DOI: 10.11766/trxb202111250641

金靖昊,黄翯宸,沈李东,田茂辉,刘心,杨王挺,杨钰铃,刘佳琦,任冰洁,徐江兵,胡正华.稻田亚硝酸盐型甲烷厌氧氧化对大 气 CO₂浓度缓增的响应[J]. 土壤学报,2023,60(6):1778–1789.

JIN Jinghao, HUANG Hechen, SHEN Lidong, TIAN Maohui, LIU Xin, YANG Wangting, YANG Yuling, LIU Jiaqi, REN Bingjie,

XU Jiangbing, HU Zhenghua. Response of Nitrite-dependent Anaerobic Methane Oxidation in Paddy Fields to Slow Increase of Atmospheric CO₂ Concentration[J]. Acta Pedologica Sinica, 2023, 60 (6): 1778–1789.

稻田亚硝酸盐型甲烷厌氧氧化对大气 CO₂ 浓度缓增的 响应^{*}

金靖昊,黄翯宸,沈李东¹,田茂辉,刘 心,杨王挺,杨钰铃, 刘佳琦,任冰洁,徐江兵,胡正华

(南京信息工程大学应用气象学院,南京 210044)

摘 要:亚硝酸盐型甲烷厌氧氧化(nitrite-dependent anaerobic methane oxidation, n-damo)是控制稻田甲烷排放的一种新途 径,但有关其对大气 CO₂升高的响应尚不清楚。依托开顶式气室组成的 CO₂浓度自动调控平台,设置环境 CO₂浓度处理(CK) 和 CO₂缓增处理(EC:每年增加 40 μ L·L⁻¹,至采样时 CO₂浓度为 CK+160 μ L·L⁻¹)。采用稳定性同位素示踪、定量 PCR 和 高通量测序等手段,分析不同 CO₂处理下水稻关键生育期(分蘖期、拔节期和开花期)稻田 n-damo 活性及其功能微生物 *Candidatus Methylomirabilis* oxyfera (*M. oxyfera*)-like 细菌的丰度、多样性和群落组成。结果发现,供试土壤中 n-damo 活性 为 CO₂ 0.31~5.09 nmol g⁻¹·d⁻¹, *M. oxyfera*-like 细菌丰度为 7.51×10⁶~5.49×10⁷ copies·g⁻¹。CO₂缓增一定程度上刺激了土壤 中 n-damo 活性以及 *M. oxyfera*-like 细菌丰度,且在拔节期达到显著性水平:活性和丰度分别增加了 137.9%和 96.0%。同时 还使 *M. oxyfera*-like 细菌的丰度、非影响其多样性。EC 处理下土壤可溶性有机碳含量和无机氮含量的改变很可能是导致 n-damo 活性及 *M. oxyfera*-like 细菌群落结构发生变化的重要原因。综上,稻田 n-damo 过程对大气 CO₂浓度 缓增具有正响应。

关键词:大气 CO₂浓度缓增;亚硝酸盐型甲烷厌氧氧化;活性;群落结构;稻田土壤 中图分类号:Q938.1;S154.36 **文献标志码**:A

Response of Nitrite-dependent Anaerobic Methane Oxidation in Paddy Fields to Slow Increase of Atmospheric CO₂ Concentration

JIN Jinghao, HUANG Hechen, SHEN Lidong[†], TIAN Maohui, LIU Xin, YANG Wangting, YANG Yuling, LIU Jiaqi, REN Bingjie, XU Jiangbing, HU Zhenghua

^{*} 国家自然科学基金项目(41977037)、江苏省自然科学基金项目(BK20190092)和江苏省大学生创新创业训练计划项目(202110300110Y) 共同资助 Supported by the National Natural Science Foundation of China (No. 41977037), the Natural Science Foundation of Jiangsu Province (No. BK20190092), and the Innovation and Entrepreneurship Training program for College students in Jiangsu Province (No. 202110300110Y)

 ^{*} 通讯作者 Corresponding author, E-mail: shenld@nuist.edu.cn
 作者简介:金靖昊(2001—),男,主要研究方向为土壤微生物与气候变化。E-mail: unxin2001@163.com
 收稿日期:2021-11-25;收到修改稿日期:2022-02-28;网络首发日期(www.cnki.net):2022-06-29

(School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China)

