变动氧化还原状况下酸性土壤中活性锰的变化^{*}

刘 鑫^{1,2} 雷宏军^{1,2} 朱端卫^{1†}

(1华中农业大学资源与环境学院,武汉 430070)(2华北水利水电学院,郑州 450011)

CHANGE IN SO IL ACTIVATED MANGANESE UNDER VARY ING O X IDATION-REDUCTION REGIME IN ACID SO ILS

Liu Xin^{1,2} Lei Hongjun^{1,2} Zhu Duanwei^{1†}

(1 College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China)
(2 North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011, China)

关键词 活性锰;氧化还原;酸性土壤 中图分类号 S153.6 文献标识码

锰是一种常见的变价元素,其在土壤中的有效 性主要依赖于土壤总锰量、pH、有机质含量、通气状 况及微生物活性等,其中,最直接的是土壤通气状 况和 pH。自 20世纪 50年代以来,渍水土壤中锰的 化学行为及移动性就引起了人们的关注^[1~7]。在自 然状态下, 锰以多种氧化物形式存在, Mn()和 Mn ()发生在氧化环境中,Mn²⁺主要存在于还原条件 下,土壤体系中的氧化还原状况显著地影响着土壤 锰的溶出和生物有效性。到目前为止,有关土壤 pH、Eh和 Mn^{2+} 的关系研究的较少。1970年, Bohn^[8]通过测定土壤 pH、Eh和全锰含量预测了土 壤悬浮液中 Mn^{2+} 的含量。刘鑫等^[9]运用能斯特方 程式研究了盆栽土壤 pH、Eh和活性锰的转化关系。 涂仕华^[10]采用合成的锰矿物,研究了三种卤素还原 剂(KC1 KBr和 KI)在两种 pH条件下对 MnO2的还 原能力,从实验和理论上进一步阐明了 pH和 Eh对 MnO。溶解度的影响。这些只局限于从整体上研究 土壤锰的迁移和价态的转化,而针对锰转化的动力 学过程、反应特性和影响因素等尚不清楚。鉴于 此,本文以灰潮土为对照,研究水饱和状态和淹水

А

条件下几种酸性土壤锰的转化及其与氧化还原度 (pe+pH)的关系,以及土壤锰的氧化还原动力学特 性,为了解土壤锰形态变化规律,评价土壤锰的生 物有效性提供依据。

1 材料与方法

1.1 供试土壤

供试土壤为取自鄂东南咸宁市贺胜桥的棕红 壤、武汉市武昌狮子山的黄棕壤、通城县五里镇的 红壤,以此 3种酸性土壤作为研究对象,并以无锰毒 的天门市新华镇灰潮土作为参照,分别以 No.1、 No.2、No.3和 No.4表示。其基本理化性质列于表 1。尽管 3号土从 pH上反映出已严重酸化,但由于 取样点为茶场,茶树根系分泌物旺盛和凋落茶叶的 腐解,该土壤有机质积累较多,其有机质测定值明 显高于其他 3种土样。与 3种酸性土壤相比,4号 灰潮土的交换性锰很低,说明这类土壤在自然条件 下,锰以氧化态为主。

^{*}湖北省自然科学基金项目 (99J117)和农业部亚热带土壤资源环境重点开放实验室基金资助

 ⁺通讯作者, Tel: 027 - 87287184; Ermail: zhudw@mail hzau edu cn
 作者简介:刘 鑫(1975~),女,硕士,从事区域水土资源高效利用研究。Ermail: lxin2002@163.com
 收稿日期: 2007 - 04 - 02;收到修改稿日期: 2007 - 07 - 03

表 1 供试土壤基本理化性质

土壤	采样地点	pH	氧化还原电位	有机质	交换性锰	结合态锰	易还原性锰				
		(H ₂ O)	(mV)	(g kg ⁻¹)		$(mg kg^{-1})$					
No.1棕红壤	咸宁	5.41	587	15.0	0.99	33.15	672.3				
No.2黄棕壤	武昌	5.61	576	15.1	11.66	61.42	436.0				
No.3红壤	通城	4.37	620	31.6	2.94	14.64	7.6				
No.4灰潮土	天门	7.24	502	22.6	0.46	75.67	260.3				

1.2 实验设置

本实验设置参照文献 [3]。取 250 g风干土壤 样品于塑料钵中,利用称重法使供试土壤保持水饱 和状态和完全淹水状态 2种处理。4种供试土壤水 饱和状态时的含水量分别为 37.5%、42.6%、 43.8%和 44.9%。完全淹水状态保持液面高出土 面 1.5 cm。每个处理设 3个重复,其中一个重复用 来测定土壤 pH和 Eh的变化,余下的两个重复用于 测定土壤交换态锰、结合态锰和易还原性锰的变 化,每个重复进行了两次取样测定。

