DOI: 10.11766/trxb201809050445

长江三角洲农田地下水反硝化对硝酸盐的去除作用*

颜晓元 周 伟

(土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),南京 210008)

摘 要 长江三角洲(简称"长三角")农田氮素投入量高,但是否像其他高氮投入农田一样 在土壤剖面累积了大量硝酸盐尚不清楚。通过连续两年的野外观测结合室内培养实验,发现长三角地 区3种不同类型的高氮投入农田1~4 m地下水硝态氮(NO₃-N)剖面分布特征存在明显差异,水稻田地 下水NO₃-N浓度始终很低(<1 mg·L⁻¹),不同深度之间无差异。蔬菜地和葡萄园1 m处地下水NO₃-N 年平均浓度分别为5.6和17.5 mg·L⁻¹,但是地下水NO₃-N浓度随着深度增加急剧下降,至4 m处,NO₃-N 浓度降至小于1 mg·L⁻¹,与水稻田无差异。蔬菜地和葡萄园地下水高浓度NO₃-N仅出现在施肥期间,非 施肥期地下水NO₃-N浓度较低,这表明长三角农田不存在明显的NO₃-N累积。原状土柱培养实验结果 表明,0~4 m土壤均存在较强的反硝化活性。通过对地下水中反硝化产物N₂及N₂O的直接定量测定, 发现反硝化对地下水NO₃-N的去除效率随着深度而增加,至4 m处,反硝化对地下水NO₃-N的去除效率 分别为86%(水稻田)、93%(蔬菜地)和89%(葡萄园)。这表明反硝化能有效去除地下水NO₃-N, 是长三角地区农田土壤剖面未产生NO₃-N累积的重要原因。反硝化产生的溶解性气态氮主要通过地下 水流入临近水域,对于蔬菜地和葡萄园而言,溶解性气态氮流失量与NO₃-N淋溶损失量相当,是一个 重要的氮素去向,值得关注。

关键词 地下水反硝化;硝酸盐去除;气态氮流失;种植模式;N₂直接定量法 中图分类号 S153.1 文献标识码 A

长江三角洲(简称"长三角")地区是我国主要的粮食生产区之一,也是氮肥施用量最高的地区之一,由此造成的地下水硝态氮(NO₃-N)污染问题早有报道^[1],但关于该地区农田地下水NO₃-N的研究多集中于稻麦轮作稻田。近年来,随着城市化的发展,长三角地区越来越多的水稻田转变为蔬菜地和果园^[2],已有的研究发现,蔬菜地和果园表层土壤存在明显的NO₃-N累积^[3-4]。由于NO₃-N容易随水扩散,累积在表层土壤中的NO₃-N会随降水或灌溉水淋洗出作物根层,直至进入地下水,或者累积于深层土壤^[5]。例如,Zhou等^[6]研

究表明,中国北方半干旱农田土壤剖面普遍存在明显的NO₃-N累积,其中最高值出现在果园土壤,在0~4 m土壤剖面NO₃-N累积量高达2 155 kg·hm⁻²(以N计,下同),即便是累积量最小的小麦土壤,NO₃-N累积量也高达453 kg·hm⁻²。

长三角地区降水充沛,地下水水位浅,表层 土壤中的NO₃-N极易随降水淋溶至地下水中。但迄 今为止,关于蔬菜地和果园地下水NO₃-N的研究较 少^[7],已有的研究多集中于根层(0~1 m),缺 乏根层以下(>1 m)土壤和地下水NO₃-N浓度分 布特征的研究^[4]。因此,虽然现有的研究表明长

^{*} 国家重点研发计划项目(2017YFD0200100)、国家自然科学基金项目(41425005)和中德合作研究项目(GZ1262)资助 Supported by the National Key Research and Development Program of China (No. 2017YFD0200100), the National Natural Science Foundation of China (No. 41425005), and the Joint Sino-German Research Project (No. GZ1262)

作者简介:颜晓元(1970—),男,湖南衡南人,博士,研究员,主要研究领域:农业温室气体、土壤碳氮循环、面源污染。E-mail: yanxy@issas.ac.cn

收稿日期: 2018-09-05; 收到修改稿日期: 2018-11-07; 优先数字出版日期(www.enki.net): 2018-11-16

三角地区菜地和果园表层土壤存在NO₃-N累积,但 不同土地利用方式下NO₃-N剖面分布特征并不清 楚,对于根层以下土壤或地下水中是否存在NO₃-N 累积尚不明确。

土壤及地下水中高浓度NO₃⁻N可通过物理、 化学和生物的手段降低其浓度,其中,反硝化作 用能够将NO₃⁻-N转化成N₂返回大气氮库,是NO₃⁻-N 自然去除的主要途径^[8]。近年来,长三角地区稻 田土壤以及河流沉积物通过反硝化作用高效去除 NO₃⁻-N的能力已被证实^[9]。但关于地下水反硝化 的研究是基于地下水中高浓度氧化亚氮(N₂O)或 同位素自然法(δ¹⁵N和δ¹⁸O-NO₃⁻-N)所做的推 断^[10-11],仅能证明反硝化的存在,难以量化其对 地下水NO₃⁻-N的去除效率,因而无法明确反硝化在 去除地下水NO₃⁻-N过程所起的作用。