Abstract: [Objective] The process of nitrite-dependent anaerobic methane oxidation (n-damo) catalyzed by Candidatus Methylomirabilis oxyfera (M. oxyfera) -like bacteria links both the carbon and nitrogen cycles, and has attracted great attention in recent years because of its potential role acting as a microbial methane sink. This process has been reported to be a novel pathway for controlling methane emissions from paddy ecosystems. Elevated atmospheric CO₂ concentration can indirectly affect the structure and function of soil microbial communities. However, the response of n-damo to $e[CO_2]$ is poorly known. This study aims to explore the response of n-damo activity, and the community composition and abundance of M. oxyfera-like bacteria to e[CO₂] in a paddy ecosystem. [Method] Here, ambient CO₂ treatment (CK) and a slow increase of atmospheric CO₂ treatment (EC: an increase of 40 μ L·L⁻¹ per year above CK until 160 μ L·L⁻¹) were set up based on the CO₂ automatic control platform with open-top chambers. The stable isotope tracer experiment, quantitative PCR and high-throughput sequencing were employed to investigate the n-damo activity, abundance, diversity and community composition of M. oxyfera-like bacteria in paddy soils across three key rice growth stages (tillering, jointing and flowering stages) under different CO₂ treatments. [Result] The results showed the occurrence of n-damo activity and the presence of M. oxyfera-like bacteria in the studied paddy soils. It was found that the n-damo activity ranged from 0.31 to 5.09 nmol $CO_2 g^{-1} d^{-1}$, and the abundance of *M. oxyfera*-like bacteria varied between 7.51×10^6 and 5.49×10^7 copies g⁻¹. Furthermore, EC treatment stimulated the n-damo activity and abundance of *M. oxyfera*-like bacteria, particularly at the jointing stage, in which the activity and abundance were increased by 137.9% and 96.0%, respectively. In addition, EC treatment significantly changed the community composition and diversity of M. oxyfera-like bacteria, and the diversity was increased under EC treatment. Correlation analyses showed that the soil dissolved organic carbon content, ammonium content, nitrate content and water content all had significant impacts on the community structure of M. oxyfera-like bacteria. The variations in soil dissolved organic carbon content and inorganic nitrogen content under EC treatment could probably cause the change of n-damo activity and the abundance of M. oxyfera-like bacteria. [Conclusion] Elevated atmospheric CO₂ promoted the n-damo activity and M. oxyfera-like bacterial abundance and significantly changed the community structure of M. oxyfera-like bacteria in a paddy ecosystem. In addition, the changes of soil dissolved organic carbon content, inorganic nitrogen content and water content greatly affected the n-damo activity and community structure of M. oxyfera-like bacteria. Taken together, our results showed a positive response of n-damo to the slow increase of atmospheric CO₂ concentration. Key words: Slow increase of CO₂ concentration; N-damo; Activity; Community structure; Paddy soil

受人类活动的影响,大气中 CO₂浓度已较工业 化前的水平增长了 40%,其浓度在过去 60 年以每年 1.7 μL·L⁻¹快速增加^[1]。大气 CO₂富集是全球气候变 暖的主要原因之一,直接威胁到陆地生态系统的 稳定性^[2]。同时,气候变化会导致整个农业生产发 生改变,如作物的生长环境、种类与产量等会随 之变化^[3]。

稻田是甲烷(CH₄)的重要排放源,甲烷好氧 氧化是控制稻田CH₄排放的关键生物过程^[4-5]。但同 时水稻生长发育过程中由于淹水灌溉形成的厌氧环 境,可为甲烷厌氧氧化反应的发生提供适宜条件^[6]。 已有研究表明,稻田土壤中存在亚硝酸盐型甲烷厌氧 氧化(nitrite-dependent anaerobic methane oxidation, n-damo)反应^[7-9]。该甲烷厌氧氧化反应是以 NO₂ 作为电子受体, CH₄ 作为其唯一电子供体^[10], 由与 *Candidatus Methylomirabilis* oxyfera (*M. oxyfera*) 相 关的 NC10 门细菌催化完成^[11]。n-damo 反应及其功 能微生物的发现对减缓气候变化, 控制温室气体排 放等方面具有重要意义, 也为重新认识稻田甲烷氧 化的微生物机制提供了新方向。

众多研究表明,大气 CO₂浓度升高影响稻田 CH₄ 排放^[12-14]。CO₂ 浓度升高可通过改变稻田土壤 理化性质间接影响产甲烷菌,并导致 CH₄ 排放量增 加^[15]。其增加的主要原因是,大气 CO₂浓度升高促 进水稻生长和根系分泌物的增加,从而提供了有利 于产甲烷菌释放 CH₄的有机碳源^[14, 16-17]。此外,大 气 CO₂浓度升高亦会对甲烷好氧氧化菌的群落组成 和活性产生影响^[13, 18],继而改变稻田 CH₄ 排放。 n-damo 作为稻田甲烷氧化的新途径,有关其活性和 功能微生物群落组成等对大气 CO₂浓度升高的响应 知之甚少^[19]。我们假设大气 CO₂浓度升高亦可通过 影响作物生长改变土壤理化性质,从而间接对 n-damo 过程产生影响。值得注意的是,大气 CO₂ 浓度的增加并不是瞬时增加至某一浓度,而是随时 间推移缓慢增加的过程。但目前,少有研究报道 CO₂ 浓度缓增对稻田土壤甲烷氧化菌的影响^[18]。

