DOI: 10.11766/trxb201911210581

孙昭安,赵诣,朱彪,陈清,曹慧,何敏毅,孟凡乔.玉米生长对石灰性土壤无机碳与有机碳释放的根际效应[J].土壤学报,2021,58 (4):998-1007.

SUN Zhaoan, ZHAO Yi, ZHU Biao, CHEN Qing, CAO Hui¹, HE Minyi, MENG Fanqiao. Rhizosphere Effects of Maize on Inorganic and Organic Carbon Release in Calcareous Soils[J]. Acta Pedologica Sinica, 2021, 58 (4): 998–1007.

玉米生长对石灰性土壤无机碳与有机碳释放的根际效应*

孙昭安^{1,2},赵 诣²,朱 彪³,陈 清²,曹 慧¹,何敏毅²,孟凡乔^{2†}

(1. 潍坊学院生物与农业工程学院,山东省高校生物化学与分子生物学重点实验室,山东潍坊 261061;2. 中国农业大学资源与环境学院, 农田土壤污染防控与修复北京市重点实验室,北京 100193;3. 北京大学生态研究中心,城市与环境学院,地表过程分析与模拟教育部重 点实验室,北京 100871)

摘 要:利用 IsoSource 模型三源区分玉米根际土壤 CO₂释放来源(根源呼吸、土壤无机碳与有机碳释放),研究玉米根际 效应对石灰性土壤无机碳与有机碳释放的影响。在玉米拔节期(24~53 d)、抽穗期(54~66 d)和灌浆期(67~99 d)末 分别破坏性取样,测定根系、土壤有机碳和无机碳的¹³C 含量等指标;自拔节期开始至生育期末,每隔 3d 测定种植玉米与 不种玉米的土壤呼吸 CO₂量以及¹³C-CO₂含量。结果表明,利用 IsoSource 软件三源区分土壤 CO₂的排放,土壤 CO₂排放累 计量以根源呼吸贡献为主(48.0%),其次为土壤有机碳(31.2%),最小为土壤无机碳(20.8%)。玉米对土壤无机碳与有 机碳释放均表现为正根际效应,从拔节期至生育期末,种植玉米土壤有机碳与无机碳的释放分别较不种植土壤多 65%和 156%。土壤无机碳对于稳定全球碳库和调节大气 CO₂浓度具有重要意义,若忽视石灰性土壤无机碳对土壤 CO₂释放的贡献,有可能高估土壤有机碳的分解。

Rhizosphere Effects of Maize on Inorganic and Organic Carbon Release in Calcareous Soils

SUN Zhaoan^{1, 2}, ZHAO Yi², ZHU Biao³, CHEN Qing², CAO Hui¹, HE Minyi², MENG Fanqiao^{2†}

(1. Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, College of Biological and Agricultural Engineering, Weifang University, Weifang, Shandong 261061, China; 2. Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; 3. Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China)

Abstract: [Objective] In calcareous soil, CO_2 in rhizosphere soil comes from at least three sources, i.e., respiration of roots, decomposition of soil organic C (SOC) and dissolution of soil inorganic C (SIC). Owing to technical limitations in partitioning

^{*} 国家自然科学基金项目(31370527,0870414)和潍坊学院博士科研启动基金项目(2019BS12)资助 Supported by the National Natural Science Foundation of China(Nos. 31370527,0870414) and Initial Scientific Research Fund of Doctors in Weifang University(No.2019BS12)

 ^{*} 通讯作者 Corresponding author, E-mail: mengfq@cau.edu.cn
 作者简介:孙昭安,男,山东济宁人,博士,讲师,主要研究方向为农田土壤碳氮循环。E-mail: sun.zhaoan@163.com
 收稿日期: 2019–11–21;收到修改稿日期: 2020–05–20;网络首发日期(www.cnki.net): 2020–07–28

 CO_2 by source, how rhizosphere effects affect SOC decomposition and SIC dissolution is still an issue not yet clarified. Therefore, an in-lab pot experiment using calcareous soil collected from a farmland of North China to grow maize in an attempt to investigate rhizosphere effects of summer maize plants on release of CO_2 from SOC and SIC, using the IsoSource model to partition CO_2 in the rhizosphere by source. [Method] At the end of the elongation (24-53 days), heading (54-66 days) and grain-filling (67-99 days) stages of the summer maize, destructive sampling of maize rhizospheres was carried out separately for analysis of content of ¹³C from root, SOC and SIC, separately. During the period from the beginning of the elongation stage to the end of the maize growth stage, soil respiration and ¹³C content in the soil with or without maize planted was monitored at a three-day interval with the aid of the IsoSource software. [Result] Results show that to the total soil CO_2 emission, root respiration contributed 48.0%, SOC did 31.2% and SIC did 20.8%. During the period from the elongation stage to the end of the summer maize season, CO_2 emission from SOC and from SIC in the pot with maize planted was 65% and 156% higher than their respective ones in the pot without maize planted. [Conclusion] This experiment indicates that SIC plays a significant role in stabilizing global C pool and regulating atmospheric CO_2 concentration. If the contribution of SIC to soil CO_2 emission in calcareous soils is ignored, the amount of CO_2 from SOC decomposition may be overestimated, which will inevitably affect quantification of the priming effects of SOC. This study will help reduce uncertainties in of soil C budgeting for farmlands of calcareous soil in North China.

