菲在土壤/沉积物上的吸附解吸过程 及滞后现象的研究^{*}

梁重山¹ 党 志² 刘丛强¹ 黄伟林³

(1中国科学院地球化学研究所环境地球化学国家重点实验室,贵阳 550002)

(2 华南理工大学应用化学系, 广州 510641)

(3 Department of Civil, Architectural and Environmental Engineering, Drexd University, Philadelphia, PA 19104, USA)

摘 要 实验研究了菲在土壤/沉积物上的吸附 解吸过程。CHL 土壤和 HFH 沉积物中有机质的固相¹³C CP MAS NMR 谱图很相似,表明样品中有机质的组成差异不大;菲在土壤/ 沉积物上的吸附过程表现出 明显的非线性;线性模型不适合拟合菲的吸附等温线, Freundlich 模型和双区位反应模型(DRDM)较好地拟合 了菲的吸附等温线,其中 DRDM 模型还清楚地反映菲在低浓度和高浓度下不同的吸附方式; 另外,研究表明 菲在土壤/沉积物上的解吸过程中存在明显的滞后现象,这可能和土壤/沉积物有机质的异质性和土壤胶团 微小孔隙的存在有关。

关键词 菲;线性模型; Freundlich 模型; 双区位反应模型(DRDM); 滞后现象 中图分类号 131.3 文献标识码 A

工农业生产中产生的污染物已造成了许多地区 的土壤、大气、地表水及地下水严重污染,其中疏水 性有机物具有高脂溶性及生物富集性,对自然生物 及人类身体健康危害极大。我国许多地区土壤和沉 积物已遭受了有机物的严重污染,有机物污染物会 被土壤/沉积物吸附而固定下来,在适当的条件下又 会释放到环境中,成为二次污染源。这也是造成许 多污染的土壤、河流及湖泊环境治理中最后无功而 返的重要原因,因此,研究有机污染物在土壤/沉积 物上的吸附,解吸特征不仅具有理论价值,而且对预 测有机污染物在土壤/沉积物中的归宿、评估污染的 土壤/沉积物对人类及环境危险性、在实际工作中为 控制这类污染物提供科学的依据^[1~7]。

土壤/沉积物对有机污染物的吸附实际上是由 土壤/沉积物中的矿物组分和土壤(沉积物)有机质 两部分共同作用的结果^[1~3]。而土壤有机质的组分 相当重要,因为与矿物成分相比,它通常对疏水性有 机化合物具有最大的热力学亲合力。因此,土壤/沉 积物吸附有机污染物机理的研究主要是从土壤/沉 积物中有机质的角度进行的。早先有观点认为疏水 性有机物在土壤沉积物上的吸附过程应是一种分配 的过程^[4~7],因此从分配模型的角度出发,平衡分配 系数与土壤/ 沉积物中有机碳的含量存在线性相关 关系。后来, Weber 和 Huang^[8,9]提出土壤/ 沉积物 吸附有机污染物的三端元模式。将土壤/沉积物中 吸附有机污染物的组份分成无机矿物表面、无定形 的十壤有机质和凝聚态的十壤有机质三个部分。其 中无机矿物表面和无定形的土壤有机质对有机污染 物的吸附以相分配为主,而有机污染物在凝聚态的 土壤有机质上的吸附则表现为非线性的。Pignatello 和Xing^[10,11]提出双模式吸附模型将土壤有机质分 为溶解相和孔隙填充相两个部分。这两部分都会对 吸附产生影响,但机理却完全不同。其中有机污染 物在溶解相上的吸附是一个分配过程,有机污染物 在此相中具有较大的扩散系数,吸附与解吸的速率 都很快,不会发生滞后现象。相反,在孔隙填充相中 的吸附则服从兰格缪尔吸附等温模型,吸附与解吸 的速率较慢、存在解吸的滞后现象。这些研究都肯 定了土壤/沉积物有机质的异质性(Heterogeneity)是 引起有机污染物非线性吸附过程的主要原因, 可见 对十壤/沉积物吸附有机污染物机理的研究已进入 到分子和微观水平上。

^{*} 国家自然科学基金项目(20077008)及中国科学院重要方向项目(KZCX3-SW-140, KZCX2-105)资助 作者简介:梁重山(1974~),男,博士,助理研究员,从事有机污染化学及水环境地球化学方面的研究 收稿日期: 2003-06-02;收到修改稿日期: 2003-10-31