为更好地研究气候变化对 n-damo 过程的影响, 更真实地模拟大气 CO₂的变化,本研究设置 CO₂缓 增处理(每年增加 40 μ L·L⁻¹,直至增幅达 160 μ L·L⁻¹),从*M. oxyfera*-like 细菌的群落组成、多样 性、丰度和 n-damo 活性等多方面分析大气 CO₂浓 度升高是如何作用于稻田 n-damo 过程。研究结果对 预测未来 CO₂浓度升高对 n-damo 的影响具有重要 意义。

1 材料与方法

1.1 试验区概况

试验区位于江苏省南京市农业气象与生态试验 站的稻田试验地(32.16°N,118.86°E),亚热带湿润 气候,年平均降水量1110 mm,年平均气温15.6℃。 供试土壤为潴育型水稻土,耕层土壤为壤质黏土。 稻田氮肥年施用量为 N 250 kg·hm⁻²,水分管理方式 为在水稻生育前、中、后期分别进行淹水、烤田、 干湿交替处理^[15]。

1.2 试验设计

研究依托 2016 年建成并运行至今的开顶式气 室(Open top chambers, OTC)组成的 CO₂浓度升 高自动调控平台,模拟大气 CO₂浓度^[20]。每个 OTC 配备 CO₂传感器(GMM222 传感器,芬兰)和温湿 度自动记录仪。OTC 中 CO₂浓度通过计算机程序实 现自动监测和调整,以确保 CO₂浓度保持在目标浓 度值。以大气 CO₂浓度作为对照组(CK),以 CO₂ 浓度缓增作为处理组(EC),每个处理均设置 3 个 重复。EC 处理组为在 CK 基础上,自 2016 年起每 年增加 40 μ L·L⁻¹,至采样时增幅达 160 μ L·L⁻¹。

2019年,分别在水稻分蘖期、拔节期、扬花期 采集 0~20 cm 土壤样品。使用直径 5 cm 的圆柱形 取样器,利用五点采样法采集每个 OTC 内的土柱, 按 0~5 cm、5~10 cm、10~20 cm 分段,并对同一 OTC 内同一深度样品均匀混合,储存在无菌密封袋 中,冷藏运送至实验室。

1.3 土壤理化因子分析

土壤理化性质参照《土壤农化分析》^[21]中的方 法测定。采用烘干法测定土壤含水量(Water content, WC)。采用 pH 计法测定土壤 pH, 土水比 1: 2.5 (m/v)。采用重铬酸钾—外加热法测定土壤有机碳 (Soil organic carbon, SOC)含量。采用比色法测定 经蒸馏水浸提后浸提液中可溶性有机碳(Dissolved organic carbon, DOC)浓度。采用分光光度法测定 经 2 mol·L⁻¹ KCl 浸提后浸提液中 NO₂⁻、NO₃⁻、NH₄⁺ 浓度。

1.4 亚硝酸盐型甲烷厌氧氧化活性测定

采用厌氧泥浆培养法测定亚硝酸盐型甲烷厌氧 氧化活性^[19]。将一定量土壤样品与去离子水转移至 玻璃瓶中制成泥浆,并对玻璃瓶进行厌氧处理。随 后对泥浆进行为期3d的预培养。预培养结束后, 设置两组同位素示踪:(1)¹³CH₄,(2)¹³CH₄+NO₂⁻。 用¹³CH₄(¹³C 丰度 99.9%)进行等体积气体置换, 使得瓶内¹³CH₄体积占比约10%。此外,¹³CH₄+NO₂ 处理加入0.05 mL的NO₂浓缩液,使瓶中NO₂的初 始浓度维持在0.5 mmol·L⁻¹;¹³CH₄处理加入0.05 mL 的蒸馏水。随后继续将玻璃瓶置于摇床培养。分别 在第0、7、14和21天向对应瓶子中加入50%的 ZnCl₂溶液以终止反应。采用同位素比质谱仪 (Isoprime 100,英国)联合气相色谱仪(Agilent 7890B,美国),测定顶空气体中的¹³CO₂。根据玻 璃瓶中¹³CO₂产生量随时间的改变计算 n-damo活性。

1.5 DNA 提取, PCR 扩增与高通量测序

使用 E.Z.N.A.® soil DNA kit (Omega Bio-tek, 美国)提取不同 CO₂处理下水稻土壤样品的总 DNA。用超微量分光光度计(NanoDrop2000)检测 DNA 的浓度和纯度,用 1%琼脂糖凝胶电泳检测 DNA 的质量。