Key words: Rhizosphere effects; Three-source partitioning of soil CO₂; Decomposition of soil organic carbon; Dissolution of soil inorganic carbon; Root-derived respiration

在石灰性土壤上,以往研究认为土壤无机碳(soil inorganic carbon, SIC)比较稳定,土壤 CO₂释放仅来自土壤有机碳(soil organic carbon, SOC)分解,较少考虑无机碳酸盐溶解对土壤 CO₂释放的贡献,尤其随着氮肥的高投入施用,导致酸化作用,加剧SIC 的溶解^[1-3]。孟延等^[1]通过土壤培养试验发现,在整个培养期内的SIC 释放比例高达 1/2 以上,并且施用氮肥加剧土壤无机碳的释放。在华北平原农田石灰性土壤上,SIC 含量较高(5~10 C g·kg⁻¹),几乎与SOC 含量接近,对于土壤碳释放有重大影响^[4-5],而此前对该地区 SIC 分解研究较少,有必要分析该区域 SIC 溶解对土壤 CO₂释放的贡献。

考虑到土壤 SOC 库太大, 短期内 SOC 矿化量相 对土壤原有 SOC 含量而言太小,不能通过直接测定 SOC 含量的变化来研究 SOC 的短期周转,而是利用 测定土壤 CO₂排放量来量化 SOC 的矿化程度^[6]。然 而,大部分土壤覆盖植被,其根源呼吸(根系呼吸 和根系沉积物的分解)对土壤 CO₂排放也有一定的 贡献,因此种植植物的土壤 CO₂排放包括根源呼吸 和土壤微生物呼吸^[7]。在富含碳酸盐的石灰性土壤 上,土壤本身碳的释放不仅包括 SOC 矿化,还包括 无机碳酸盐溶解和分解,导致有植物土壤的 CO₂释 放源达到三个,即根源呼吸、SOC 分解和 SIC 溶解 和分解。在石灰性土壤上,区分与量化根际土壤 CO₂ 组分已成为全球变化生态学研究的难点,目前还缺 乏系统研究^[8-9]。这是由于根据同位素线性混合模 型,n个同位素,仅适用于区分与量化 n+1 个源的 贡献比例^[10]。对于源头数量超过 n+1 个的研究情形, IsoSource 模型可以计算潜在的贡献比例^[11]。如 Plestenjak 等^[12]基于大气 CO₂、SOC 与 SIC 源之间 的 δ^{13} C 值差异,利用 IsoSource 模型三源区分石灰 性土壤 CO₂的排放,定量 SOC、SIC 和大气 CO₂来 源的贡献比例。

本研究以华北地区农田石灰性土壤 CO₂释放为 研究对象,采用玉米盆栽试验,利用根系碳、土壤 有机碳与无机碳之间的δ¹³C差异,基于¹³C 同位素 质量守恒原理,采用 IsoSource 模型分析¹³C 自然丰 度、三源区分土壤 CO₂的组分特征,进而量化根源 呼吸、SOC 分解和 SIC 溶解和分解对土壤 CO₂释放 的贡献率,明确玉米根际效应对石灰性土壤无机碳 与有机碳释放的影响,以期为华北平原农田土壤温 室气体减排与土壤肥力提升提供理论依据。

1 材料与方法

1.1 夏玉米种植

试验于中国农业大学西校区温室进行。所选 PVC 盆大小为直径 20 cm×高度 35 cm。供试土壤取

自中国农业大学曲周试验站农田表层土壤(0~ 20 cm), SOC 和 SIC 的 δ¹³C 值分别为-22.2‰和 -3.4‰。供试土壤为始成土,具有粉质壤土结构(砂 粒 62%, 粉粒 28%, 黏粒 10%), 相关土壤参数为: SOC 和 SIC 含量分别为 7.6 g·kg⁻¹ 和 7.8 g·kg⁻¹, 全氮 为 0.66 g·kg⁻¹, 土壤 pH 为 7.7 (水土比为 2.5:1), 速效钾为118 mg·kg⁻¹,速效磷为15.9 mg·kg⁻¹。土壤 风干后, 磨碎、挑根、再过 5 mm 筛。每盆装风干土 9.5 kg, 盆内土层深度约 27 cm。两粒玉米种子(Zea mavs L., 纪元1号)直接播于盆内,风干土按N0.55、 P 0.19、K 0.31 g·kg⁻¹ 土壤比例预拌肥料(相当于耕 层的田间肥料施用量),作为底肥一次性施入。玉米 种子播种前放在清水中浸泡 12 h,然后再浅埋入土壤 中。幼苗生长至三叶期时,每盆留1株。用称重法控 制土壤水分,根据玉米不同生育期对水分的需求特 点,分别在苗期(播种后 0~24 d)、拔节期(24~ 53 d)、抽穗期(54~66 d)和灌浆期(67~99 d) 四个阶段,调整土壤含水量为田间持水量 (0.31 g·g^{-1}) 的 60%、70%~75%、75%~80%和 70%~75%。在 夏玉米生长期间,根据病虫害情况,喷洒必要的农药。