地下水通常埋藏于地表之下,土壤的阻滞作用 与水压的存在,使得地下水中的气体难以逸散至地 表,因此,可通过测定地下水中溶解态N,总浓度及 其自然溶解度,二者的差值可表示为反硝化所产生 N₂(以下简称"ex_{N2}"),该法被称之为N₂直接定 量法。Blicher-Mathiesen等^[12]发现地下水中ex_{N2} 的增加量与NO₃-N的减少量相吻合,认为可利用N。 直接定量法来研究地下水反硝化。Fox等^[13]也发 现exw浓度与地下水反硝化速率之间有着很好的相 关性,即高浓度的ex_N出现在反硝化速率最高的河 岸地区,而在反硝化较弱的农田缓冲带,地下水 ex_N浓度较低。其他研究者也发现了类似的规律, 说明N,直接定量法能真实反映地下水反硝化的强 弱^[13]。膜进样质谱仪(MIMS)可通过测定水样 中N₂:Ar的变化,获得水中溶解性N₂的浓度,与 同位素质谱法(IRMS)相比, MIMS测定水中溶 解态N₂无需繁琐的前处理过程,测定过程简单快 速,费用也大幅降低^[14]。N₂直接定量法不但可 用来评估反硝化反应的强弱,还能推算出地下水 NO₃-N的初始浓度,因此,被广泛用于含水层土壤 和地下水反硝化研究。

本研究以太湖地区3种典型农田为研究对象, 通过两年的野外观测结合室内培养实验研究了不 同种植模式下农田地下水NO₃-N及ex_{N2}的浓度变 化,目的在于:(1)探明不同种植模式下农田土 壤及地下水NO₃-N浓度剖面分布特征;(2)验证 农田土壤剖面是否存在NO₃-N累积现象;(3)明 确反硝化对地下水NO₃-N的去除效率及主要影响因素。

1 材料与方法

1.1 研究地点概况

本研究依托中国科学院常熟农业生态实验站 (31°32′N,120°41′E)进行。该实验站隶 属于太湖流域典型区域,农业种植制度从偏重粮 食生产转向粮经作物(水果和蔬菜)协调发展。 该地区气候类型为亚热带季风气候,年平均气温 16.1℃, 年平均降水1 100 mm。选择3种当地典型 农业种植模式为研究对象,分别为水稻田、蔬菜 地和葡萄园。水稻田为中国科学院常熟农业生态 实验站长期试验用地,面积约3 hm²,为稻麦轮作 模式,氮肥年投入量为470 kg·hm⁻²。蔬菜地位于 中国科学院常熟农业生态实验站北侧1.5 km处, 面积约4.5 hm², 2009年由水稻田转变为蔬菜地, 主要以种植叶菜类蔬菜为主,氮肥年投入量约为 600 kg·hm⁻²。葡萄园位于中国科学院常熟农业生 态实验站南侧2 km处, 面积约5 hm², 2005年由 水稻田转变为葡萄种植园,氮肥年投入量约为590 kg·hm⁻²。供试土壤为当地有代表性的普通潜育水 耕人为土(乌栅土)。

1.2 样品采集

1.2.1 原状土壤采集 于2016年5月份进行土壤 样品采集。在水稻田、蔬菜地和葡萄园各随机取3 个采样点,利用单人手持式高频振动原状土壤取样 钻机(VD51,澳大利亚)进行取样,每个采样点 取0~4 m完整土柱。每个点连续采样4次,最后采 至4 m深,共4根连续土柱。土壤采集后尽快带回 实验站密封保存于4℃冰箱中,用于反硝化速率的 测定。

1.2.2 地下水采样井布设 2015年2月份建设 地下水采样井。在水稻田、蔬菜地和葡萄园各随 机确定3个采样点,选择管口直径为6 cm的三型 聚丙烯(PPR)管作为地下水采样井,PPR管底 部封口,四周开具直径3 mm的小孔,并用100目 的尼龙纱网包裹,以过滤水样。选用与PPR管口 径相同麻花钻在选定位置钻孔至相应深度,然后 将PPR管插入钻孔,埋设好的PPR管高于地面0.5 m,便于采样。每个采样点布设4个采样深度,分 别为1 m、2 m、3 m和4 m, 共布设有36个地下水 采样井, 采样井分布见图1。采样井布设完毕后 48 h内抽空地下水5次以上,确保地下水取样的准确性。

图1 地下水采样井点位分布 Fig. 1 Distribution of the wells for sampling groundwater

1.2.3 地下水取样 2015年4月至2017年4月进 行地下水采样,采样频次为每月2次,采样前提前 24 h将监测井中的水抽干,以确保采集的水样为 新鲜水样。利用可调速蠕动泵(BT100M,保定创 锐泵业有限公司)采集地下水样,蠕动泵流速控 制在50 mL·min⁻¹以内,以减少采样过程水中溶解 性气体的自然逸散,具体采样过程参照Weymann 等^[15]所述方法。采集好的样品存于7 mL螺口取 样瓶(Labco Limited, 英国)中, 放入4 ℃冰箱 保存,用于测定地下水中溶解性N₂和Ar含量。 另取一份水样存于100 mL塑料瓶中用于测定地 下水中N₂O、溶解性有机碳(DOC)、NO₃-N和 NH⁺-N浓度。水样采集的同时,利用手持式多参 数水质分析仪(YSI Exo 1 multiparameter probe, 美国)原位测定地下水温度(T)、pH、氧化还 原电位(Eh)、盐度(Sal)、电导率(Cond) 和溶解氧(DO)。降水数据和地下水水位数据 来自中国科学院常熟农业生态实验站的自动观测 数据。

1.3 样品测定

1.3.1 土壤无机氮测定 土壤NO₃⁻N和NH⁺₄-N用
2 mol·L⁻¹氯化钾溶液浸提后,用自动化学分析仪 (SmartChem 140 discrete auto-analyzer, Westco Scientific Instruments,美国)测定。

1.3.2 土壤反硝化速率测定 取不同深度的地下水5 L带回实验室,用作培养实验的上覆盖水。

将采集好的0~4 m土柱样带回实验室后,将1 m长 土层均分为3段,然后将其垂直置于装满原位上覆 水的模拟培养装置中,使土样浸没入上覆水中, 水面高出土柱6 cm,不盖盖子,预培养8 h,使微 生物恢复活性^[16]。8 h后分别采集培养罐上覆水 水样,测定水中NO₃-N浓度,根据上覆水NO₃-N浓 度,加入一定体积100 mg·L⁻¹的硝酸钾溶液,使培 养罐上覆水NO₃-N浓度达到5 mg·L⁻¹,然后拧紧盖 子,开始进行培养实验,实验室温度调节至地下水 年均温度(20℃)。培养体系调试完毕后,立即取 第一个水样作为0 h 样品,然后分别在2、4、6、 8 h采样,每个样品取三个平行样,取样过程同Li 等^[9]所述方法。采集好的样品置于4℃冰箱保存, 用于测定水中溶解性N,浓度。