对 *M. oxyfera*-like 细菌的 16S rRNA 基因进行巢 式 PCR 扩增(PCR 仪器为 ABI GeneAmp®9700)。 第一步扩增选用引物 202F/1545R;第二步扩增选用 引物 qp1f/qp2r^[22]。PCR 反应体系为 20 μL,包含 4 μL 5×FastPfu 缓冲液、2 μL 2.5 mm dNTPs、0.8 μL 引物 (5 μmol·L⁻¹)、0.4 μL FastPfu 聚合酶和 10 ng DNA 模板。PCR 热反应条件如下: 95℃预变性 3 min; 95℃变性 1 min, 63℃退火 1 min, 72℃延伸 1 min, 30 个循环;最后 72℃延伸 10 min。利用 AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City,CA,美国)对 PCR 产物进行纯化。通过 Illumina MiSeq 平台 (Illumina, San Diego,美国)将纯化后 的扩增片段构建 PE300 文库。

1.6 序列分析

利用 FLASH 软件对原始序列进行筛选和拼接。 使用 UPARSE 软件,以 97%的相似性对序列进行 OTU (Operational taxonomic unit)聚类,同时在聚 类过程中去除单个序列和嵌合体。利用 RDP Classifier 对所获得的序列进行注释。此外,通过将 OTU 代表性序列与 NCBI 数据库进行比较,进一步 去除非 *M. oxyfera*-like 细菌序列,以确保序列分析 的准确性。采用 Shannon 指数和 Chao1 指数对 *M. oxyfera*-like 细菌多样性进行分析。

1.7 系统发育分析

使用 BLAST 在 NCBI 数据库中搜索 *M. oxyfera*-like 细菌优势 OTU 的相似序列,随后用 MEGA-X 软件的邻接方法构建包含优势 OTU 代表性序列及 其相似序列的系统发育树。

1.8 定量 PCR

使用特异性引物 qP1F/qP1R^[22]对 *M. oxyfera*like 细菌的 16S rRNA 基因进行定量 PCR。PCR 热 反应条件如下: 95℃条件下预变性 3 min; 95℃下变 性 0.5 min,63℃下退火 0.5 min,72℃下延伸 0.5 min, 40 个循环;最后 72℃下延伸 5 min。将已知含有 16S rRNA 基因的质粒 DNA 稀释 10 倍,构建标准曲线 (每个浓度重复3次)。根据标准曲线计算每个样品 中 *M. oxyfera*-like 细菌的丰度。

1.9 统计分析

分别采用主坐标分析 (Principal co-ordinates analysis, PCoA) 和冗余分析 (Redundancy analysis, RDA) 检验不同处理间 *M. oxyfera*-like 细菌群落的 差异及其与环境因子间的相互作用关系。采用 SPSS 25.0 软件进行 t 检验,分析不同 CO₂处理间 n-damo 活性,以及 *M. oxyfera*-like 细菌丰度、多样性等各 项指标的差异及显著性。利用 Pearson 相关性分析 检验各理化指标与微生物指标间的关系。利用 OriginPro 2021、R 4.0.5 等软件绘图。

2 结 果

2.1 不同 CO₂处理下土壤理化性质

稻田土壤样品的理化性质如表 1 所示。由表可 知,除拔节期 10~20 cm 土层外,不同 CO₂处理下 SOC 变化不显著。土壤 pH 在不同 CO₂处理下无显 著变化。土壤含水量随土层深度的增加呈降低趋势, 且 EC 处理显著降低了分蘖期 5~10 cm、拔节期 10~20 cm、扬花期 10~20 cm 土壤的含水量 (P<0.05)。EC 处理下分蘖期各土层中 NO₂⁻-N 含量 显著低于 CK(P<0.05),但其余时期未有显著变化。 土壤 NO₃⁻-N 含量在分蘖期 0~5 cm、拔节期 0~5 cm、扬花期 0~5 cm、10~20 cm 土层无显著变化, 其余时期 CK 处理均显著高于 EC (P<0.05)。伴随水 稻的生长,土壤 NH₄⁺-N 含量呈下降趋势,且仅在分 蘖期 10~20 cm、拔节期 5~20 cm、扬花期 0~5 cm

表 1	不同 CO ₂ 泸	农度处理下各生	育期稻田土	壤理化因子
-----	----------------------	---------	-------	-------