1.3 土壤培养过程和测定方法

土壤培养过程温度控制在(25 ±1) 。分别在 加水前,加水后1、、2、3、6、12、18、24、30、40、50、60 d 及时采集土样。在培养期间,土钵用塑料袋密封以 防止水分蒸发。在第1周内,每日混匀土样一次,接 下来1周一次,30 d后,土样只在分析前混匀一次。

pH、Eh测定参照文献 [11]:预先称取两份湿 样,一份经 105 烘干测定其土壤含水量,另一份将 湿基土样换算为干基,以 1 1的水土比,用 PHS-10A 数字酸度计测定 pH和 Eh。

有机质测定:重铬酸钾容量法^[11]。

用连续提取法测定土壤中 3种活性锰^[3]。交 换性锰 (EXCMn)用 pH 7.0的 1 molL⁻¹ NH₄OAc 溶液提取;结合态锰 (CARBMn)用 pH 5.0的 1 molL⁻¹ NaOAc-HOAc溶液提取;易还原性锰 (ERO-Mn)用含 0.04 molL⁻¹NH₂OH·HCl的 25% HOAc 溶液提取。锰用甲醛肟分光光度法^[12]分析。

1.4 数据分析

一般用来描述土壤元素转化动力学的数学模型有零级方程、一级方程、抛物线扩散方程和权函数方程等^[13,14]。本文选用 5种动力学方程来描述 土壤活性锰 (EXCMn、CARB Mn和 ERO Mn)的转 化动力学,其表达式为:

零级方程: $C_t = -k_0 t + C_0$ 一级方程: $\ln C_t = k_1 t + \ln C_0$ 二级方程: $1/C_t = k_2 t + 1/C_0$ 抛物线扩散方程: $C_t = k_p t^{0.5} + C_0$

权函数方程: $C_t = A t^B$

式中, t为培养时间 (d); C_t 为某一时间 t(d)某一形 态锰的含量 (mg kg⁻¹); C_0 为 t = 0时锰含量 (mg kg⁻¹); k_0 , k_1 , k_2 和 k_p 均为速率常数。A和 B分 别为权函数方程的起始反应速率和速率系数。

2 结果与讨论

2.1 不同水分含量土壤 pe + pH变化

氧化还原反应大多和酸度密切联系,氧化还原 度 pe+pH能较好地说明整个土壤体系的氧化还原 状态^[15]。在土壤培养期间,pH和 Eh发生了很大的 变化,pe+pH的变化如图 1,其中 pe = Eh(V) /0.059 2 (25)。同一土壤不同处理间 pe+pH相 差不大,4种供试土壤分别维持在 15.38、14.78、 13.10和 14.91,大多数土壤处于 10~18的正常 范围。

土壤渍水后, pH 有上升趋势, 而 Eh由原来的 400~500 mV急剧降低至几十 mV,土壤中的 O2被 消耗掉时,其他有机体释放电子,使 pe + pH降低, 说明土壤中无机还原性物质还原性增强。在土壤 培养 1 d后, 4种土壤淹水状态的 pe + pH分别为 16.77、16.24、14.45和 15.28左右,40 d后,分别下 降至 14.04、11.26、12.29和 13.10、以后保持在一稳 定水平上。这种改变是由于 pe的改变所引起,培养 1 d后,前 3种土壤的 Eh值在 600~700 mV,4号土 在 450 mV 左右,40 d以后,Eh分别下降为 410 ~ 490 mV和 310~390 mV,以后变化缓慢。与前 3种 土壤相比,4号土 pe+pH下降的较为缓和。在培养 同一时间,淹水状态土壤 pH较水饱和状态高 0.1~ 0.9,而 Eh低 20~180 mV。就整个土壤而言,淹水 处理较水饱和处理的 pe + pH下降幅度更大,这与 土壤还原性的剧烈程度有关。随着土壤 Eh和 pe+ pH的下降,土壤固相锰被化学还原并且各形态相互 转化。