1.3.3 水中N₂O和溶解性N₂浓度测定 地下水中 N₂O浓度利用顶空取样-气相色谱法测定,具体过 程见Terry等^[17]所述方法。

利用MIMS (Bay Instruments, Easton, MD, 美国)测定水中溶解性N₂浓度。例如,MIMS测定 N₂和Ar的精度分别是小于0.5%、小于0.05%,而 测定N₂:Ar(物质的量比)精度小于0.03%。地 下水水中N₂源于生物过程(主要是反硝化)和物 理过程(水气平衡),而Ar溶解度主要受温度、 盐度条件控制(纯物理过程)。因此,可通过水 样N₂:Ar值计算其真实N₂浓度,具体计算过程见 Kana等^[14]所述方法。 地下水水样带回实验室后过滤(0.45 μm滤 膜),用自动化学分析仪(SmartChem 140 discrete auto-analyzer, Westco Scientific Instruments,美国)测 定NO₃-N和NH⁺₄-N浓度,用TOC(总有机碳)分析仪 (N/C 3100 multi-analyzer, Analytik Jena AG,德国)测 定地下水DOC浓度。

1.4 反硝化对地下水NO3-N去除效率的计算

地下水中来自反硝化产生的N₂用ex_{N2}表示,参 照Weymann等^[15]所推荐的计算方法。

反硝化对地下水NO₃-N的去除效率用RE(Reaction efficiency)表示,为反硝化产物和反硝化底物浓度的比值,计算过程如下:

RE (%) =
$$\frac{ex_{N2} + N_2O}{ex_{N2} + N_2O + NO_3 - N} \times 100$$
 (1)

1.5 数据统计分析

采用Shapiro-Wilk法对所有数据进行正态检

验,对不符合正态分布的数据先进行log转化,使 其符合正态分布后,再进行统计分析,各参数间的 相关性以斯皮尔曼(Spearman)相关系数表示。 采用T检验比较不同种植模式及不同深度NO₃-N、 NH₄-N、DOC、溶解性N₂O和ex_{N2}浓度等参数差异 显著性,所有统计分析均由SPSS 18.0完成。

2 结 果

2.1 降水量和地下水水位变化

试验期间降水量及地下水位变化如图2所示。 2015—2017年的年均降水量为1 410 mm,降水主 要集中在夏季,单次最大降水出现在2015年6月 17日,降水量高达131 mm。地下水位变化范围为 0.12~0.90 m,均值为0.57 m。地下水位主要受降 水及灌溉的影响,因此,夏季地下水位通常较低, 而秋冬季地下水水位较高。

Fig. 2 Precipitation and groundwater table during the observation period

2.2 三种种植模式下不同深度土壤无机氮含量

3种种植模式下不同深度农田土壤NO₃-N和NH₄-N含量如图3所示。水稻田、蔬菜地和葡萄园0~4 m土壤NO₃-N平均含量分别为3.95、13.88和16.24 mg·kg⁻¹,蔬菜地和葡萄园显著高于水稻田。水稻田各层次土壤NO₃-N浓度较低,无明显差异。葡萄园和蔬菜地土壤NO₃-N浓度较低,无明显次差异,在0~1.5 m的深度内,随采样深度增加,NO₃-N浓度急剧下降; 1.5~4 m的深度范围内,NO₃-N浓度较低,随深度无显著变化,未见NO₃-N

在深层土壤存在累积现象。

土壤NH⁴-N变化范围为0.38~8.72 mg·kg⁻¹,高 浓度NH⁴-N多出现于底层土壤(3~4 m),但土壤 层次之间差异不显著(P>0.05)。水稻田、蔬菜地 和葡萄园0~4 m土壤NH⁴-N平均含量分别为4.13、 3.73和3.49 mg·kg⁻¹,三者之间无显著差异。

2.3 三种种植模式下不同深度地下水NO₃-N浓度

3种种植模式下,不同深度地下水NO₃-N浓度 如图4所示。总体而言,种植模式和采样深度显 著影响NO₃-N浓度,其中,水稻田地下水NO₃-N

图3 农田土壤NO₃-N和NH₄-N含量

Fig. 3 Soil NO₃⁻-N and NH₄⁺-N concentrations in soil profile in paddy field, vegetable field and vineyard

浓度不存在剖面差异,各深度NO₃-N浓度均低于1 mg·L⁻¹。而葡萄园和蔬菜地1 m处地下水NO₃-N浓 度显著高于水稻田(P<0.001)。但NO₃-N浓度随 着采样深度增加逐渐降低,至4 m处,3种植模式 下农田NO₃-N浓度差异不显著(P>0.05)。地下 水NO₃-N浓度季节变化趋势见图5,对于水稻田而 言,小麦种植季(11月一次年4月)地下水NO₃-N NO₅-N/(mg·L⁻¹)

浓度高于水稻季(6月—12月),但差异不显著 (P>0.05)。葡萄园和蔬菜地1 m和2 m处地下水 NO₃⁻N浓度则存在明显的季节变化,高浓度NO₃⁻N 主要出现在春夏季(2月—7月),在此期间, NO₃⁻N浓度呈现出脉冲式变化,观测期内出现多次 峰值,最高值达81.9 mg·L⁻¹。秋冬季(10月—12 月)NO₃⁻N浓度趋于稳定,维持在较低浓度,其中 1 m和2 m处NO₃⁻N < 2 mg·L⁻¹, 3 m和4 m NO₃⁻N 浓度均低于1 mg·L⁻¹,与水稻田无异