1.2 土壤 CO₂释放的取样和测定

从玉米播种后第 24 天开始,用中性硅酮胶对隔 板和 PVC 盆的接合处密封,此外,在茎与隔板的间 隙涂上真空绝缘硅树脂(图 1)。每 3 d 更换 1 次 3.5 mol·L⁻¹ 的 NaOH 溶液,定期采用空气泵在土壤 与隔板间注入一定量无 CO₂ 的空气(图 2),为玉 米地下部提供氧气。同时收集 3 个未种植物土壤的 CO₂释放。以酚酞作指示剂,用稀盐酸滴定土壤 CO₂ 的 NaOH 溶液中未反应的 NaOH,根据稀盐酸和 NaOH 的体积、浓度,计算土壤 CO₂释放量。将过 量 BaCl₂溶液加入到土壤 CO₂的 NaOH 溶液中,形 成 BaCO₃沉淀,将 BaCO₃沉淀 60 ℃下烘干至恒重, 用 DELTA^{plus} XP型质谱仪分析种植和未种植玉米土 壤 CO₂的 δ¹³C 值。

1.3 根系与土壤的取样和测定

分别在玉米出苗后第 56、84 和 99 天时,破坏性 取样,从玉米基部剪断植株,将盆中土壤反复过 2 mm 筛,挑出根系,进行烘干和研磨,过 0.15 mm 筛,用 作根系 δ^{13} C 值的测定。取约 20 g 土壤置于白色板上, 挑去残留细根,然后,在土壤中加入 3 mol·L⁻¹的 HCl 溶液 50 mL,用于去除土壤中的碳酸盐。充分搅拌均 匀并静止 2 d 后,放入离心机中以 3 000 r·min⁻¹的转 速离心 3 min,将上清液倒掉,重复此过程,用 pH 试纸检测上清液的 pH,洗至中性为止,并将酸化前 的上清液倒回烧杯中,在 60℃条件下烘干、研磨、 过 0.15 mm 筛,用 DELTA^{plus} XP 型质谱仪测定 SOC- δ^{13} C 值。SIC- δ^{13} C 值测定:在 70℃,通过在真 空系统中将土壤样品与 100%的 H₃PO₄反应 3 h,生 成 CO₂- δ^{13} C 值用 DELTA^{plus} XP 型质谱仪分析。碳同 位素采用 PDB (Peedee Belemnite)标准。

图 1 种植与未种植植物土壤的 CO₂ 吸收装置示意图 Fig. 1 Schematic diagram of CO₂ absorption device in planted and unplanted soils

图 2 注入无 CO₂空气装置示意图 Fig. 2 Schematic diagram of the CO₂-free air injection device

1.4 数据分析

(1)无植物条件下两源区分 CO₂组分。石灰性 土壤 CO₂排放主要来源于 SOC 分解和 SIC 溶解,本 研究 SOC-δ¹³C 值偏负(-22.2‰), SIC-δ¹³C 值偏正 (-3.4‰),基于同位素平衡原理,利用线性方程两 源区分 CO₂组分:

$$1 = f_{\rm SIC} + f_{\rm SOC} \tag{(1)}$$

$$\delta_{\rm t} = \delta_{\rm SIC} f_{\rm SIC} + \delta_{\rm SOC} f_{\rm SOC} \qquad (2)$$

式中, f_{SOC} 和 f_{SIC} 分别代表 SOC 和 SIC 释放碳量占 土壤 CO₂组分的比值(未知量); δt 、 δ_{SOC} 和 δ_{SIC} 分 别代表土壤 CO₂、SOC 和 SIC 的 δ^{13} C 值(已知量)。

(2) 区分玉米土壤 CO₂ 排放的三个来源。在石 灰性土壤上,玉米土壤的 CO₂释放来源于 SOC 分解、 SIC 溶解和根源呼吸。根据根系碳、SOC 与 SIC 之 间的 δ^{13} C 差异(分别为-14.1‰、-3.4‰和-22.2‰), 对上面的方程组进一步扩展至三种来源的土壤 CO₂ 排放^[12]:

$$1 = f_{\rm SIC} + f_{\rm SOC} + f_{\rm Root} \tag{3}$$

$$\delta_{\rm t} = \delta_{\rm SIC} f_{\rm SIC} + \delta_{\rm SOC} f_{\rm SOC} + \delta_{\rm Root} f_{\rm Root} \qquad (4)$$

式中, f_{SOC} 、 f_{SIC} 和 f_{Root} 分别代表来源 SOC、SIC 和 根源呼吸的 CO₂量占土壤 CO₂组分的比值(未知 量); δt 、 δ_{SOC} 、 δ_{SIC} 和 δ_{Root} 分别代表土壤 CO₂、SOC、 SIC 和根系的 δ^{13} C值(已知量)。这个由两个方程和 三个未知数组成的不确定方程系统,通过 IsoSource 软件计算求解,三源区分土壤 CO₂组分^[11]。

(3)根际效应。利用式(1)和式(2)区分和 量化玉米根际 SOC 释放 CO₂-C 量,同时减去未种植 植物的 SOC 释放的 CO₂-C 量,即可得出净增加的 CO₂-C 量^[13-14]:

$$PE_{\rm SOC}(\%) = \frac{\left(C_{\rm SOC}^{\rm Planted} - C_{\rm SOC}^{\rm Unplanted}\right)}{C_{\rm SOC}^{\rm Unplanted}} \times 100 \qquad (5)$$