图 1 供试土壤在培养期间氧化还原度 pe+pH的动态

2.2 不同水分含量土壤活性锰变化

图 2是不同处理土壤在培养初始期间 EXC-Mn, CARB Mn和 ERO Mn的变化。对每一种土壤 而言,淹水状态土壤 EXC Mn和 CARB Mn较水饱 和状态上升更为明显。ERO Mn在起先 2~3 d内 上升至最高值,以后逐步下降,由此看出,在土培开 始阶段,土壤活性锰发生剧烈变化,即 ERO Mn向 EXC Mn和 CARB Mn转化。这种变化在 3号土上 3 d即完成,但 1、2号土需 6 d左右才完成,4号灰潮 土需 12 d才完成。以后变化缓慢并逐渐趋向稳定。 1、2号土交换性锰增加很快,而 3号土增加很慢,4 号土介于二者之间,这是由于 1、2号土易还原性锰 含量高,土壤培养时,EXC Mn和 CARB Mn随培养 时间的延长,增加量较大,其变幅在 100~200 mg kg⁻¹。由此可见,土壤锰的转化速度和幅度与土 壤锰含量的多少有关。

一般说来,土壤中锰形态主要依赖于土壤 $pe + pH^{[16]}$ 。土壤 pe(Eh)由土壤液土比所控制,土壤水 分影响着土壤气体交换和微生物的活动,在嫌气条 件下,锰由易还原的矿物态锰,诸如 MnO_2 (Mn())和 MnOOH (Mn ())转化为 Mn^{2+} ,如 EXC-Mn和 CARB Mn ($MnCO_3$, Mn^{2+})。 EXC-Mn和 CARB Mn之间无相关性,从性质上讲是相互独立 的,即交换性锰是土壤负电荷吸附的阳离子,而结

合态锰是酸性土壤易溶性氧化物或石灰性土壤上 难溶性碳酸盐所吸附的锰,为一种锰形态的中间 体,易向易还原性锰转化^[16]。然而,各种土壤锰的 转化途径却不尽相同。1、2号酸性土壤,当其处于 湿润状态时,十壤锰首先从 ERO-Mn转化为 CARB-Mn,然后再转化为 EXC Mn;而在 3号土上,土壤锰 则可能以 ERO Mn直接转化为 EXC Mn为主。这是 由于强酸性的 3号土,其质子含量显著高于 1、2号 土,在锰形态变化时,较多的质子使氧化锰的还原 趋势和速度加强、加快,而 Mn^{2+} 的专性吸附较难产 生、即土壤锰的变化比较容易由易还原态向交换态 转化。4号灰潮土,其在培养过程中,碳酸根易与锰 生成沉淀,故在这种土壤上,与生成的 EXC-Mn的比 例相比较,其 CARB Mn的生成比例更高。如在水 饱和状态下, EXC Mn 占土壤活性锰总量高者达到 30.7%,平均为 12.3%;而 CARB Mn占土壤活性锰 总量高者则可达 58.0%,平均为 27.8%。淹水状态 下这一现象表现得更为突出。

土壤 pH、Eh与交换性锰的关系能较好地反映 土壤锰的转化机制^[9]。进一步分析得知,在土培 40 d之内,1号土的 pe+pH每降低 1个单位,水饱 和状态下 EXCMn含量增加 1.7倍,淹水状态下增 加 4倍;氧化还原电位低于 640 mV, pe+pH低于 16.70时,Mn²⁺的数量迅速增加。4号灰潮土, pe

+pH每降 1个单位,水饱和状态下 EXC+Mn含量 增加 0.5倍,淹水状态下增加 1倍;氧化还原电位 低于 410 mV, pe+pH低于 14.80时, Mn²⁺的数量

迅速增加。这也说明, CARB Mn含量较多的 4号 土壤,需要在较低的氧化还原势下才有利于锰的 活化。

737

图 2 供试土壤在培养期间各形态锰的分布与转化

2.3 土壤锰形态转化动力学

表 2是供试土壤培养 1个月左右淹水状态土壤 活性锰 (EXC+Mn, CARB+Mn和 ERO+Mn)的转化动 力学模型。由零级动力学方程的平均速率常数 k_0 来看, ERO+Mn的含量降低, EXC+Mn和 CARB+Mn 的含量增加,说明在土壤淹水后,土壤锰总的转化 趋势为 EROMn转化为 EXCMn和 CARBMn。 CARBMn的零级反应速率常数均大于 EXCMn,表 明 CARBMn在酸性土壤中,可能被一些酸易溶性 氧化物所吸附或结合,当土壤处于湿润状态时,其 含量会明显增加^[17]。4号灰潮土属于碱性土壤,溶 解出的 Mn²⁺很容易被土壤上难溶性碳酸盐所吸附。