多环芳烃是环境中广泛存在的一类有机污染物,由于其中许多化合物已被证实具有"致癌、致畸、 致突变"效应,因此被列为环境监测中的优先污染物。本研究选择了多环芳烃化合物菲,它具有较小 的分子量、较强的化学惰性,在吸附机理研究中常常 被采用^[10-13]。实验中发现菲的吸附过程表现出明 显的非线性;而且解吸过程中存在明显的滞后现象, 并且对菲在自然土壤/沉积物上的积累(吸附)、释放 (解吸)规律及其影响因素进行了深入研究,具有重 要的科学和应用意义。

1 材料与方法

1.1 吸附剂及其基本性质

三个土壤样品采自贵州省贵阳市郊区, 编号为 GZ1、GZ2、GZ3; 另外一个是美国 Chelsea 地区 (MI, USA) 的表层土壤样品, 编号 CHL; 沉积物采自贵阳 市附近的红枫湖, 编号 HFH。样品经去碎石、植物 残体后, 经自然风干后研磨过 20 目筛备用, 并测定 了样品的 pH 值和有机碳含量^[14], 实验结果列在表 1 中。采用美国麦克公司的 ASAP 2010M 型仪器测 定样品的比表面积。该仪器能快速测定 3.54~5 000^Q孔径范围内固体样品的比表面积和孔径分布。 菲的分子量是 178.2, 溶解度 $S_{\rm w}$ 1.12 mg L⁻¹, 辛醇 水分配系数 $\log K_{\rm ow}$ 是 4. $(8^{(1)})$, 可见菲是一种疏水性 很强的有机污染物。

Table 1	Some general properties of the soil and sediment used						
样品	п	有机碳	比表面积				
Sample	рн	TOC $(g kg^{-1})$	Specific surface area($m^2~g^{-}$ ^)				
GZ1	4 38	2 11	20.04				
GZ2	7.64	3 24	31.48				
GZ3	4 37	1. 13	16.4				
CHL	4 26	5 23	5. 29				
HFH	7.22	2 71	34. 1				

1.2 固相¹³C CPMAS NMR 谱

由于土壤/ 沉积物中有机质含量不高, 因此其核 磁共振实验中存在分析时间长、信噪比低等缺点。 为了克服以上缺点, 本研究采用氢氟酸去除矿物法 以富集较高含量的有机质, 最后得到较好信噪比的 核磁共振波谱图^[16,17]。仪器采用 Bruker 公司的 AVANCE DSX-300 核磁共振波谱仪, 富碳样品放入 直径 4 mm 的圆柱形氧化锆转子中, 转速为 10 000 Hz, 接触时间 1 000 4s, 扫描间隔 1.2 s。

1.3 菲的测定

使用美国 HP 公司 1100 型液相色谱仪(HPLC) 带紫外可见检测器(UVD) 和荧光检测器(FD) 进行液 相中菲浓度的测定, 其中菲的浓度测定范围 0.5~ 1400 $\mu_{g} L^{-1}$ 。测定菲时, 液相色谱仪的工作条件: 反 相色谱柱(ODS 柱, 5 mm, 2.1 × 250 mm 柱), 柱温 40 °C, 流动相为水+ 乙腈(体积百分比为 12:88), 流 速为 0.34 ml min⁻¹。对紫外检测器(UVD) 菲的最大 紫外吸收波长是 250 nm, 测定菲的浓度范围在 50~ 1400 $\mu_{g} L^{-1}$ 之间; 菲的浓度在 0.5~ 50 $\mu_{g} L^{-1}$ 之间 时, 使用荧光检测器(FD) 测定其浓度, 激发波长是 250 nm, 发射波长 364 nm。测定样品前做出菲的工 作曲线, 然后确定样品中菲的浓度。

1.4 吸附 解吸实验方法

准确称取一定量的菲,溶于甲醇(HPLC级)中 配制成 $1\ 000\ \mathrm{mg}\ \mathrm{L}^{-1}$ 和 $5\ 000\ \mathrm{mg}\ \mathrm{L}^{-1}$ 的标准溶液。 背景溶液: 0.005 mol L^{-1} CaCl2 的浓度以保持溶液中 一定的离子强度, 100 mg L^{-1} 的 NaN₃ 以抑制微生物 的活动, 5 mg L⁻¹的 NaHCO₃以稳定溶液 pH 值在 7 左右。实验前取出菲的标准溶液,按比例加入到背 景溶液中。菲配制成在 10~1 400 ^µg L⁻¹之间不同 浓度的溶液。菲是易挥发的有机污染物,吸附,解吸 实验周期长,一般的密封条件很难防止菲的挥发损 失。为了防止这种现象的出现,实验中采用 Drexel 大学常用的完全密封安培瓶法^[9]。Huang 和 Weber^[15]采用了不同的平衡时间1天到1年进行吸附 实验研究,结果表明针对土壤/沉积物这类样品吸附 菲要达到真正的平衡过程需要 2~4 周的时间,因此 在本实验中选择3周作为平衡时间。实验步骤:在 10 ml 安培瓶中加入土壤/沉积物样品,然后加入 10 ml不同浓度的菲溶液,火焰封口。放入恒温振荡 器中(温度 25℃)振荡 3 周,期间每隔 3 d 取出手动 振荡 5 min, 以防止样品沉积在瓶口。实验平衡 3 周 后,取出安培瓶放入暗室静置3 d,让安培瓶中样品 自然沉降下来. 然后开瓶取出上清液用 HPLC 测定 菲的浓度,经过换算后就是平衡后溶液相中菲的浓 度。用吸管小心地尽量全部吸取出安培瓶中的上清