式中, PEsoc(%)代表 SOC 的根际效应, C^{Planted}soc

代表玉米根际土壤中 SOC 释放的 CO₂-C 量, $C^{\text{Unplanted}}_{\text{SOC}}$ 为未种植植物对照土壤中 SOC 释放的 CO₂-C 量。

根源呼吸增加土壤 CO₂的分压、以及根系分泌 质子和有机酸,可能加剧碳酸盐的溶解:

$$PE_{\rm SIC}(\%) = \frac{\left(C_{\rm SIC}^{\rm Planted} - C_{\rm SIC}^{\rm Unplanted}\right)}{C_{\rm SIC}^{\rm Unplanted}} \times 100 \quad (6)$$

式中, PE_{SIC} (%)代表对 SIC 溶解的根际效应, $C^{Planted}_{SIC}$ 为代表玉米根际土壤中 SIC 释放的 CO₂-C 量, $C^{Unplanted}_{SIC}$ 为未种种植植物对照土壤中 SIC 释 放的 CO₂-C 量。

采用 Excel 2013 软件作图。方差分析采用 SPSS 17.0 软件计算。同一组分不同生育期的生物量、根系 占植株干重的比值、土壤 CO₂ 的累计排放量和根际 效应之间的显著性差异分析比较采用最小显著差异 法(least significant difference, LSD; *P*<0.05 水平)。

2 结 果

2.1 不同生育期夏玉米的生物量

随着玉米的生长,从拔节期至抽穗期,地上部 与整个植株的生物量干重呈显著增加趋势,然后保 持稳定(图 3a),根系干重在拔节期达到最大,然 后保持不变。夏玉米的根系干重占植株总重的比值 随生育期的增长而显著降低,由拔节期的 0.27 降低 至灌浆期的 0.16,降低幅度达 41%(图 3b)。

图 3 玉米各生育期的生物量和根系占植株总重的比值(平均值±标准差, n=3)

Fig. 3 Biomass and root/total plant in weight (mean \pm SD, n=3) relative to growing stage of maize

2.2 土壤 CO₂的排放速率与 δ^{13} C 值

从玉米播种后第24天开始,直至生育期末(播

种后第 99 天),每隔 3 d 测定一次土壤 CO₂ 排放。 对于未种植植物的土壤而言,土壤 CO₂ 的排放速率

http://pedologica.issas.ac.cn

自始至终保持在 $0.08 \sim 0.11 \text{ C g} \cdot \text{pot}^{-1} \cdot \text{d}^{-1}$, 变化范围 较小;而对于种植玉米的土壤而言,土壤 CO₂的排 放速率由播种后第 24 天的 $0.30 \text{ C g} \cdot \text{pot}^{-1} \cdot \text{d}^{-1}$,增加 至第 44 天的 $0.44 \text{ C g} \cdot \text{pot}^{-1} \cdot \text{d}^{-1}$,第 44 ~ 56 天在 $0.40 \sim$ $0.44 \text{ C g} \cdot \text{pot}^{-1} \cdot \text{d}^{-1}$ 内波动,从第 60 ~ 99 天,土壤 CO₂ 排放速率持续下降,下降幅度为 46%(图 4)。

Fig. 4 Dynamics of soil CO₂ emission rate (mean \pm SD, n=3)

2.3 三源区分土壤 CO2组分

从玉米播种后第 24~99 天期间,种植和未种 植玉米土壤 CO₂- δ^{13} C 值的变化范围分别在-15.3~ -13.7 和-17.7~-16.5 之间(图 5a)。玉米土壤 CO₂ 排放分别来源于根源呼吸、SOC 分解和 SIC 溶解释 放。IsoSource 软件计算表明,土壤 CO₂组分来源以 根源呼吸贡献为主,平均贡献率为 43.5%~50.3%, 其次来源于 SOC 分解(26.7%~38.1%),最小源于 SIC 溶解(18.4%~25.1%; 图 5b)。

土壤 CO₂ 各组分的累计释放量在玉米拔节期最 大,灌浆期最小(表1)。在玉米各生育期,根源呼 吸的累计量对土壤 CO₂ 排放的贡献率最大(46.7%~ 48.4%),其次为来源于 SOC 的分解(29.9%~33.7%), 最小源于 SIC 的释放贡献(19.6%~21.8%)。自拔 节期至生育期末,根源呼吸、SOC 分解与 SIC 溶解 的累计碳释放量对土壤 CO₂的贡献率分别为48.0%, 31.2%和20.8%(表1)。

2.4 玉米的根际效应

在种植玉米的情况下,从土壤 CO₂中减去根源 呼吸,即得到土壤原有碳(SIC+SOC)释放的 CO₂-C 量,将其与未种植植物土壤 CO₂-C 量作差减,便可 计算得到玉米的根际效应。自拔节至生育期末,根 际效应对土壤碳的释放呈正效应,导致土壤多释放 6.3 C g·pot⁻¹(图 6)。

自拔节至收获, 玉米根际正激发效应增加土壤 本身碳释放程度近 90%, 相当于土壤碳释放当量为 0.66 C g·pot⁻¹,根际效应对土壤总碳释放的促进程度 在拔节期最大(140.2%),灌浆期最小(61.0%; 图 7a 和图 7b)。玉米根际效应对石灰性土壤碳释 放的影响,可以进一步区分为 SOC 和 SIC 释放的影 响,从拔节期至生育期末,对 SOC 与 SIC 的激发碳 量分别为 3.1 C g·pot⁻¹和 3.2 C g·pot⁻¹(图 7c 和图 7e),对应的 SOC 和 SIC 的正激发效应程度为 65% 和 156%(图 7d 和图 7f)。