方程	144	No. 1		No. 2		No. 3		No. 4	
	沽性锰	拟合方程	r		r	拟合方程	r	拟合方程	r
零级方程	EXC-Mn	$C_t =$	0.833 5	$C_t =$	0.438 1	$C_t =$	0.8904	$C_t =$	0.455 0
		4. $95 t + 62. 5$		1.94t + 111.0		0.16t + 3.9		0. $95 t + 62. 7$	
	CARB -M n	$C_t =$	0.8889	$C_t =$	0.9500	$C_t =$	0.7676	$C_t =$	0.9297
		8. $06t + 61.18$		7. 15 <i>t</i> +91. 5		0. 56 t + 2. 9		6. 33 t + 103. 8	
	ERO M n	$C_t =$	0.7603	$C_t =$	0.6894	$C_t =$	0.343 1	$C_t =$	0.6684
		- 10. 87 t + 551		-2.82t+275.9		- $0.04t + 3.3$		- $2.02t + 167.4$	
一级方程	EXC-Mn	$\ln C_t =$	0.5577	$\ln C_t =$	0.414 2	$\ln C_t =$	0.838 5	$\ln C_t =$	0.4177
		$0.07 t + \ln 24.53$		$0.028 t + \ln 73.7$		$0.03t + \ln 3.9$		$0.03t + \ln 23.8$	
	CARB Mn	$\ln C_t =$	0.806 1	$\ln C_t =$	0.8969	$\ln C_t =$	0.705 1	$\ln C_t =$	0.8684
		$0.05 t + \ln 60.34$		$0.03 t + \ln 99.5$		$0.05 t + \ln 2.6$		$0.03t + \ln 106.7$	
	ERO M n	$\ln C_t =$	0.863 2	$\ln C_t =$	0.7801	$\ln C_t =$	0.213 5	$\ln C_t =$	0.7395
		- $0.03t + \ln 539.2$		$0.015t + \ln 273.1$		- 0.01 t + ln1.9		$-0.02t + \ln 156.0$	
二级方程	EXC-Mn	$1/C_t =$	0.3347	$1/C_{t} =$	0.3569	$1/C_{t} =$	0.7645	$1/C_t =$	0.332 1
		- 0.008 $t + 1/4$	-	0.000 7 t + 1/38.5	-	0.006t + 1/3.9		- 0. 01 t + 1 / 2. 2	
	CARB Mn	$1/C_t =$	0.6515	$1/C_{t} =$	0.7474	$1/C_{t} =$	0.385 5	$1/C_{t} =$	0.7521
		- 0.000 5 $t + 1/50$	-	$0.000\ 2t + 1/95.3$		- 0.01 t + 1/1.6	- 0	$000 \ 1 \ t + 1 \ / \ 103. \ 1$	
	ERO Mn	$1/C_t =$	0.9364	$1/C_t =$	0.7677	$1/C_{t} =$	0.1367	$1/C_t =$	0.784 2
	(0.000 1 t + 1 /555.6	0	$000\ 1\ t + 1/285.7$		0. 005 $t + 1/1.2$	0	$000\ 2t+1/144.9$	
拁物线	EXC-Mn	$C_t =$	0.9295	$C_t =$	0.615 2	$C_t =$	0.8939	$C_t =$	0.4875
扩散方程		37. 29 $t^{0.5}$ + 21. 3		18.44 $t^{0.5}$ +85.1		$0.86t^{0.5} + 3.2$		8. 27 $t^{0.5}$ + 52. 3	
	CARB -M n	$C_t =$	0.8815	$C_t =$	0.9237	$C_t =$	0.6938	$C_t =$	0.912 1
		54. $02t^{0.5} + 11.13$		56. 58 $t^{0.5}$ + 34. 0		4. 11 $t^{0.5}$ - 0.8		50. 54 $t^{0.5}$ + 51. 4	
	ERO Mn	$C_t =$	0.7794	$C_t =$	0.7712	$C_t =$	0.5308	$C_t =$	0.7814
		- 75.35 $t^{0.5}$ + 625.1		25.71 $t^{0.5}$ + 310.7		- 0. 48 $t^{0.5}$ + 4. 2	-	19. 21 $t^{0.5}$ + 195. 3	
权函数方程	EXC-Mn	$C_t =$	0.8609	$C_t =$	0.5771	$C_t =$	0.6969	$C_t =$	0.3537
		38.09 $t^{0.57}$		105.64 $t^{0.18}$		4.18 $t^{0.15}$		61.56 $t^{0.13}$	
	CARB -M n	$C_t =$	0.9008	$C_t =$	0.8993	$C_t =$	0.721 0	$C_t =$	0.8683
		48. 42 $t^{0.55}$		83. $10t^{0.40}$		1.09 $t^{0.72}$		87. 36 $t^{0.38}$	
	ERO Mn	$C_t =$	0.7703	$C_t =$	0.6880	$C_t =$	0.397 0	<i>C</i> , =	0.8392
		595.9 $t^{-0.31}$		262.43 $t^{-0.16}$		2.32 $t^{-0.24}$		170.7 $t^{-0.24}$	