2.4 三种种植模式下不同深度土壤反硝化速率

土壤反硝化速率范围为 $0.16 \sim 0.98 \ \mu g \cdot g^{-1} \cdot d^{-1}$, 最高值出现在葡萄园 $0 \sim 1 \ m \pm E$ (图6)。3种种 植模式下, 土壤反硝化速率随着采样深度增加逐 渐降低。 $0 \sim 1 \ m \pm E$ 反硝化速率为 $3 \sim 4 \ m \pm E$ 的 $3 \sim 5$ 倍。3种农田土壤 $0 \sim 1 \ m \pm E$ 反硝化速率差 异显著(P < 0.05), 至 $3 \sim 4 \ m \pm E$,反硝化速率 已无差异。 $0 \sim 4 \ m \pm E$ 反硝化速率的平均值分别 为0.30(水稻田)、0.37(蔬菜地)和0.44(葡萄 园) $\mu g \cdot g^{-1} \cdot d^{-1}$,无显著差异(P > 0.05)。

2.5 地下水中N₂O和ex_{N2}浓度

3种种植模式下地下水N₂O浓度随着采样深度 增加逐渐降低(图7),其中,水稻田各深度N₂O 浓度差异不显著(P>0.05)。相同深度,N₂O浓度 由大到小依次为葡萄园、蔬菜地、水稻田。水稻 田地下水N₂O浓度无明显季节变化,葡萄园和蔬菜 地1 m和2 m处地下水N₂O浓度存在明显的季节变 化和年际差异(图8),高浓度N₂O主要出现在春

Fig. 5 Temporal variation of groundwater NO₃-N relative to depth and land use type

夏季(P<0.01)。

地下水ex_{N2}浓度由高到低依次为葡萄园、蔬菜 地、水稻田,但ex_{N2}浓度随采样深度变化不一,其 中,水稻田地下水ex_{N2}浓度随采样深度而增加,而 在葡萄园和蔬菜地,随着采样深度增加,ex_{N2}浓度 呈现先增(1~2 m)后减(2~4 m)的趋势(图 7)。葡萄园和蔬菜地地下水ex_{N2}均呈现明显的季 节变化,其中高浓度值均出现在春夏季,水稻田地 下水ex_{N2}浓度季节变化不明显(图8)。

2.6 反硝化对地下水NO3-N的去除效率

反硝化对地下水NO₃-N的去除效率(RE)如 图9所示,在1~4 m深度范围内,水稻田、蔬菜地 和葡萄园RE分别为65%、83%和76%。RE随着采 样深度的增加而升高,表明反硝化对NO₃-N的去除 更为彻底。同一采样深度,RE值也存在显著差异 (P<0.01),由高到低依次为蔬菜地、葡萄园、 水稻田。相关性分析表明,RE与地下水NH⁴₄-N和 DOC正相关,与NO₃-N和DO负相关(表1)。

3 讨 论

3.1 不同深度土壤及地下水NO₃-N浓度

水稻田转变为葡萄园和蔬菜地之后,表层土壤 及地下水NO₃-N显著升高的原因如下:首先,水稻 种植过程中,施肥后稻田表层土壤长期处于淹水状 态,反硝化非常强烈,NO₃-N在被运移至地下水之 前已经被反硝化消耗掉^[9],因此,太湖地区稻田 NO₃-N的淋溶损失非常少^[18]。稻田改为旱作的葡 萄园和蔬菜地之后,表层土壤长期处于干燥状态, 促进了硝化作用,抑制了反硝化过程,造成NO₃-N 累积于表层土壤。

Fig. 8 Temporal variability of groundwater N_2O and $ex_{\scriptscriptstyle N2}$ relative to depth and land use type

其次,3种种植模式下,虽然氮肥施用量不存 在显著差异,但施肥方式却大为不同。在葡萄园, 57%氮肥(340 kg·hm⁻²)作为基肥在3月份一次性 施入,剩余氮肥(250 kg·hm⁻²)在接下来的4月—6 月当作追肥施用。由于葡萄喜欢干旱的土壤环境, 葡萄园施肥通常在雨前或灌溉前进行,短时间内

注: RE=(N₂O+ex_{N2})/(N₂O+ex_{N2}+NO₃⁻-N),表示反硝化对地下水NO₃⁻-N去除效率。下同 Note: RE is the ratio between (N₂O+ ex_{N2}) and(N₂O+ ex_{N2}+ NO₃⁻-N), characterize the extent of NO₃⁻-N elimination by denitrification. The same below 图9 反硝化对地下水NO₃⁻-N去除效率(RE)

Fig. 9 Removal efficiency of groundwater NO3-N by denitrification relative to depth and land use type

表1	地下水ex _{N2} 、	N ₂ O和RE与各参数之间的相关性	(Spearman)
----	-----------------------	-------------------------------	------------

coefficient and significance matrix between the variables

	Table 1 Spearman correction coefficient and significance matrix between the variables									
	$NO_{3}^{-}-N/(mg \cdot L^{-1})$	$NH_4^+ - N/(mg \cdot L^{-1})$	$DOC/(mg \cdot L^{-1})$	$DO/(mg \cdot L^{-1})$	T/°C	Eh/mV	pН	$Cond/(mS \cdot cm^{-1})$		
ex _{N2}	0.251**	0.214**	0.155**	0.021 ^{ns}	0.033 ^{ns}	0.066*	0.144**	0.359**		
N_2O	0.431**	0.019 ^{ns}	-0.024^{ns}	0.104**	0.046 ^{ns}	0.326**	0.161**	0.190**		
RE	-0.770^{**}	0.377**	0.328**	-0.198**	0.055 ^{ns}	-0.438**	-0.020 ^{ns}	0.366**		