Huang W. Sorption and desorption by soils and sediments: Effects of sorbent heterogeneity. Ann Arbor: University of Michigan. Ph. D. Dissertation, 1997. 36

液,然后加入背景溶液。封口后放入恒温振荡器中 (温度 25℃)振荡3周,取出安培瓶放入暗室静置 3d,然后开瓶取出上清液用HPLC测定菲的浓度, 通过计算得出解吸后溶液相中菲的浓度。

2 结果与讨论

2.1 土壤/沉积物有机质的性质

土壤/ 沉积物有机质的¹³C 核磁共振谱按照化学 位移的大小分为六个区域来反映有机质中不同类型 碳的组成: 0~45. 链烃上的碳(GH): 45~110. 与氧 相连的链烃碳(GO); 110~140, 芳香碳(Ar); 140~ 165, 与氧相连的芳香碳(ArO); 165~190, 羧酸上的 碳(C=O):190~220. 醛基和酮基上的碳。 谱图中 各区域内峰面积的大小能计算出不同类型碳的相对 含量. 其中 110~ 140 芳香碳和 140~ 165 的与氧相 连的芳香碳之和为样品的芳化度,是指示土壤/沉积 物有机质性质差异的重要参数。图 1 是 CHL 土壤 和沉积物的¹³C CPMAS NMR 谱图。谱图的特点: 45~ 110 区域(醚、羟基、氨基酸、酯、醚等碳)是最主 要的部分; 0~ 45 区域(链烃碳)是第二位的; 110~ 140 区域(芳香碳)是第三主要的部分。使我们认识 到土壤沉积物有机质是由链烃碳和芳香碳为骨架并 结合了很多含氧和氮的官能团的一种复杂结构。表 2列出了两个样品中不同类型碳的相对百分含量。 可见土壤和沉积物有机质也存在一些差异,如 CHL 十壤有机质比HFH 沉积物有机质含有更多含氧和氮 的官能团,具有较大的极性。土壤/沉积物有机质的 性质差异可能会影响有机污染物的吸附解吸过程。

表 2 CHL 土壤和 HFH 沉积物中不同类型碳的相对百分含量

 Table 2
 Relative proportions of C in different regions of ¹³C CPMAS NMR spectra of CHL soil and HFH sediment

样品 Sample	0~ 45 Alkyl C	45~ 110 O-alkyl C	1 10~ 140 Aryl C	140~ 165 O-aryl C	165~ 190 Carboxyl C
CHIL	34 0	44 0	14. 8	2.3	4. 9
HFH	36 1	41.7	15. 9	1.8	4.4

2.2 菲的吸附过程

水体中颗粒物对溶质的吸附是一个动态平衡过程,在固定的温度下,当吸附达到平衡时,颗粒物表面上的吸附量 q。与溶液中溶质平衡浓度 C。之间的关系,可用吸附等温线来表示。吸附等温线常用以下公式来描述:

Freundlich 吸附模型: $q_{\rm e} = K_{\rm F} C_{\rm e}^n$ (2)

或其对数方程: $\log q_e = n \log C_{e+} \log K_F$ (3) 其中 K_D 是吸附质的平衡吸附常数, K_F 是 Freundlich 模型下与吸附容量和吸附强度有关的常数, n 用来 指示吸附等温线的非线性大小。 n=1, 即为线性分 配等温线; n < 1 时为非线性吸附等温线。

Weber 和 Huang^[9,15] 用双区位反应模式(Dual Reactive Domain Model)来表示性质不同的土壤/沉积物有机质对吸附过程的影响程度。

DRDM 模型:

$$q_{\rm e, T} = q_{\rm e, L} + q_{\rm e, NL} = K_{\rm D, L} C_{\rm e} + \frac{Q^0 b C_{\rm e}}{1 + b C_{\rm e}}$$
 (4)