3 讨 论

3.1 SIC 溶解和分解对土壤 CO₂释放的贡献

在富含碳酸盐的石灰性土壤上,以往研究认为 SIC 比较稳定,土壤 CO₂释放仅来自 SOC 分解,较 少考虑碳酸盐溶解对土壤 CO₂释放的贡献^[1-2]。然 而,关于 SIC 溶解对土壤 CO₂释放贡献的影响,近 10 年来国内外已有一些相关研究,室内培养或者田

Table 1 Cumulative emission of CO_2 and contribution rate (mean \pm SD, $n=3$) to soil CO_2 relative to source							
生育期 Growth stages	不同来源土壤 CO2的排放量				贡献比例 Contribution rate /%		
	Soil CO ₂ emissions from different sources / ($g \cdot pot^{-1}$)						
	总计 Total	根系 Root	SOC	SIC	根系 Root	SOC	SIC
拔节期 Elongation	$10.7 \pm 0.31 a^{20}$	5.2±0.15a	3.2±0.08a	2.3±0.08a	48.3±0.04a	29.9±0.14c	21.8±0.10a
抽穗期 Heading	4.9±0.43c	2.3±0.20c	1.7±0.15b	1.0±0.08c	46.7±0.06b	33.7±0.08a	19.6±0.02c
灌浆期 Grain-filling	9.7±0.56b	4.7±0.27b	3.0±0.14a	2.0±0.12b	48.4±0.07a	31.3±0.65b	20.8±0.05b
拔节~灌浆 E-G ¹⁾	25.4±1.09	12.2±0.53	7.9±0.34	5.3±0.23	48.0±0.02	31.2±0.20	21.0±0.06

表1 不同来源土壤 CO₂的累计排放量和贡献比例(平均值±标准差, n=3)

注:1)E-G 代表从拔节期到灌浆期,下同;2)同列不同小写字母表示不同生育期间的差异显著(P<0.05)。Note:1)E-G represents from elongation to grain-filling stages, the same below. 2) Different lowercase letters in the same column indicate significant difference between growth stages at P<0.05 level.

图 6 玉米各生育期的根际呼吸与土壤碳释放的 CO_2 量(平均值 ± 标准差, n=3)

注: STC 代表土壤总碳, 下同。Note: STC represents total soil carbon, the same below.

图 7 玉米根际效应对 STC、SOC 和 SIC 释放绝对值和相对值的影响(平均值±标准差, *n*=3) Fig. 7 Absolute and relative values of maize rhizosphere effects (mean ± SD, *n*=3) on release of STC, SOC and SIC

间原位条件下的研究结果发现,约有 13%~85%的 CO₂来自碳酸盐的溶解^[15-18],平均贡献比例为 43%, 与本研究结果接近:自玉米拔节至生育期末,土壤 源 CO₂释放有 40%来自 SIC(表 2)。因此,SIC 在 稳定全球碳库和调节 CO₂浓度方面,与 SOC 同样具 有重要作用。若忽视碳酸盐溶解对土壤 CO₂释放的 贡献,则导致不能准确量化 SOC 的矿化。 根据同位素质量守恒模型,用两个方程去解三 个碳源的贡献率(未知数)非常困难。本研究借助 IsoSource软件,可以计算土壤CO₂中源自三个碳源 的相对贡献率的可能范围及其平均值^[11-12]。然而, IsoSource软件未考虑稳定同位素值及分馏因子等的 变异和不确定性,模型的容差参数(tolerance)的 调整会带来贡献范围较大变化^[11]。本研究采用是不

表 2 碳	酸盐土壤中 SI	C释放对土壤	CO2贡献的比较
-------	----------	--------	----------

		1 -		-		
地点	土壤 Soil	CO_2	土壤类型	时间长度	方法	参考文献
Location	(SIC/STC*) /%	(SIC/STC) /%	Soil type	Duration /d	Method	References
美国	96	13	沙漠土壤	14	¹³ C 自然丰度法	[15]
法国	74	27	黑色石灰岩土	91	¹³ C 自然丰度法	[19]
以色列	86	30	—	56	¹³ C 自然丰度法	[18]
加拿大	28~34	62~74	灰棕淋溶土	14	¹³ C 自然丰度法	[17]
突尼斯	67	24~47	石灰性始成土	28	¹³ C 自然丰度法	[20]
澳大利亚	85	95	红色岩层土	11	¹³ C 自然丰度法	[21]
芬兰	_	53~70	泥炭土	0.25	¹³ C 自然丰度法	[22]
意大利	_	15~40	薄层土	6	¹³ C 自然丰度法	[23]
斯洛文尼亚	_	14	薄层土	400	¹³ C 自然丰度法	[12]
中国	38	24~38	塿土	10	¹³ C 自然丰度法	[24]
中国	45	31~85	塿土	32	¹³ C 自然丰度法	[16]
中国	50	54	塿土	46	土壤 HgCl2灭菌法	[25]
中国	42	27	塿土	46	土壤干烧法	[26]
平均值		43				
95%置信区间		27~57				
本研究		40				

Table 2Comparison of CO_2 release from SIC to soil CO_2 emission in carbonate soils