		-			-	-	-		
生育期	深度	山石田	pH	有机碳	含水量	NO ₂ ⁻ -N/ (mg·kg ⁻¹)	$NO_{3}^{-}N/$ (mg·kg ⁻¹)	$\rm NH_4^+-N/$ $(mg\cdot kg^{-1})$	可溶性有机碳
Growth	Depth/	处理		SOC/	WC/				DOC/
stage	cm	Treatment		$(\; {\bf g}{\bf \cdot}{\bf k}{\bf g}^{{}^{-1}}\;)$	%				$(mg \cdot kg^{-1})$
分蘖期 Tillering stage	0~5	СК	6.22 ± 0.21a	9.33 ± 0.19a	$0.44 \pm 0.01b$	$1.22 \pm 0.12a$	17.42 ± 1.88a	37.09 ± 1.99a	$154.40 \pm 0.94a$
		EC	$6.12 \pm 0.36a$	7.80 ± 1.32a	$0.53 \pm 0.03a$	$0.47 \pm 0.11b$	8.53 ± 0.24a	$14.26 \pm 1.18b$	148.08 ± 7.62a
	5~10	СК	5.83 ± 0.19a	7.15 ± 0.47a	$0.46 \pm 0.03a$	$1.55 \pm 0.04a$	12.82 ± 0.92a	23.67 ± 0.72a	130.35 ± 3.05a
		EC	6.19 ± 0.01a	6.59 ± 1.32a	$0.28 \pm 0.00b$	$0.25 \pm 0.02b$	$4.24\pm0.10\mathrm{b}$	$8.63 \pm 0.02b$	148.87 ± 0.62a
	10~20	СК	6.11 ± 0.11a	9.44 ± 0.06a	0.38 ± 0.01a	1.50 ± 0.26a	$2.55\pm0.08b$	10.66 ± 2.23a	136.34 ± 0.53a
		EC	5.91 ± 0.25a	$8.80 \pm 0.75a$	0.31 ± 0.05a	$0.59 \pm 0.00b$	2.98 ± 0.11a	7.33 ± 0.00a	168.23 ± 11.64a

 Table 1
 Physiochemical properties of paddy soils during different rice growth stages under different CO2 treatments

									续表
生育期	深度	从Ⅲ	рН	有机碳	含水量	$NO_2^-N/$ (mg·kg ⁻¹)	NO ₃ -N/ (mg·kg ⁻¹)	$NH_{4}^{+}-N/$ (mg·kg ⁻¹)	可溶性有机碳
Growth	Depth/	处理 Transforment		SOC/	WC/				DOC/
stage	cm	freatment		$(\ {f g} {\cdot} {f k} {f g}^{-1})$	%				$(mg \cdot kg^{-1})$
	0~5	СК	6.21 ± 0.11a	9.47 ± 0.60a	$0.42\pm0.00a$	$0.44 \pm 0.03a$	$9.00\pm0.57a$	17.51 ± 1.24a	$65.26 \pm 4.95a$
拔苦期		EC	$6.13\pm0.05a$	$10.53 \pm 0.48 a$	$0.41 \pm 0.01 a$	$0.30\pm0.04a$	$7.69 \pm 0.16a$	$10.41 \pm 0.04 \mathrm{b}$	75.33 ± 2.16a
抜 卫 朔 Jointing stage	5 ~ 10	СК	$6.15\pm0.02a$	$9.85 \pm 0.64a$	$0.34 \pm 0.02a$	$0.71 \pm 0.22a$	$5.80\pm0.04a$	13.52 ± 1.89a	70.07 ± 1.97a
	5,~10	EC	5.89 ± 0.13a	$10.26 \pm 0.75a$	$0.30\pm0.04a$	$0.43 \pm 0.04 a$	$1.48 \pm 0.09b$	$10.28 \pm 1.05a$	60.19 ± 3.19a
	10~.20	СК	$6.27\pm0.08a$	$7.03 \pm 0.01a$	$0.35\pm0.01a$	$0.44 \pm 0.03a$	$14.51\pm0.96a$	$6.04 \pm 0.85a$	$62.23 \pm 0.97 a$
	10 - 20	EC	$6.20 \pm 0.05a$	$6.41 \pm 0.10b$	$0.21 \pm 0.01b$	$0.41 \pm 0.05 a$	$1.29 \pm 0.08b$	$4.16 \pm 0.37a$	$54.43 \pm 4.53a$
扬花期 Flowering stage	0~5	СК	$6.27\pm0.08a$	$10.44 \pm 0.68a$	$0.45 \pm 0.03a$	$0.48 \pm 0.06a$	$4.92\pm0.65a$	17.90 ± 1.92a	150.54 ± 1.76a
		EC	$6.12\pm0.07a$	$9.82 \pm 0.77a$	$0.47\pm0.04a$	$0.34\pm0.06a$	$5.58\pm0.38a$	8.31 ± 0.37a	$136.82 \pm 20.87a$
	5~10	СК	$6.15\pm0.04a$	$8.66\pm0.23a$	$0.47\pm0.03a$	$0.36 \pm 0.04a$	$10.05\pm0.62a$	$15.13 \pm 0.85a$	$103.80\pm2.93a$
		EC	$6.22\pm0.06a$	7.06 ± 1.10a	$0.31\pm0.01\mathrm{b}$	$0.30\pm0.05a$	$2.34 \pm 0.28b$	$5.19 \pm 0.91b$	$165.12 \pm 3.23b$
	10~20	СК	$6.22 \pm 0.08a$	$4.62\pm0.56a$	$0.39 \pm 0.02a$	$0.38\pm0.07a$	$1.48 \pm 0.22a$	8.11 ± 0.63a	$74.28 \pm 2.96a$
	10~20	EC	$6.20 \pm 0.08a$	$6.23 \pm 1.04a$	$0.29 \pm 0.01b$	$0.22 \pm 0.00a$	$1.43 \pm 0.13a$	$2.61 \pm 0.06b$	69.94 ± 5.81a