注: DOC表示溶解性有机碳; DO表示溶解氧; T表示温度; Eh表示氧化还原电位; Cond表示电导率。*表示显著性水平为 0.05; **表示显著性水平0.01; ns表示差异不显著Note: DOC is dissolved carbon; DO is dissolved oxygen; T is temperature; Eh is oxidation reduction potential; Cond is conductivity; * Correlation is significant at the 0.05 level; ** Correlation is significant at the 0.01 level; ^{ns} Not significant

(3月一6月)投入大量氮肥,加上太湖地区春夏 季多雨的气候加剧了NO₃-N的淋溶,因此,太湖地 区果园土壤及表层地下水NO₃-N通常高于菜地和稻 田^[2-4]。尤其是在3月份,此时葡萄正处于生长恢 复期,对营养的需求不旺盛,大量基肥的施用,不 但增加了土壤中NO₃-N的累积^[19],有机肥带入的 大量有机物质还会促进表层土壤硝化过程,加剧 了NO₃-N的淋溶,因此,春季葡萄园地下水NO₃-N 远高于其他时期。蔬菜地一般是在播种前施用基 肥,蔬菜生长季少量或者不追施氮肥,因此,高 浓度NO₃-N均出现在蔬菜播种期。虽然蔬菜地的 施肥量与葡萄园相当,但单次施肥量较少(约为 120 kg·hm⁻²),并且蔬菜种植过程中浇水较为频

繁,更为湿润的水分条件使得蔬菜地表层土壤反硝 化要强于葡萄园,因此,蔬菜地表层土壤及地下水 NO₃-N浓度低于葡萄园。

种植模式的转变还会改变表层土壤的氮素转 化过程, 王敬等^[20]研究表明, 太湖地区稻麦轮作 农田转变为葡萄园后, 提高了土壤硝化速率, 导 致更多的NO₃-N累积于土壤中。由此可见, 太湖地 区水稻田改为旱作的葡萄园和蔬菜地, 不仅改变 了氮肥施用方式, 同时也改变了表层土壤氮素转 化过程, 二者共同作用增加了NO₃-N在表层土壤 累积。

与其他研究者在中国华北及西北高氮投入农 田的研究结果类似,本研究也发现蔬菜地和葡萄园 表层土壤存在NO₃-N累积现象^[6],长三角地区氮 肥投入量高,降水量大,加上较低的地下水位(图 2),表层累积的NO₃-N极易向下迁移,更易对地 下水水质构成威胁,因此,在作物施肥期可观察到 地下水NO₃-N浓度急剧上升的现象,但施肥过后, NO₃-N浓度迅速下降,并维持较低值,直至下一次 施肥。本研究还发现随着采样深度的增加,土壤及 地下水中NO₃-N浓度急剧降低,至4 m处,3种种植 模式下土壤和地下水NO₃-N已无差异。可见,虽然 长三角地区高氮投入农田如蔬菜地和葡萄园表层土 壤NO₃-N浓度非常高,但深层土壤及地下水未出现 NO₃-N累积的现象,可能与该地区地下水中存在较

3.2 反硝化对NO₃-N的去除作用

强的反硝化作用有关。

通过添加一定量NO₃-NN作为反应底物,以此 获得的反硝化速率,能在一定程度上反映土壤或沉 积物的反硝化活性,常被用于反硝化的剖面分布特 征及影响因子的比较研究。通常表层土壤反硝化速 率高于底层土壤,这主要是因为与底层土壤相比, 表层土壤氮源和碳源更为丰富,微生物活性也更 高^[21]。虽然本研究3~4 m土层反硝化速率(0.16 $\mu g \cdot g^{-1} \cdot d^{-1}$)显著低于0~1 m土层,但与其他研究 者在1.2~1.3 m土层测定的反硝化速率相当^[22], 高于Khalil 和Richards^[23]利用MIMS法测定的两 种草地0.6~0.7 m土层反硝化速率(0.11和0.13 $\mu g \cdot g^{-1} \cdot d^{-1}$), 说明本研究区域深层土壤仍存在较 强的反硝化活性。Fellows等^[24]发现3.5 m深处土 壤反硝化能有效去除NO5-N,在2天的时间内,去 除率能达100%; Jarvis和Hatch^[25]发现深达7 m的 土壤仍有较高的反硝化活性,表明反硝化微生物普 遍存在于底层土壤中,对减少NO3-N淋溶具有重要 意义。

有研究者认为,与其他高氮投入区相比,长 三角地区稻田地下水NO₃-N浓度较低,可能与该 地区稻田土壤存在较强的反硝化作用有关^[7]。例 如,Bu等^[10]利用NO₃-N消失法发现太湖地区农 田缓冲带能消减67.5%~88% 地下水NO₃-N,同时 伴随着δ¹⁵N-NO₃-N升高,据此推断反硝化是消除 地下水NO₃-N的主要机制。但由于研究方法的限 制,已有的研究仅能证明反硝化的发生,无法量 化其对NO₃-N的去除效率^[10-11]。本研究利用N₂直 接定量法,首次量化了反硝化对地下水NO₃-N的 去除效率,在0~4 m的剖面范围内,3种种植模式 下反硝化对NO₃-N去除效率(RE)分别为65%、 83%和76%。

土壤及地下水反硝化去除NO₃⁻⁻N的效率与地 下水环境有关,在一些反硝化活性较高的区域, RE可达99%^[13],而在反硝化活性弱的地区,RE 仅为4%^[26]。RE较高的区域多为河岸和自然湿 地,而氮负荷量大的农田及牧场,由于迁移进入地 下水中的NO₃⁻N量大,反硝化去除能力有限,RE 多低于50%,有的甚至低于10%^[27]。相关分析表 明,RE与NO₃⁻-N存在显著的负相关关系,表明反 硝化是去除地下水NO₃⁻-N的重要机制(图10)。长 三角地区农田氮素投入高,但由于地下水反硝化作 用强烈,NO₃⁻-N累积的重要原因。