 $K_{D,L}$ 是 DRDM 模型中线性部分的分配平衡常数, Q^0 、b 分别表示 DRDM 模型中非线性部分溶质在吸 附剂上的最大吸附量和吸附结合能系数。

实验测定了菲在土壤/沉积物上的吸附 解吸等 温线,并且用软件 SYSTAT 按以上三个模型拟合了 菲的吸附等温线,结果列在表 3 中。结果表明以下 特点:1) 线性模型不适合拟合吸附实验数据,图 2 中是线性模型拟合的 GZ1 土壤的吸附等温线,实验 值和计算值存在较大偏差;2) Freundlich 模型很好 地拟合了所有样品的吸附实验数据,其 n 值在 0.610~0.833之间,这说明菲的吸附过程表现出明 显的非线形。在较高浓度下,实验值和计算值会存 在较大偏差,这主要由于该模型的适用范围有限,即 适用于污染物的低浓度情况;3) DRDM 模型也很好 地拟合了部分样品的吸附等温线,对菲在 GZ2 和 HFH 沉积物上的吸附过程拟合得不好,这主要与实 验中选用菲的浓度范围较窄和观察点数较少有关。

Table 3 Sorption isotherm parameters of phenanthrene for soil/ sediment samples										
线形 Linear	线形模型 Linearmodel		Freundlich 模型 Freundlich model			DRDM 模型 Dual reactive domain model				
K _D	\mathbb{R}^2	$\log K_{\rm F}$	n	\mathbb{R}^2	$K_{\rm D,L}$	Q^0	b	\mathbb{R}^2	_	
0.174	0 995	0. 236	0.610	0. 991	0 151	10.073	0.146	0.999	8	
$(0.008)^{(1)}$		(0. 047)	(0. 024)		(0 004)	(1. 504)	(0. 089)			
0. 273	0 953	0.491	0.648	0.996	2)	_	—	_	8	
(0. 028)		(0. 033)	(0. 017)							
0.086	0 961	- 0. 247	0.706	0.994	0 026	49.053	0. 003 69	0.993	8	
(0. 005)		(0.036)	(0. 018)		(0 026)	(3. 324)	(0. 002 61)			
0.844	0 998	0. 709	0. 698	0.992	0 772	27. 500	1.040E+ 10	0.993	8	
(0. 032)		(0.056)	(0. 028)		(0 023)	(6. 100)				
0.365	0 933	0. 345	0.723	0.996	0 352	1. 457	- 0.006	0.949	8	
(0. 033)		(0. 034)	(0.018)		(0 049)	(1.656)	(0.003)			
	线形 Linear: <u>K</u> _D 0.174 (0.008) ¹¹ 0.273 (0.028) 0.086 (0.025) 0.844 (0.032) 0.365 (0.033)	K R ² 0. 174 0 995 (0. 008) ¹⁾ 0 953 0. 273 0 953 (0. 028) 0 961 0. 086 0 961 (0. 005) 0 844 0. 365 0 933 (0. 033) 0	K _D R ² logK _F 0.174 0.995 0.236 (0.008) ¹⁾ (0.047) 0.273 0.953 0.491 (0.028) (0.033) 0.086 0.961 - 0.247 (0.005) (0.036) (0.036) 0.844 0.998 0.709 (0.032) (0.056) 0.365 0.933 0.365 0.933 0.345 (0.033) (0.034) - 0.247	Table 3 Sorption isotherm para 线形模型 Freundlich 模型 Linear model Freundlich mod K_D R ² logK _F n 0. 174 0.995 0. 236 0.610 (0.008) ¹¹ (0.047) (0.024) 0. 273 0.953 0.491 0.648 (0.028) (0.033) (0.017) 0.086 961 - 0.247 0.706 (0.005) (0.036) (0.018) 0.844 0.998 0.709 0.698 (0.032) (0.056) (0.028) 0.365 0.933 0.345 0.723 (0.033) (0.034) (0.018)	Table 3 Sorption isotherm parameters of pheneric strength isotherm parameters of pheneric strengehover strength isother	Table 3 Sorption isotherm parameters of phenanthrene for sold 线形模型 Freundlich 模型 Linear model Freundlich model K_D R ² logK F n R ² $K_{D,L}$ 0.174 0.995 0.236 0.610 0.991 0.151 (0.008) ¹⁾ (0.047) (0.024) (0.004) 0.273 0.953 0.491 0.648 0.996 -2 ² (0.028) (0.033) (0.017) 2 ² 0.026 -2 ² (0.028) (0.036) (0.018) (0.026) 0.026 0.844 0.998 0.709 0.698 0.992 0.772 (0.032) (0.056) (0.028) (0.023) 0.025 0.365 0.933 0.345 0.723 0.996 0.352 (0.033) (0.034) (0.018) (0.049)	Image: constraint of the set of	Table 3 Sorption isotherm parameters of phenanthrene for soil/ sediment samples 4377 Freundlich 442 DRDM 442 Linear model Freundlich model Dual reactive domain model K_D R^2 $logK_F$ n R^2 $K_{D,L}$ Q^0 b 0.174 0.995 0.236 0.610 0.991 0.151 10.073 0.146 $(0.008)^{11}$ (0.047) (0.024) (0.004) (1.504) (0.089) 0.273 0.953 0.491 0.648 0.996 $-^{-2}$ $ (0.028)$ (0.033) (0.017) (0.026) (3.324) $(0.003 69)$ (0.028) (0.036) (0.018) (0.026) (3.324) $(0.002 61)$ 0.844 0.998 0.709 0.698 0.992 0.772 27.500 $1.040E+10$ (0.032) (0.056) (0.028) (0.023) (6.100) (0.003)	Table 3 Sorption isotherm parameters of phenanthrene for soil/ sediment samples 线形模型 Freundlich 模型 DRDM 模型 Linear model Freundlich nodel Dual reactive domain model K_D R ² logK _F n R ² $K_{D,L}$ Q^0 b R ² 0.174 0.995 0.236 0.610 0.991 0.151 10.073 0.146 0.999 (0.008) ¹⁾ (0.047) (0.024) (0.004) (1.504) (0.089) 0.273 0.953 0.491 0.648 0.996 $-^{-2}$ $ -$ (0.028) (0.033) (0.017) (0.026) (3.324) (0.002 61) (0.026) 0.866 0.961 $-$ 0.497 (0.026) (3.324) $(0.002 61)$ 0.844 0.998 0.709 0.698 0.992 0.772 27.500 $1.040E+10$ 0.993 (0.032) (0.036) (0.028) (0.023) (6.100) (0.033)	