注: 1) CK, CO₂浓度对照处理; EC, CO₂浓度缓增处理。下同。2)数据表示为平均值±标准误。不同字母表示该生育期下同 一深度不同 CO₂处理间存在显著性差异(P<0.05)。Note: 1) CK, Ambient CO₂ treatment; EC, Elevated CO₂ treatment. The same below. 2) Data are presented as mean ± SE. Different letters indicate a significant difference between CO₂ treatments at the same growth stage and depth (P<0.05).

土层无显著变化,而其余时期 EC 处理均显著低于 CK(P<0.05)。EC 处理显著增加了扬花期 5~10 cm 土层中的 DOC 含量(P<0.05)。

7.2 不同 CO₂处理下土壤中 n-damo 活性与 M. oxyfera-like 细菌丰度

如图 1A 所示,在分蘖期,EC 处理 0~5 cm 土 层的 n-damo 活性显著增加(P<0.05),但 5~10 cm 的活性显著降低(P<0.05)。EC 处理分蘖期 n-damo 活性整体降低了 8%(P>0.05)。EC 处理显著增加了 拔节期 0~10 cm 土层的 n-damo 活性(P<0.05),但 显著降低了 10~20 cm 的活性(P<0.05)。EC 处理 使拔节期 n-damo 活性整体增幅达 137.9%(P<0.05)。 在扬花期,EC 处理虽使 0~5 cm、10~20 cm 土层 n-damo 活性显著增加(P<0.05),却使 5~10 cm 活 性显著降低(P<0.05)。扬花期 EC 处理下 n-damo 活性较 CK 整体增加了 23.0%(P>0.05)。

如图 1B 所示, EC 处理显著增加了分蘖期 0~5 cm 土层中 *M. oxyfera*-like 细菌的 16S rRNA 基因丰 度(*P*<0.05), 但显著降低了扬花期 5~10 cm 的基 因丰度(*P*<0.05)。相较于 CK, EC 处理使分蘖期基 因丰度整体增加了 28%(*P*>0.05)。EC 处理显著增 加了拔节期 5~10 cm 土层中的基因丰度(P<0.05), 同时使该时期基因丰度的整体增幅达 96.0% (P<0.05)。在扬花期, EC 处理使 0~5 cm、10~20 cm 土层中基因丰度显著增加(P<0.05),但使 5~10 cm 的基因丰度显著降低(P<0.05)。EC 处理使扬花 期基因丰度整体降低 13% (P>0.05)。

2.3 不同 CO₂处理下土壤中 *M. oxyfera*-like 细菌 多样性

M. oxyfera-like 细菌的 16S rRNA 基因多样性如 表 2 所示。由表可知,单个样品的覆盖度均超过 99%,说明本研究采用的高通量测序方法能较好地 表征此类微生物的基因多样性。EC 处理下的 OTU 数、Shannon 指数和 Chao1 指数分别为 6~12、0.79~ 1.45、6.0~12.0;而 CK 处理组的数据分别为 10~ 17、0.70~1.61、10.0~17.0。相较于 CK 处理, EC 显著提高了 OTU 数 (*P*<0.05)。

7.4 不同 CO₂处理下土壤中 M. oxyfera-like 细菌 群落组成

M. oxyfera-like 细菌的优势 OTU(占总序列的 94.1%) 落入两个不同的基因簇(图 2)。Cluster A 和 Cluster B 中的序列与已知的 *M. oxyfera* 的 16S rRNA 基因相似度分别为 92.8%~96.4%和 92.8%~ 94.2%。此外,对 *M. oxyfera*-like 细菌的群落结构进行 PCoA 分析发现,不同 CO₂浓度处理下其群落组

成存在显著差异(P<0.05)(图 3a)。组间差异分析 结果显示,EC处理下OTU51和OTU26的相对丰度 较CK处理有显著变化(P<0.05)(图 3b)。