3.3 地下水反硝化的影响因素

影响反硝化速率的因素有很多,在地下水环 境中,NO₃⁻N、DO和DOC通常是影响反硝化的 主要原因^[8]。本研究相关分析结果也表明, ex_{N2} 与NO₃⁻N、NH₄⁴-N和DOC最为相关(表1)。一 般认为当DO>2 mg·L⁻¹、DOC<10 mg·L⁻¹时,地 下水反硝化会受到抑制^[8]。例如,有研究发现 在地下水DO高达6.5~10.4 mg·L⁻¹的区域,反硝 化仅能去除4%~9%的地下水NO₃⁻N,这与高浓 度DO抑制了反硝化有关^[26]。而本研究地下水 DO含量较低(<2 mg·L⁻¹),有利于反硝化进行 (图10)。

地下水丰富的有机物质也是该地区反硝化能 有效去除地下水NO₃-N的重要原因。丰富的有机物 质不但可为微生物的活动提供碳源,同时也能消耗 地下水DO,创造一个厌氧环境,从而有利于反硝 化的进行。地下水中DOC含量通常低于5 mg·L⁻¹, 因此,碳源的缺乏通常是限制地下水反硝化的主要 因子^[8]。本研究中地下水DOC含量为14.2~29.7 mg·L⁻¹,远高于其他研究报道的结果(图10)。

根据化学计量法测算,1 mg DOC可消耗 0.93 mg NO₃-N,据此测算,本研究中地下水 DOC含量足够反硝化微生物所需,理论上NO₃-N 去除效率应当接近100%,但实际NO₃-N去除率 仅有65%~83%。有研究发现地下水DOC含量仅 为2 mg·L⁻¹时,反硝化对地下水NO₃-N的去除率 (88%~95%)却高于本研究^[26-28]。本研究也发

Fig. 10 Correlation of RE with NO₃-N, DO and DOC concentration in groundwater

现,虽然葡萄园地下水中DOC含量高于蔬菜地, 但NO₃-N去除效率却低于蔬菜地(图9),这说明 地下水中DOC含量高并不表示反硝化活性也高。 Siemens等^[29]认为地下水中反硝化微生物仅能利 用来自作物根系分泌的有机物质,来自表层土壤 分解产生的DOC难以被微生物利用。还有研究发 现,土壤和沉积物反硝化速率与DOC含量相关性 并不显著,而与颗粒态有机碳含量关系密切^[30]。 此外,不同种植模式下,根系深浅及根系分泌物种 类存在差异,也会影响地下水反硝化过程^[31]。这 说明与浓度高低相比,DOC的生物有效性对地下 水反硝化活性更为重要。

土壤类型也是影响反硝化活性的重要因素。本研究区域表层土壤多为壤质黏土,部分深层次土壤 (2~3m)为黏壤土。由于土壤黏粒含量高,造成 土壤饱和导水率较低,NO₃-N随水运移速度较慢, 增加了反硝化进行的时间,有利于反硝化对NO₃-N 的去除^[8]。

3.4 地下水反硝化对区域氮素平衡的影响

NO₃⁻N从地表淋溶进入地下水后,会被反硝化 作用消耗,产生的N₂和N₂O因为土壤阻滞与水压的 存在,短时间内无法逸散至大气中,因此,在地 下水中能观测到高浓度气态氮(主要是ex_{N2})(图 11)。在地下水反硝化较为强烈的区域,气态氮的 浓度甚至超过了NO₃⁻N浓度^[13]。这些累积在地下 水中的气态氮主要通过地下水交换进入临近河流, 而不是向上扩散进入大气环境中。从区域氮素循环 角度而言,这些气态氮是氮素淋溶损失的一部分。

Fox等^[13]将以溶解性气态氮形式损失的氮 定义为"消失的氮(Missing nitrogen)",认 为这一部分氮对于评估区域氮素平衡十分重要。 Gardner等^[28]利用经验模型估算了一个小流域 氮素的各种去向,发现如果将"消失的氮"纳 入其中,将极大地提高模型的准确度。就本研

Fig. 11 Mean concentrations of ex_{N2} , NH_4^+ -N, NO_3^- -N and N_2O in groundwater relative to depth and land use type

http: //pedologica. issas. ac. cn

究而言,在葡萄园和蔬菜地,65%~83%地下水 NO₃-N被反硝化所消耗,以ex_{N2}的形式存在于地下 水。鉴于NO₃-N淋溶损失是太湖地区旱作农业氮 素最大的损失途径(12%~20%)^[32],由地下水 反硝化造成的气态氮素流失也将非常可观,但现 有的研究在计算氮素淋溶损失时,测定的地下水 NO₃-N实际是经反硝化消耗后残留的NO₃-N,并 非NO₃-N初始浓度,因而会低估NO₃-N淋溶损失 量^[30]。

朱兆良^[33]曾对我国农田化肥氮去向进行了评估,认为有13%的氮素去向不明,以溶解性气态氮流失的氮可能就是尚不明确的去向之一。对于NO₃-N淋溶损失严重的果园和蔬菜地,明确"消失的氮"的量将有助于区域氮素损失的准确估算。N₂直接定量法通过ex_{N2}浓度反推地下水NO₃-N 初始浓度,有助于更为准确估算NO₃-N淋溶损失量^[28]。