同碳源对土壤 CO,的平均贡献率.从拆分来看,SIC 释放占据土壤本身碳(SIC+SOC)释放的比例为 40%, 无机碳释放贡献较预想的要大, 但与关于 SIC 释放对土壤 CO2 贡献的 13 篇文章整合结果近似:无 机碳释放贡献的 95% 置信区间为 27%~57% (表 2)。 基于利用 n 个同位素种类,可精确计算 n+1 个源的 贡献原理,今后研究可以考虑利用¹⁴C 连续标记植 物与 ¹³C 自然丰度结合来精确三源区分根际土壤 CO₂组分的贡献(根源呼吸、SIC与SOC释放):首 先量化土壤 CO₂-¹⁴CO₂,为根源呼吸释放;其次定 量土壤 CO₂-¹³CO₂,源于 SOC 和 SIC 的释放,根据 ¹³C 同位素质量守恒,可以计算 SOC 和 SIC 的贡献 率。此外,氮肥对石灰性土壤无机碳释放的影响很 大,较以前认为的更为重要,例如 Zamanian 等^[3] 发现施肥提高了土壤碳酸盐溶解与释放 CO₂,每施 1 kg N 导致 0.21 kg C 的 SIC 释放。然而,在华北地 区大量氮肥施用引起的土壤酸化是否会导致土壤无 机碳的释放?目前尚少见报道。所以,今后有必要 深入研究该区域氮肥对土壤无机碳释放的影响。

3.2 根源呼吸对土壤 CO₂释放的贡献

在石灰性土壤上,本研究首次利用¹³C 自然丰 度法,通过 IsoSource 软件区分三源根际土壤 CO2 组分,发现在整个玉米旺盛生长期(拔节期~生育 期末),源于根源呼吸比例约为 50% (表 1)。这与 何敏毅^[27]在盆栽玉米上利用¹³C脉冲标记法定量结 果近似, 根源呼吸占土壤 CO₂ 的比例为 52%。 Kuzyakov 和 Cheng^[28]也发现利用¹⁴C 脉冲标记法与 ¹³C 自然丰度法量化根源呼吸碳量,得到的结果是一 致的。在玉米盆栽条件下,杨兰芳和蔡祖聪^[29]以及 李建敏等[30]通过非同位素法(分根箱法和根去除法) 发现,从拔节期至生育期末,玉米根源呼吸占土壤 CO2 的比值在 65%以上,远高于本研究的结果。这 可能是由于 SOC 释放量相对要少导致的: 以上两个 试验用土量较少,是本研究的 1/2~2/3,以及未考 虑根际效应的影响。因此,不同试验条件和区分方 法导致测定的根源呼吸/土壤 CO₂的比值差异较大, 不利于各研究结果之间的比较和整合分析。例如, 在田间条件下, 蔡艳等^[31]利用根去除法测得的玉米 全生育根源呼吸对土壤 CO2 的平均贡献率为 46%, 与本研究接近,而 Kumar 等^[32]在田间条件下,利用 ¹³C 自然丰度法区分玉米土壤 CO₂ 组分,发现源于 根源呼吸的比例为 25%, 是本研究结果的 1/2。

3.3 根际效应对土壤碳释放的影响

玉米的正根际效应促进了土壤原有碳的释放, 在玉米整个旺盛生长期,增加程度约为 90%。这略 高于何敏毅^[27]在盆栽玉米上利用 ¹³C 脉冲标记法的 结果(80%),可能由于何敏毅^[27]未考虑根际效应对 SIC 溶解的促进作用。在本研究中,玉米的产生正 根际效应促进 SOC 的分解,是由于玉米根际沉积物 可以为根际微生物提供大量活性碳源,增加微生物 数量和活性,促进微生物胞外酶的分泌和活性^[14]。 在玉米不同生育时期,根际效应程度是不同的,可 能是由于各生育期的根际沉积物的组成和分泌量不 同,导致对根际微生物的影响产生差异^[27,33]。

本研究还发现,根际效应不仅影响 SOC 的分解,也加剧 SIC 的溶解,这是由于石灰性土壤中存 在着 CO₂-HCO₃-CaCO₃平衡(碳酸途径),主要受土 壤中 CO₂分压、pH 和水分控制^[3, 5, 9, 34]:

$$CaCO_3 + H_2O + CO_2 = 2HCO_3^- + Ca^{2+}$$
(7)

根源呼吸增加土壤中 CO₂分压。在本研究,玉 米土壤 CO₂释放来源于根源呼吸比例约为 50%,导 致式(7)平衡向右进行,促进碳酸盐的溶解^[3,5,9]。 此外,根系也可能分泌质子和有机酸^[35],加剧碳酸 盐的溶解。说明在根际环境中,石灰性土壤无机碳 释放对调节 CO₂浓度方面是不可忽视的,在本研究, 根际效应对 SIC 溶解和分解的影响高达 156%。

4 结 论

在整个玉米旺盛生长期(自拔节期至生育期 末),土壤 CO₂释放来源于根系、土壤有机碳与无 机碳的比值分别为 5:3:2。因此,在富含碳酸盐 的石灰性土壤上,若忽视 SIC 溶解对土壤 CO₂释放 的贡献,则导致对 SOC 矿化量的高估。玉米自拔节 至收获,由于正根际效应,使得土壤原有碳的释放 增加了近 90%,相当于土壤碳释放当量为 0.66 C g·kg⁻¹。由于根际效应导致 SOC 与 SIC 的净增加 释放量相当,进一步说明根际效应对石灰性土壤无 机碳释放的影响不可忽视。

参考文献(References)

[1] Meng Y, Cai M, Shi Q Y, et al. Effects of nitrogen fertilizer application on carbon dioxide emission from

calcareous soil[J]. Chinese Journal of Soil Science, 2015, 46 (4): 948–954. [孟延, 蔡苗, 师倩云, 等. 氮肥用 量对石灰性土壤二氧化碳释放的影响[J]. 土壤通报, 2015, 46 (4): 948–954.]