表 3 菲在土壤/沉积物上的吸附等温线的系数

1) 标准偏差 Standard deviation; 2) 不能计算 Not calculated; 3) 吸附实验中的观察点数 Number of observation

图2、图3是GZ1土壤在三种模型下的拟合曲

线性和 Freundlich 模型拟合 菲在 GZ1 土壤上的吸附 图 2 等温线

Fig 2 The linear and Freundlich model fits of data for sorption isotherm of phenanthrene by GZ1 soil

DRDM 模型拟合菲在 GZ1 土壤上的吸附等温线 图 3 Fig. 3 The limiting case of dual reactive domain model fit of data for sorption of phenanthrene by GZ1 soil

线, 清楚地反映出 Freundlich 模型和 DRDM 模型比线 性模型的拟合程度要好。平衡吸附常数KD= qe / Ce 随溶液中菲浓度的增加而减小, $C_{e}=2.1 \ \mu_g \ L^{-1}$ 时 $K_{\rm D}$ 值是 1.48 L g⁻¹, 而 $C_{\rm e}$ = 430 $\mu_{\rm g}$ L⁻¹时 $K_{\rm D}$ 值 0.17 L_{g}^{-1} 。平衡吸附常数 K_{D} 值随溶液中菲浓度增加而 减小. 并且 Freundlich 模型中 n = 0.610 都明显指示 菲在 GZ1 土壤中呈非线性吸附特征。双区位反应 模型 DRDM 很好地拟合了菲在土壤/沉积物上吸附 过程,图3中显示菲在GZ1十壤上的吸附过程由两 部分组成,即线性部分和 Langmuir 部分。菲在较低 浓度(小于 60 $\mu_{g} L^{-1}$) 时, DRDM 模型中线性部分是 次要的, 而 Langmuir 部分是主要的, 即吸附过程表现 出非线性吸附特征;在较高的浓度(大于 60 $\lg L^{-1}$) 时,其中分配部分是主要的,而Langmuir部分是次要 的,因此吸附过程表现出一定的线性吸附特征。因 此,用DRDM模型能很清楚地反映出菲在高浓度和 低浓度下,在土壤/沉积物上的吸附方式的不同。

无论是Weber和Huarg^[8,9]提出的土壤/沉积物 吸附有机污染物的三端元模式,还是 Pignatello 和 Xing^[12]提出的双模式(土壤/沉积物吸附有机污染 物一种是分配方式,另一种是空隙充填方式),都反 映出土壤/沉积物有机质存在分布上的不均匀性和 性质上的差异性。本研究可得到两点认识:1) 由于 土壤/沉积物有机质的异质性,在有机污染物的浓度 较低时,其吸附方式主要是以点吸附为主,污染物优 先吸附在吸附能力较强的有机质中(如凝聚态有机 质),因此吸附过程表现出明显的非线性,在有机污

