94	0.51	0.85	4.69

表2 十层厘度对氮素在植株各器官中分配率(%)的影响

38 卷

2.3 土层厚度对植株氮素平衡的影响

由表 3 可见, 土层厚度使植株对土壤氮和肥料氮的吸收有很大差异。植株全氮含量中来自肥料氮所占的百分率和肥料氮利用率(地上部分和全植株)表现了相同的趋势,即处理 4 (对照, 200cm) > 处理 3 (160cm) > 处理 2 (120cm) > 处理 1 (80cm); 而植株全氮含量中来自土壤氮所占的百分率(地上部分和全植株)则处理 1 > 处理 2 > 处理 3 > 处理 4 (对照), 说明土层加厚有利于提高肥料利用率。从土壤残留率和回收率看, 处理 1 > 处理 2 > 处理 3 > 处理 4 (对照); 损失率为处理 4 (对照) > 处理 3 > 处理 2 > 处理 1, 说明土层愈薄, 土壤残留率和回收率愈大, 损失率降低。因而生产上应针对土层厚度合理施肥,以达降低成本, 提高肥料利用率的目的。

处理	地上	部分	全村	直株	肥料氮	利用率	土壤残留率	回收率	损失率
	Ndff	Ndfs ¹⁾	Ndff	Ndfs	地上部分	全植株	_		
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
1	7.98	92.02	8.07	91.93	15.13	17.74	69.38	87.12	11.88
2	8.05	91.95	8.19	91.81	20.19	22.02	63.76	85.78	14.22
3	8.27	91.73	8.32	91.68	25.11	26.89	58.17	85.06	14.94
4	8.38	91.62	8.46	91.54	26.26	29.10	55.45	84.55	15.45

表3 土层厚度对植株氨素平衡的影响

2.4 土层厚度对旱地小麦产量的影响

由表 4 可以看出, 4 个处理除穗粒数无显著差异外, 穗数、千粒重和产量以处理 4(对照, 200cm) 最高, 但与处理 3(160cm) 无显著差异, 与处理 1(80cm) 和处理 2(120cm) 有显著差异, 说明土层深厚有利于植株生长发育, 穗数和千粒重提高, 从而达增加产量的目的; 土层薄, 保水效果差, 易形成水分胁迫, 造成产量降低[2,3]。

处理	穗数	穗粒数	千粒数	产量 (g/柱)	
	(穗/柱)	(粒/穗)	(g)		
1	14.58C	35.12A	38.21B	19.56C	
2	17.43B	35.20A	38.23B	23.45B	
3	19.82A	35.63A	39.37A	27.80A	
4	20.04A	35.79A	39.49A	28.33A	

表4 土层厚度对旱地小麦产量的影响

综上所述,由于处理 3(160cm)与处理 4(对照,200cm)差异不显著,处理 1(80cm)、2(120cm)与处理 4(对照)差异显著,因此可以认为旱地小麦获得高产的土层厚度下限指标应在 160cm 左右,并可据此制定管理方案,以获得高产高效。

参 考 文 献

- 1. 林 琪,丛锡钢、山东省旱作农业的理论与技术、北京:中国科学技术出版社,1996.11~16
- 2. "华北平原作物水分胁迫与干旱研究"课题组、作物水分胁迫与干旱研究,郑州:河南科学技术出版社,1991.85~96
- 3. 石 岩,林 琪,位东斌等,不同灌水处理冬小麦耗水规律与节水方案确立,干旱地区农业研究,1996,14(4):7~11

¹⁾ Ndfs为植株全氮含量中来自土壤氮所占的百分率