注: 1) TCK, 分蘖期 CK 处理; TEC, 分蘖期 EC 处理; JCK, 拔节期 CK 处理; JEC, 拔节期 EC 处理; FCK, 扬花期 CK 处 理; FEC, 扬花期 EC 处理; 其后数字 5、10、20 分别表示 0~5 cm、5~10 cm、10~20 cm 土层。2) 图中误差线为标准误; 不同字 母表示该生育期下同一深度不同 CO₂处理间存在显著性差异 (P<0.05)。Note: 1) TCK, CK treatment at the tillering stage; TEC, EC treatment at the tillering stage; JCK, CK treatment at the jointing stage; JEC, EC treatment at the tillering stage; FCK, CK treatment at the flowering stage; FEC, EC treatment at the flowering stage; FEC, EC treatment at the flowering stage; the numbers of 5, 10, and 20 represent soil layers of 0~5 cm, 5~10 cm, and 10~20 cm, respectively. 2) Error bars in the figure are standard errors. Different letters indicate a significant difference between CO₂ treatments at the same growth stage and depth (P<0.05).

图 1 不同 CO₂浓度处理下各生育期不同深度稻田土壤 n-damo 活性与 *M. oxyfera*-like 细菌丰度 Fig. 1 The n-damo activity and abundance of *M. oxyfera*-like bacteria in different depths of paddy soil across different growth stages under different CO₂ treatments

表 2 不同 CO₂处理下各生育期不同深度稻田土壤中 M. oxyfera-like 细菌 16S rRNA 基因的多样性

 Table 2 Diversity of M. oxyfera-like bacterial 16S rRNA genes in different depths of paddy soils across different growth stages under different CO2 treatments

			-			
生育期	深度	处理	OTU 数量	Shannon 指数	Chao1 指数	覆盖度
Growth stage	Depth/cm	Treatment	No. of OTU	Shannon index	Chao1 index	Coverage/%
	0~5	СК	10	0.70	10.0	100.00
分酶期		EC	6	0.79	6.0	99.99
刀采为	5~10	СК	14	1.30	14.0	100.00
Tillering		EC	12	1.20	12.0	99.99
stage	10~20	СК	14	1.47	17.0	99.97
		EC	9	1.25	9.0	100.00
	0~5	СК	11	0.85	11.0	99.99
-11-11-1		EC	11	1.00	11.0	100.00
拔卫朔	5~10	СК	12	0.76	12.3	99.98
Jointing		EC	10	1.35	10.0	100.00
stage	10~20	СК	17	1.55	17.0	100.00
		EC	10	1.09	10.0	99.99
	0~5	СК	12	0.80	15.0	99.97
+Z +t: #u		EC	10	1.11	10.0	100.00
初化朔	5~10	СК	15	1.28	15.0	99.99
Flowering		EC	10	1.45	10.0	100.00
stage	10~20	СК	16	1.61	16.5	99.98
		EC	10	0.97	10.5	99.98

0.020

图 2 稻田土壤中优势 OTUs 序列的系统发育树

Fig. 2 Phylogenetic trees showing the affiliation of the dominant OTUs obtained from the paddy soil

Fig. 3 Principal co-ordinates analysis of *M. oxyfera*-like bacterial communities under different CO₂ treatments (a) and the difference in community composition between treatments (b)

2.5 不同 CO₂处理下土壤中 n-damo 过程的环境 影响因素

冗余分析结果显示, 土壤 WC、NO₃和 NH₄⁺含 量对稻田土壤中 *M. oxyfera*-like 细菌的群落结构均 有显著影响(*P*<0.05)(图 4)。相关性分析表明, 土壤 DOC 含量与 *M. oxyfera*-like 细菌丰度呈显著正 相关(*P*<0.05), 而 SOC 含量与 Shannon 指数呈显 著负相关(*P*<0.05)(图 5)。土壤 pH 与 OTU41 的 相对丰度呈显著负相关(*P*<0.05)。此外, OTU1 与 WC、NO₃和 NH₄⁺含量呈极显著正相关(*P*<0.01)。 OTU44 与 NH₄⁺和 SOC 含量呈显著负相关(*P*<0.05); OTU51 与 NH₄⁺含量呈显著负相关(*P*<0.05)。此外, OTU51 与 OTU44 均与 WC 呈极显著负相关 (*P*<0.01)。