4 结 论

地下水NO₅-N浓度的时空变化规律表明,长 三角高氮投入农田土壤剖面未出现NO3-N累积的现 象,但是水稻田改为葡萄园和蔬菜地后增加了表层 土壤NO3-N浓度,造成3种农田地下水NO3-N浓度 剖面分布特征存在明显差异。其中,水稻田地下水 NO₃-N始终较低,不同深度之间无差异。蔬菜地和 葡萄园1 m处地下水NO3-N浓度远高水稻田, 但随 着深度增加NO5-N浓度急剧下降, 至4 m处与水稻 田相同。蔬菜地和葡萄园高浓度NO5-N均出现在作 物施肥期,施肥过后,NO₃-N浓度迅速降低,并一 直维持较低值,直至下次施肥的发生,这与长三角 地区地下水中较强的反硝化活性有关。利用N。直接 定量法,本文首次量化了反硝化对地下水NO₃-N的 去除效率,发现在0~4 m深度范围内,3种种植模 式下反硝化对NO5去除效率分别为65%(水稻田)、 83%(蔬菜地)和76%(葡萄园),表明反硝化是长三 角地区地下水NO₃-N去除的主要机制。这主要是因 为研究区域低DO和高DOC的地下水环境有利于反 硝化的进行。由于反硝化活性较高,在各层地下水 中均能观测到高浓度ex_{N2}和N₂O。这些溶解性气态 氮主要通过地下水流进入临近水域,未纳入当前的 区域氮素平衡体系。在反硝化较为强烈的葡萄园和 蔬菜地,溶解性气态氮流失量与NO₃-N淋溶损失量 相当,是不可忽略的氮素损失途径。

参考文献

- [1] 马立珊, 钱敏仁. 太湖流域水环境硝态氮和亚硝态氮 污染的研究. 环境科学, 1987, 8(2): 60—65
 Ma L S, Qian M R. Nitrate and nitrite pollution in water evironmental inTaihu lake basin (In Chinese). Environmental Sciences, 1987, 8(2): 60—65
- [2] 程谊, 贾云生, 汪玉, 等. 太湖竺山湾小流域果园养 分投入特征及其土壤肥力状况分析. 农业环境科学学 报, 2014, 33 (10): 1940—1947
 Cheng Y, Jia Y S, Wang Y, et al. Nutrient inputs and soil fetility status in orchards of Zhushan Bay in Taihu Lake watershed (In Chinese). Journal of Agro-Environment Science, 2014, 33 (10): 1940—1947
- [3] 闵炬,陆扣萍,陆玉芳,等.太湖地区大棚菜地土 壤养分与地下水水质调查.土壤,2012,44(2): 213—217
 Min J, Lu K P, Lu Y F, et al. Investigation of soil fetility and quality of ground water in greenhouse

vagetable fields of Tai Lake region (In Chinese). Soils, 2012, 44 (2): 213-217

 [4] 徐力刚,王晓龙,崔锐,等.不同农业种植方式对土 壤中硝态氮淋失的影响研究.土壤,2012,44(2): 225—231
 Xu L G, Wang X L, Cui R, et al. Study of nitrate

nitrogen leaching chractersistcs in different agricultural planted farmland (In Chinese). Soils, 2012, 44 (2): 225-231

- [5] Ju X, Kou C, Zhang F, et al. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environmental Pollution, 2006, 143

 (1): 117-125
- [6] Zhou J, Gu B, Schlesinger W H, et al. Significant accumulation of nitrate in chinese semi-humid croplands. Scientific Reports, 2016 (6): Article number 25088
- Gu B, Ge Y, Chang S X, et al. Nitrate in groundwater of China: Sources and driving forces.
 Global Environmental Change, 2013, 23 (5): 1112-1121
- [8] Rivett M O, Buss S R, Morgan P, et al. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Research, 2008, 42 (16): 4215-4232

- [9] Li X, Xia L, Yan X. Application of membrane inlet mass spectrometry to directly quantify denitrification in flooded rice paddy soil. Biology and Fertility of Soils, 2014, 50 (6): 891-900
- [10] Bu X L, Zhao C X, Han F Y, et al. Nitrate reduction in groundwater and isotopic investigation of denitrification in integrated tree-grass riparian buffers in Taihu Lake watershed, eastern China. Journal of Soil and Water Conservation, 2017, 72 (1): 45-54
- [11] 夏永秋,李跃飞,张心昱,等.太湖地区稻作系统不同水体硝态氮同位素特征及污染源.中国环境科学,2014,34(2):505-510
 Xia Y Q, Li Y F, Zhang X Y, et al. Nitrogen
 - isotopic characteristics and source attribution of nitrate in different water bodies in the paddy rice system of the Taihu Lake region (In Chinese). China Environmental Sciences, 2014, 34 (2): 505-510
- Blicher-Mathiesen G, McCarty G, Nielsen L.
 Denitrification and degassing in groundwater estimated from dissolved dinitrogen and argon. Journal of Hydrology, 1998, 208 (1/2): 16-24
- Fox R, Fisher T, Gustafson A, et al. Searching for the missing nitrogen: Biogenic nitrogen gases in groundwater and streams. The Journal of Agricultural Science, 2014, 152 (S1): 96-106
- Kana T M, Darkangelo C, Hunt M D, et al. Membrane inlet mass spectrometer for rapid highprecision determination of N₂, O₂, and Ar in environmental water samples. Analytical Chemistry, 1994, 66 (23): 4166-4170
- [15] Weymann D, Well R, Flessa H, et al. Groundwater
 N₂O emission factors of nitrate-contaminated aquifers as derived from denitrification progress and N₂O accumulation. Biogeosciences, 2008 (5): 1215-1226
- Trimmer M, Risgaard-Petersen N, Nicholls J C, et al. Direct measurement of anaerobic ammonium oxidation (anammox) and denitrification in intact sediment cores. Marine Ecology-Progress Series, 2006, 326: 37-47
- Terry R, Tate Iii R, Duxbury J. The effect of flooding on nitrous oxide emissions from an organic soil. Soil Science, 1981, 132 (3): 228-232
- [18] 朱兆良,范晓晖,孙永红,等.太湖地区水稻土上 稻季氮素循环及其环境效应.作物研究,2004,18
 (4):187-191

Zhu Z L, Fan X H, Sun Y H, et al. The nitrogen cycle and environmental effects in rice paddy in Taihu Lake region (In Chinese). Crop Research, 2004, 18 (4): 187–191