染物的浓度较高时,其吸附方式主要是以面吸附为 主,土壤/沉积物有机质含量多少是主要影响因素, 吸附过程表现出一定的线性特征;2)在自然条件 下,土壤/沉积物中的有机污染物浓度不会很高,因 此有机污染物吸附过程受很多因素(土壤/沉积物有 机质的分布、有机质的性质差异、土壤胶体的微小孔 隙度)的影响。

 K_F 是 Freundlich 模型下与吸附容量和吸附强度 有关的常数, 实验结果表明 K_F 的大小为: CHL 土 壤> GZ2 土壤> HFH 沉积物> GZ1 土壤> GZ3 土 壤。而土壤/ 沉积物样品中的有机碳含量大小为: CHL 土壤> GZ2 土壤> HFH 沉积物> GZ1 土壤> GZ3 土壤, 两者是一致的, 且两者存在线性相关关 系。本研究的实验结果说明土壤/ 沉积物有机质是 主要吸附菲的组成部分, 随着样品中有机质含量的 增加, 样品对菲的吸附容量也增加, 并且两者呈线性 相关关系。图 4 中是反映样品吸附容量大小的系数 K_F 与样品中有机碳含量 f_{cc} 的线性关系。

早期的研究表明,有机物在土壤/沉积物水体 系中的分配系数与悬浮物的有机碳含量成正相 关^[18~21],这说明颗粒物中有机质对吸附疏水性有 机物起着主要的作用。为了比较类型各异、组分复 杂的土壤/沉积物之间表征吸附的常数,定义了有机 碳分配系数*K*_{oc}:

$$K_{\rm oc} = K_{\rm D} / f_{\rm oc} \tag{6}$$

f_{oc}是颗粒物中有机碳的质量分数。

从吸附等温线中的单个点可以得到一个系列的 KD和Koo值,这也是从吸附等温线中能得到的重要 参数之一。图 5 是样品 GZ1(TOC = 21.1 g kg⁻¹, n= 0.610)、CHL(TOC = 52.3 g kg⁻¹, n = 0.691)和 HFH(TOC = 27.1 g kg⁻¹, n = 0.723)的 C_e与对应 K_∞之间的相互关系。图 5 中能看出随着菲在溶液 中浓度 C_e的增加,其对应 K_∞值逐渐减小;随 Freundlich 模型中 n 值的减小 K_∞减小幅度变大。在相 同的浓度 C_e时, K_∞值是 CHL> HFH> GZ1,说明 CHL 土壤比 HFH 沉积物和 GZ1 土壤的吸附能力要 强。CHL 和 HFH 样品中有机质的组成很相似,HFH 比 CHL 的粒度要小得多,但吸附能力却存在较大的 差距,说明有机质的分布状况、形态会极大地影响其 吸附有机污染物的能力,而土壤胶团粒度的大小对 吸附能力的影响不大。

图 5 GZ1、CHL、HFH 样品中不同浓度的 C_{e} 值与对应 K_{ee} 的关系

Fig. 5 Variations in K_{∞} values calculated from measured $K_{\rm D}$ values as a function of residual aqueous phase solute concentration (C_{α})

2.3 菲的解吸过程

从菲的吸附 解吸等温线(图 6)中可以看出存 在明显的滞后现象。Huang^[15, 22]定义了滞后系数 HI (Hysteresis Index):

$$HI = \left. \frac{q_e^D - q_e^S}{q_e^S} \right|_{T, C_e} \tag{7}$$

 q_{e}^{b} 、 q_{e}^{s} 分别指在吸附和解吸过程中在一定的温度和浓度下,吸附质在土壤/沉积物上的浓度。

菲在土壤/ 沉积物上的解吸过程是非线性的, 用 Freundlich 模型能较好地拟合解吸等温线。同时在 温度为 25 °C, *Ce* 值分别为 1、10、100 $\lg L^{-1}$ 的条件下 计算了菲的滞后系数 HI 值(表 4)。随着溶液中菲 浓度的增加, GZ1、GZ3、HFH 样品的滞后系数减小, 而 CHL 和 GZ2 土壤的滞后系数却增加, 这可能和样 品性质及吸附机理的不同有关。GZ1 是表层土壤, 而 GZ3 是 GZ1 的次层土壤, GZ3 比 GZ1 具有更大的 滞后系数,可见随着有机质在土壤中"老化"的时间 越长,疏水性有机污染物从有机质中解吸出来的速 率越慢,滞后现象越明显。CHL 土壤中富含有机质, 处于有机质腐殖化过程的较早期,而它具有最小的 滞后系数,因此土壤有机质的聚合度越高,腐殖化程 度越高,则解吸过程中的滞后现象越明显。菲在 HFH 样品上有较大的滞后系数, 而在 CHL 上的滞后 系数不大, 表明样品中粒度的大小及存在的微小孔 隙是造成污染物解吸滞后现象的真实原因, 而有机 质的形态及分布状况不是主要的影响因素。