- [2] Li X S, Sajjad Raza, Liu Z J, et al. Effects of application of nitrogen fertilizer and nitrification inhibitor on carbon dioxide emissions from calcareous soil[J]. Journal of Agro-Environment Science, 2017, 36(8): 1658–1663.
 [李雪松, Sajjad Raza, 刘占军,等. 氮肥及硝化抑制剂配合施用对石灰性土壤二氧化碳释放的影响[J]. 农业环境科学学报, 2017, 36(8): 1658–1663.]
- Zamanian K, Zarebanadkouki M, Kuzyakov Y. Nitrogen fertilization raises CO₂ efflux from inorganic carbon: A global assessment[J]. Global Change Biology, 2018, 24 (7): 2810–2817
- [4] Shi X X, Zhao Y, Zhang L, et al. Effects of different agricultural practices on soil carbon pool in North China Plain[J]. Environmental Science, 2017, 38(1): 301–308.
 [石小霞,赵诣,张琳,等.华北平原不同农田管理措施对于土壤碳库的影响[J].环境科学, 2017, 38(1): 301–308.]
- [5] Bughio M A, Wang P, Meng F, et al. Neoformation of pedogenic carbonate and conservation of lithogenic carbonate by farming practices and their contribution to carbon sequestration in soil[J]. Journal of Plant Nutrition and Soil Science, 2017, 180 (4): 454–463
- [6] Meng F, Dungait J A J, Xu X, et al. Coupled incorporation of maize (*Zea mays L.*) straw with nitrogen fertilizer increased soil organic carbon in Fluvic Cambisol[J]. Geoderma, 2017, 304: 19–27
- [7] Huo C, Luo Y, Cheng W. Rhizosphere priming effect: A meta-analysis[J]. Soil Biology and Biochemistry, 2017, 111: 78-84
- [8] Meng F, Dungait J A J, Zhang X, et al. Investigation of photosynthate-C allocation 27 days after ¹³C-pulse labeling of *Zea mays* L. at different growth stages[J]. Plant and Soil, 2013, 373 (1/2): 755–764
- [9] Sun Z, Wu S, Zhang Y, et al. Effects of nitrogen fertilization on pot-grown wheat photosynthate partitioning within intensively farmed soil determined by ¹³C pulse-labeling[J]. Journal of Plant Nutrition and Soil Science, 2019, 182 (6): 896–907
- [10] Werth M, Kuzyakov Y. Three-source partitioning of CO₂ efflux from maize field soil by ¹³C natural abundance[J]. Journal of Plant Nutrition and Soil Science, 2010, 172 (4): 487–499
- Phillips D L, Gregg J W. Source partitioning using stable isotopes: coping with too many sources[J]. Oecologia, 2003, 136 (2): 261–269
- Plestenjak G, Eler K, Vodnik D, et al. Sources of soil CO₂ in calcareous grassland with woody plant encroachment[J]. Journal of Soils and Sediments, 2012, 12(9): 1327–1338

- [13] Zhu B, Gutknecht J L M, Herman D J, et al. Rhizosphere priming effects on soil carbon and nitrogen mineralization[J]. Soil Biology and Biochemistry, 2014, 76: 183–192
- [14] Sun Y, Xun X L, Kuzyakov Y. Mechanisms of rhizosphere priming effects and their ecological significance[J]. Chinese Journal of Plant Ecology, 2014, 38 (1): 62-75. [孙悦, 徐兴良, Kuzyakov Yakov. 根 际激发效应的发生机制及其生态重要性[J]. 植物生态 学报, 2014, 38 (1): 62-75.]
- [15] Stevenson B A, Verburg P S J. Effluxed CO₂-¹³C from sterilized and unsterilized treatments of a calcareous soil[J]. Soil Biology and Biochemistry, 2006, 38 (7): 1727–1733
- [16] Dong Y J. Carbon stock and stabillzaiton in Lou soil[D]. Yangling, Shannxi: Northwest Agricultural and Forestry University, 2013. [董燕婕. 塿土剖面不同碳库贮量及 释放特性研究[D]. 陕西杨凌:西北农林科技大学, 2013.]
- [17] Ramnarine R, Wagner-Riddle C, Dunfield K E, et al. Contributions of carbonates to soil CO₂ emissions[J]. Canadian Journal of Soil Science, 2012, 92(4): 599–607
- Tamir G, Shenker M, Heller H, et al. Can soil carbonate dissolution lead to overestimation of soil respiration[J]. Soil Science Society of America Journal, 2011, 75 (4): 1414–1422
- Bertrand I, Delfosse O, Mary B. Carbon and nitrogen mineralization in acidic , limed and calcareous agricultural soils : Apparent and actual effects. Soil Biology and Biochemistry, 2007, 39 (1): 276–288
- [20] Chevallier T, Cournac L, Hamdi S, et al. Temperature dependence of CO₂ emissions rates and isotopic signature from a calcareous soil. Journal of Arid Environments, 2016, 135: 132–139
- [21] Lardner T, George S, Tibbett M. Interacting controls on innate sources of CO₂ efflux from a calcareous arid zone soil under experimental acidification and wetting[J]. Journal of Arid Environments, 2015, 122: 117–123
- [22] Biasi C, Lind S E, Pekkarinen N M, et al. Direct experimental evidence for the contribution of lime to CO₂ release from managed peat soil[J]. Soil Biology and Biochemistry, 2008, 40 (10): 2660–2669
- [23] Inglima I, Alberti G, Bertolini T, et al. Precipitation pulses enhance respiration of Mediterranean ecosystems: the balance between organic and inorganic components of increased soil CO₂ efflux[J]. Global Change Biology, 2009, 15 (5): 1289–1301
- Yu W J. Effects of application of nitrogen fertilizer on carbon emissions and their sources from calcareous soils[D]. Yangling, Shannxi: Northwest Agricultural and Forestry University, 2018. [于伟家. 施用氮肥对石灰性 土壤碳释放及其来源研究[D]. 陕西杨凌:西北农林科 技大学, 2018.]