- [19] Di H, Cameron K. Nitrate leaching in temperate agroecosystems: Sources, factors and mitigating strategies. Nutrient Cycling in Agroecosystems, 2002, 64 (3): 237-256
- [20] 王敬,张金波,蔡祖聪.太湖地区稻麦轮作农田改葡 萄园对土壤氮转化过程的影响.土壤学报,2016,53 (1):166—176
 Wang J, Zhang J B, Cai Z C. Effects of conversion of paddy field into vineyard on soil nitrogen transformation in the Taihu Lake region of China (In Chinese). Acta Pedologica Sinica, 2016, 53 (1): 166—176
- Yeomans J C, Bremner J M, McCarty G W.
 Denitrification capacity and denitrification potential of subsurface soils. Communications in Soil Science and Plant Analysis, 1992, 23 (9/10): 919-927
- [22] Jahangir M M R, Khalil M I, Johnston P, et al. Denitrification potential in subsoils: A mechanism to reduce nitrate leaching to groundwater. Agriculture, Ecosystems & Environment, 2012, 147: 13-23
- [23] Khalil M I, Richards K G. Denitrification enzyme activity and potential of subsoils under grazed grasslands assayed by membrane inlet mass spectrometer. Soil Biology and Biochemistry, 2011, 43 (9): 1787-1797
- [24] Fellows C S, Hunter H M, Eccleston C E A, et al. Denitrification potential of intermittently saturated floodplain soils from a subtropical perennial stream and an ephemeral tributary. Soil Biology and Biochemistry, 2011, 43 (2): 324-332
- [25] Jarvis S C, Hatch D J. Potential for denitrification at depth below long-term grass swards. Soil Biology and Biochemistry, 1994, 26 (12): 1629-1636
- [26] McAleer E B, Coxon C E, Richards K G, et al. Groundwater nitrate reduction versus dissolved gas production: A tale of two catchments. Science of the Total Environment, 2017, 586: 372-389
- Zhou W, Ma Y, Well R, et al. Denitrification in shallow groundwater below different arable land systems in a high nitrogen-loading region. Journal of Geophysical Research: Biogeosciences, 2018, 123: 991-1004
- Gardner J R, Fisher T R, Jordan T E, et al.
 Balancing watershed nitrogen budgets: Accounting for biogenic gases in streams. Biogeochemistry, 2016, 127 (2/3): 231-253
- [29] Siemens J, Haas M, Kaupenjohann M. Dissolved organic matter induced denitrification in subsoils and aquifers? Geoderma, 2003, 113 (3): 253-271

- [30] Well R, Höper H, Mehranfar O, et al. Denitrification in the saturated zone of hydromorphic soils-laboratory measurement, regulating factors and stochastic modeling. Soil Biology and Biochemistry, 2005, 37 (10): 1822-1836
- [31] Jahangir M M, Minet E P, Johnston P, et al. Mustard catch crop enhances denitrification in shallow groundwater beneath a spring barley field. Chemosphere, 2014, 103: 234-239
- [32] Ti C, Luo Y, Yan X. Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China. Environmental Science and Pollution Research, 2015, 22 (23): 18508—18518
- [33] 朱兆良.中国土壤氮素研究.土壤学报,2008,45
 (5):778-783
 Zhu Z L. Research on soil nitrogen in China (In Chinese). Acta Pedologica Sinica, 2008, 45 (5):778-783

Groundwater Nitrate Removal through Denitrification under Farmland in Yangtze River Delta

YAN Xiaoyuan ZHOU Wei

(State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China)

Abstract [Objective] The Yangtze River Delta is one of the areas, where the input of nitrogen(N) fertilizer is very high, in China, but it is not quite clear whether nitrate (NO_3^--N) has accumulated in the soil profile in the region as in the North China Plain. [Method] In the present study, two-year field observation combined with indoor incubation experiments were carried out to investigate distribution of NO₃⁻-N and denitrification capacity in subsoil and groundwater as affected by arable land systems. [Result] The groundwater NO_3 -N concentration in 1 ~ 4 m depth was varied significantly with type of the cultivation system. In the paddy field, groundwater NO_3^--N was always low (<1 mg·L⁻¹), and did not vary much with depth. While in the vegetable field and vineyard, the average NO₃⁻N concentration reached 5.6 and 17.5 mg·L⁻¹ in 1 m depth, but the NO₃⁻N concentration dropped sharply with the depth and to a very low concentration (<1 mg·L⁻¹) in 4 m depth which was comparable to that in the paddy field. High groundwater NO₃-N were only observed in vegetable field and vineyard during the fertilization period and NO₃-N was low in non-fertilization period. The findings indicated that no apparent NO₃-N accumulation in the farmland soil profile occurs in the Yangtze River Delta. The indoor incubation experiment using undisturbed soil columns shows that denitrification activity was high through the $0 \sim 4$ m soil profile. The removal efficiency (RE) of NO₃-N by denitrification was estimated by direct determination of N₂ and N₂O, products of denifrifiction, in groundwater. The RE increased with depth and removed 86%, 93% and 89% of the groundwater NO₃⁻N in 4 m depth in paddy field, vegetable field and vineyard, respectively. [Conclusion] All the findings in this experiment demonstrated that denitrification can effectively remove groundwater NO3-N, which explains why NO3-N does not accumulate in farmland soil profiles in Yangtze River Delta. Highly dissolved N₂ produced by denitrification accumulate in groundwater, and flow into nearby water bodies mainly via groundwater. In the case of vegetable field and vineyard, soil N loss in the form of dissolved gaseous N is nearly equal to that of NO₃⁻-N and hence an important fate of soil N, which deserves close attention.

Key words Groundwater denitrification; Nitrate attenuation; Loss as dissolved gases N; Farmland systems; Direct N₂ measuring method