在自然环境条件下,菲在自然土壤/沉积物中浓

表 4 菲在土壤/沉积物上吸附-解吸过程的滞后系数

Table 4	Sorption-desorp	tion isotherm	parameters and	l hysteresis	indices	of 1	phenanthrene	for soil/	sediment :	samples
---------	-----------------	---------------	----------------	--------------	---------	------	--------------	-----------	------------	---------

样品	线形模型 Linearmodel		Freundlich 模型 Freundlich model			滞后系数 Hysteresis indices			
Sample	$K_{\rm D}$	R ²	$\log K_{\rm F}$	n	\mathbb{R}^2	$C_{\rm e} = 1 \mu {\rm g} {\rm L}^{-1}$	$C_{\rm e} = 10 \ \mu {\rm g \ L^{-1}}$	$C_{\rm e} = 100 \mu {\rm g} {\rm L}^{-1}$	
GZ1	0.318	0 990	0. 456	0. 573	0. 992	0 660	0. 524	0.400	
GZ2	1.057	0 884	0. 741	0. 692	0.985	0 778	0.968	1. 178	
GZ3	0.174	0 921	0. 058	0.675	0. 993	1. 000	0.879	0.766	
CHL	1. 281	0 990	0. 740	0.741	0.989	0 052	0.180	0. 324	
HFH	0.388	0 895	0. 540	0. 661	0. 990	0 567	0.358	0. 178	

图 6 菲在 GZ1 土壤上的吸附 解吸等温线 Fig 6 Sorption and desorption isotherm data of phenanthrene for GZ1 soil

度是不会高的, 其吸附 解吸过程应存在明显的滞后 现象。本研究可以得到以下几个认识: 1) 对疏水 性有机污染物来说其吸附 解吸过程存在明显的滞 后现象; 2) 土壤和沉积物一旦遭受了有机污染物的 污染, 这些污染的土壤/沉积物对环境造成二次污染 的可能性是长期存在的; 3) 即使土壤/沉积物 水体 系中有机污染物浓度已经很低了, 土壤/沉积物吸附 的污染物也不会很快进入溶液相中, 而是缓慢的解 吸出来。通过本研究认识到有机污染物在土壤/沉 积物上吸附 解吸过程滞后现象的机制, 这为以后制 定修复受污染土壤/沉积物的最佳物理化学修复途 径及相应的修复目标提供了科学的依据, 因此具有 重要的应用意义。

3 结 论

本项研究可以得出以下结论: 1) 多环芳烃菲在 土壤/沉积物上的吸附解吸过程表现为非线性; 2) 线性模型不适合拟合菲的吸附等温线, Freundlich 模型很好地拟合了菲的吸附等温线, 双区位反应模 型(DRDM) 能较好地拟合菲在土壤/沉积物样品上 的吸附等温线, 并且 DRDM 模型清楚地反映出菲在 低浓度和高浓度下不同的吸附方式; 3) 菲在土壤/ 沉积物上的吸附 解吸过程存在明显的滞后现象, 可 能和样品中有机质的异质性和土壤胶团中微小孔隙 的存在有关。

参考文献

- Mader BT, Uwe-Goss K, Eisenreich S J. Sorption of nonionic, hydrophobic organic chemicals to mineral surface Environ. Sci. Technol., 1997, 31: 1079- 1086
- Huang W, Schalutman M A, Weber W J Jr. A distributed reactivity model for sorption by soil and sediments 5. The influence of nearsurface characteristics in mineral domains. Environ. Sci. Technol., 1996, 30: 2993~ 3000
- [3] Schlautman M A, Morgan J J. Sorption of perylene on a nonporous inorganic silica surface: Effects of aqueous chemistry on sorption rates. Environ. Sci. Technol., 1994, 27: 961~969
- [4] Lotse E G, Graetz D A, Chesters G, et al. Lindane adsorption by lake sediments. Envir. Sci. Technol., 1968, 2: 353~357
- [5] Means J C, Wood S G, Hassett J J, et al. Sorption of polynuclear aromatic hydrocarbons by sediments and soils Environ. Sci. Tech-