表 2 培养期间供试土壤淹水状态活性锰转化动力学¹⁾

1) C表示活性锰含量 (mg kg⁻¹); /表示培养时间; 表中每个 /参与计算的数据个数为 7~9个

从方程的拟合效果来看,抛物线扩散方程的相 关系数(r)较其他方程为高,其次为零级方程和权 函数方程。因此,对土壤活性锰而言,抛物线扩散 方程能较好地描述土壤锰的形态转化动力学。

3 结 语

4期

土壤水分含量是直接影响土壤氧化还原状况 的主要因素。土壤淹水后,pH升高,Eh降低。氧化 还原参数 pe+pH降低,土壤淹水状态土壤 pe+pH 较水饱和状态下降更为明显。各种形态锰发生变 化,对于酸性的棕红壤和黄棕壤,土壤锰首先从 EROMn转化为 CARB Mn,然后再转化为 EXCMn, 即 CARB Mn是一种潜在的活性锰源。对于石灰性 灰潮土,淹水后,以 EROMn转化为 CARB Mn为 主,且需要在较低的氧化还原电位下才有利于锰的 活化。抛物线扩散方程能较好地描述土壤锰的形 态转化动力学。

参考文献

- [1] 丁昌璞,于天仁.水稻土中氧化还原过程的研究 .红壤性水 稻土中铁锰的活动性.土壤学报,1958,6(1):99~107
- $[\ 2\]$ Ponnamperuma F N. The chemistry of submerged soils Adv. Agron , 1972, 24: 29 ~ 96
- [3] Han F X, Banin A. Solid-phase manganese fractionation changes in saturated arid-zone soils: pathways and kinetics Soil Sci Soc. Am. J., 1996, 60: 1 072 ~1 080
- [4] 刘学军,吕世华,张福锁,等.水肥状况对土壤剖面中锰的移动和水稻吸锰的影响.土壤学报,1999,36(3):369~376

- [5] 司友斌,马友华,章力干.土壤湿度水平和湿一干循环对硝酸
 钙盐积累土壤锰释放的影响.应用生态学报,2001,12(2):
 233~236
- [6] 刘学军,廖晓勇,张扬珠.不同稻作制对红壤性水稻土中锰剖面分布的影响.生态学报,2002,22(9):1440~1445
- [7] 王甲辰,张福锁,刘学军,等.成都平原水旱轮作土壤表层锰 损失主要机制研究.中国生态农业学报,2004,12(3):72~74
- [8] Bohn H L. Comparison of measured and theoretical Mn²⁺ concentration in soil suspensions Soil Sci Soc Am. Proc., 1970, 34: 195 ~ 197
- [9] 刘鑫,朱端卫,雷宏军,等.酸性土壤活性锰与 pH、Eh关系及 其生物反应.植物营养与肥料学报,2003,9(3):317~323
- [10] 涂仕华. 酸和氧化还原剂对二氧化锰溶解度的影响. 土壤学报, 2004, 41 (4): 530 ~ 535
- [11] 鲁如坤编. 土壤农业化学分析方法. 北京:中国农业科技出版社, 2000
- [12] 徐仁扣,刘志光.甲醛肟比色法测定土壤中 Mn²⁺时对干扰的 消除.土壤,1992,24(6):321~323
- [13] Li S T, Zhou J M, Wang H Y, et al Kinetics of phosphate release from three phosphate-treated soils Pedosphere, 2005, 15 (4): 518 ~ 525
- [14] Allen E R, Ming D W, Hossner L R, et al Modeling transport kinetics in clinop tiblitc-phosphate rock systems Soil Sci Soc Am. J., 1995, 59: 248 ~ 255
- [15] Lindsay W L. Chemical Equilibria in Soils New York: John Wiley & Sons, 1979
- [16] Warden B T, Reisenauer H M. Fractionation of soil manganese forms important to plant availability. Soil Sci Soc Am. J., 1991, 55: 345 ~ 349
- [17] 朱端卫,万小琼,耿明建,等.酸化及施碳酸钙对土壤各形态锰的影响.植物营养与肥料学报,2001,7(3):325~330