- [25] Meng Y, Cai M, Shi Q Y, et al. Effect of ammonium sulfate application on CO₂ emissions from four different soils in Loess plateau[J]. Journal of Agro-Environment Science, 2015, 34 (7): 1414–1421. [孟延, 蔡苗, 师 倩云,等. 施用硫酸铵对黄土高原地区不同类型土壤 CO₂释放的影响[J]. 农业环境科学学报, 2015, 34(7): 1414–1421.]
- [26] Meng Y, Li X S, Hao P Q, et al. Effect of different N fertilizer applications on CO₂ emissions from Lou soil in Central Shaanxi[J]. Journal of Agro-Environment Science, 2017, 36 (9): 1901–1907. [孟延, 李雪松, 郝平琦,等. 施用不同种类氮肥对陕西关中地区塿土碳 释放的影响[J]. 农业环境科学学报, 2017, 36 (9): 1901–1907.]
- [27] He M Y. Estimating photosynthesized carbon distribution and inputs into belowground in a maize soil following ¹³C pulse-labeling[D]. Beijing : China Agricultural University, 2007. [何敏毅. 用 ¹³C 脉冲标记法研究玉米 光合碳分配及其向地下的输入[D]. 北京:中国农业大 学, 2007.]
- [28] Kuzyakov Y, Cheng W. Photosynthesis controls of rhizosphere respiration and organic matter decomposition[J]. Soil Biology and Biochemistry, 2001, 33 (14): 1915–1925
- [29] Yang L F, Cai Z C. Soil respiration during maize growth period affected by N application rates[J]. Acta Pedologica Sinica, 2005, 42 (1): 9–15. [杨兰芳, 蔡祖聪. 玉米 生长中的土壤呼吸及其受氮肥施用的影响[J]. 土壤学 报, 2005, 42 (1): 9–15.]
- [30] Li J M, Ding W X, Cai Z C. Effects of nitrogen fertilization on soil respiration during maize growth

season[J]. Chinese Journal of Applied Ecology, 2010, 21 (8): 2025-2030. [李建敏,丁维新,蔡祖聪. 氮肥 对玉米生长季土壤呼吸的影响[J]. 应用生态学报, 2010, 21 (8): 2025-2030.]

- [31] Cai Y, Ding W X, Cai Z C. Soil respiration in a maize-soil ecosystem and contribution of rhizosphere respiration[J]. Acta Ecologica Sinica, 2006, 26 (12): 4273-4280. [蔡艳,丁维新,蔡祖聪. 土壤-玉米系统中 土壤呼吸强度及各组分贡献[J]. 生态学报, 2006, 26 (12): 4273-4280.]
- [32] Kumar A, Kuzyakov Y, Pausch J. Maize rhizosphere priming: Field estimates using ¹³C natural abundance[J]. Plant and Soil, 2016, 409 (1/2): 87–97.
- [33] Derrien D, Marol C, Balesdent J. The dynamics of neutral sugars in the rhizosphere of wheat. An approach by ¹³C pulse-labelling and GC/C/IRMS[J]. Plant and Soil, 2004, 267 (1): 243–253.
- [34] Zhang Y, Zhang L, Wu W L, et al. Impact of land use and fertilization measures on soil C stock in farming-grazing interlacing zone of Inner Mongolia, China[J]. Acta Pedologica Sinica, 2016, 53 (4): 930–941.[张煜,张 琳,吴文良,等.内蒙农牧交错带地区土地利用方式和 施肥对土壤碳库的影响[J]. 土壤学报, 2016, 53 (4): 930–941.]
- [35] Zhou L L. Proton and ogranic acids exudated by faba bean, soybean and maize and their signincance in interspecific facilitation on phosphours uptake by intecropping[D]. Beijing: China Agricultural University, 2005. [周丽莉. 蚕豆、大豆、玉米根系质子和有机酸分 泌差异及其在间作磷营养中的意义[D]. 北京:中国农业大学, 2005.]

(责任编辑: 檀满枝)