nol., 1980, 14(12): 1 524~ 1 528

- [6] Karickhoff S W, Brown D S, Scott T A. Sorption of hydrophobic pollutants on nature sediments. Water Res., 1979, 13: 241~ 248
- [7] Chiou C T, Porter P E, Schmedding D W. Partition equilibria of nonionic organic compounds between soil organic matter and water. Envir. Sci. Technol., 1983, 17: 227~ 231
- [8] Weber W J Jr, McGinley P M, Katz L E. A distributed reactivity model for sorption by soil and sediments. 1. Conceptual basis and equilibrium assessments. Environ. Sci. Technol., 1992, 26:1956-1962
- [9] Weber W J Jr, Huang W. A distributed reactivity model for sorption by soil and sediments. 4. Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions Environ. Sci. Technol., 1996, 30: 881~ 888
- [10] Pignatello J J, Xing B Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci. Technol., 1996, 30: 1~10
- [11] Xing B, Pignatello J J. Dual-mode sorption of low-polarity compounds in glassy polyvinyechloride and soil organic matter Environ. Sci. Technol., 1997, 31:792~799
- [12] Huang W, Young T, Schlautman M A, et al. A distributed reactivity model for sorption by soils and sediments 9. General isotherm nonlinearity and applicability of the dual reactive domain model Environ Sci. Technol., 1997, 31:1703~1710
- [13] Weber W J Jr, Miller C T. Modeling the sorption of hydrophobic contaminants by aquifer materials: 1. Rates and equilibria. Water Res., 1988, 22:457~464
- [14] 刘光崧. 土壤理化分析与剖面描述. 北京: 中国标准出版社,

1996. 31~ 33. Liu G S Soil Physical and Chemical Analysis, Description of Soil Profiles (In Chinese). Beijing: Standards Press of China, 1996. 31~ 33

- [15] Huang W, Weber W J Jr. A distributed reactivity model for sorption by soil and sediments 11. Slow concentration-dependent sorption rates. Environ. Sci. Technol., 1998, 33: 3 549~ 3 555
- [16] Chen Z, Pawluk S. Structural variations of humic acids in two sola of Alberta Mollisols. Geoderma, 1995, 65:173-193
- [17] Ahmad R, Kookana R S, Alston A M, et al. The nature of soil organic matter affects sorption of pesticides. 1 Relationships with carbon chemistry as determined by ¹³C CPMAS NMR spectroscopy. Environ. Sci. Technol., 2001, 35: 878~ 884
- [18] Chiou C T, Peters L J, Freed V H. A physical concept of soil-water equilibria for nonionic organic compounds. Science, 1979, 206 (16): 831~832
- [19] Chiou C T, Schmedding D W, Manes M. Partition of organic compounds in octanol-water systems. Environ Sci. Technol., 1982, 16 (1): 4~ 10
- [20] Kari khoff S W, Brown D S, Scott T A. Sorption of hydrophobic pollutants on nature sediments. Water Res , 1979, 13: 241~ 248
- [21] Miller M M, Waslk S P, Huang G L, et al. Relationships between octanol-water partition coefficient and aqueous solubility. Environ Sci. Technol., 1985, 19: 522~ 529
- [22] Huang W, Weber W J Jr. A distributed reactivity model for sorption by soil and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains. Environ Sci. Technol., 1997, 31: 2 562~ 2 569

STUDIES ON SORPTION DESORPTION EQUILIBRIA AND HYSTERESIS OF PHENANTHRENE BY SOIL AND SEDIMENT

Liang Chongshan¹ Dang Zhi² Liu Congqiang¹ Huang Weilin³

(1 State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China)

(2 Department of Applied Chemistry, South China University of Technology, Guangzhou 510641, China)

(3 Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA)

Abstract This paper describes an experimental pursuit of a mechanistic model for interpreting and quantitatively describing nonlinear, slow, and hysteretic sorption phenomena associated with heterogeneous soils and sediment in subsurface systems. The soil/ sediment organic matter was characterized using carbons types derived from ¹³C CPMAS NMR spectroscopy. All sets of equilibrium sorption data were fitted using three different sorption model: the linear model, the Freundlich model or its linearized form, and the dual reactive domain model (DRDM). The linear model was not appropriate for describing any of the experimental sorption data, while the Freundlich model and the dual reactive domain model was found to be adequate for all samples. From DRDM it was observed that sorption hystersis was quantified for each sample. Sorption desorption hystersis each varie from sample to sample, and they also appear to correlate with the chemical characteristics of soil organic matter. On the other hand, the pore structure of soils may be a critical factor in sorption desorption hystersis of hydrophobic organic contaminants.

Key words Phenanthrene; Linear model; Freundlich model; Dual reactive domain model; Hystersis