3 讨 论

同位素示踪结果显示,不同 CO₂处理下各生育 期不同深度稻田土壤中均存在 n-damo 活性。本研究 中 n-damo 活性为 $0.31 \sim 5.09 \text{ nmol·g}^{-1} \cdot d^{-1}$ (以 CO₂计, 下同),在先前稻田 ($0.2 \sim 11.5 \text{ nmol·g}^{-1} \cdot d^{-1}$)^[8, 23]、天 然湿地 ($0.2 \sim 14.5 \text{ nmol·g}^{-1} \cdot d^{-1}$)^[24-26]中报道的 n-damo 活性范围之内,但低于部分人工湿地 ($8.5 \sim 23.5$ nmol·g⁻¹·d⁻¹) 和内陆河流 ($0.4 \sim 61.0 \text{ nmol·g}^{-1} \cdot d^{-1}$)^[27-28] 的报道值。本研究中 *M. oxyfera*-like 细菌的 16S rRNA 基因丰度范围为 $7.51 \times 10^6 \sim 5.49 \times 10^7$ copies·g⁻¹。 这些值高于中国亚热带地区稻田土壤 ($6.5 \times 10^3 \sim$ 9.3×10^6 copies·g⁻¹)^[29-30],以及部分天然湿地 ($10^4 \sim$ 10^5 copies·g⁻¹)^[31]、城市湿地 ($1.6 \times 10^6 \sim 1.3 \times 10^7$

图 4 不同 CO₂处理下 *M. oxyfera*-like 细菌群落组成与环 境因子的冗余分析

注: 白色为正相关, 灰色为负相关, 颜色深浅代表相关系 数大小; "*"表示具有显著相关性 (P < 0.05), "* *"表示具有 极显著相关性 (P < 0.01)。Note: The white represents positive correlation while the grey represents negative correlation. The color depth denotes the size of the correlation coefficient. "*" means significant correlation (P < 0.05) and "* *" means extremely significant correlation (P < 0.01).

图 5 n-damo 活性及 M. oxyfera-like 细菌 16S rRNA 基因丰度、各优势 OTUs 丰度、多样性与土壤理化性质间的相关性热图

Fig. 5 The heatmap showing correlations among the n-damo activity, 16S rRNA gene abundance of *M. oxyfera*-like bacteria, the relative abundance of dominant OTUs, diversity and the soil physicochemical properties copies·g⁻¹)^[32]中报道的丰度值。此外,所试土壤中 n-damo 活性与 *M. oxyfera*-like 细菌的基因丰度无显 著正相关(图 5)。其原因可能是本文针对的目标基 因为 *M. oxyfera*-like 细菌的 16S rRNA 基因,并非其 功能基因。因此,未来有必要针对稻田土壤中 *M. oxyfera*-like 细菌的功能基因(如 $pmoA^{[22]}$)丰度与 n-damo 活性间的关系展开相关研究。

本研究发现,大气 CO₂升高(缓增)处理对稻 田土壤 n-damo 活性及其功能微生物 M. oxyfera-like 细菌丰度均有重要影响。大气 CO2升高条件下,稻 田 n-damo 活性整体提高 13.7%, M. oxyfera-like 细 菌丰度整体增加 17.0%。虽两者的整体增幅并未达 到显著水平,但 EC 处理使拔节期 n-damo 活性与 M. oxyfera-like 细菌丰度均有显著提高(P<0.05)。 相关性分析表明, M. oxyfera-like 细菌丰度与土壤 DOC 含量呈显著正相关(P<0.05)(图 5)。大气 CO2 浓度升高可通过影响水稻生长和根系分泌物的增 加,间接导致土壤中 DOC 含量的增加^[33]。DOC 含 量通常与 CH₄含量呈正相关关系^[15], 其原因是 DOC 含量增加使产甲烷菌有更多的底物来源,促进其 CH4 的产生^[17]。土壤中 CH4 含量的增加会为 M. oxyfera-like 细菌提供更多的电子供体,进而可能促 进其生长与代谢。Shen 等^[28]研究发现,缺氧河床沉 积物中 n-damo 活性和 M. oxyfera-like 细菌丰度均与 CH4含量呈显著正相关。此外, DOC含量的增加还 会增强土壤反硝化活性^[34],因而会加速土壤中NO3 的还原,从而为 M. oxyfera-like 细菌提供更多的 NO? 来源。M. oxyfera-like 细菌正是利用 NO5为电子受体 对 CH₄进行氧化,并将 NO₅还原为 N₂^[11, 35]。本研 究发现,大气 CO2 浓度升高使得所试稻田土壤中 NO。含量在大部分生育期和深度下显著降低(表 1),其重要原因可能是 CO2浓度升高促进了反硝化 活性^[36]。此外, EC 处理使稻田土壤 NH₄⁺含量明显 降低(表1),其原因之一可能是大气 CO2浓度的增 加使得土壤硝化活性增强[37]。硝化活性的增强亦可 为 M. oxyfera-like 细菌提供更多的 NO5来源。综上, 大气CO2浓度升高通过影响作物生长导致土壤DOC 含量增加,并通过改变相关微生物过程对 n-damo 活性及 M. oxyfera-like 细菌丰度产生间接影响。

通过高通量测序手段发现,不同处理下各生育 期不同深度稻田土壤中均存在 *M. oxyfera*-like 细菌 序列。所获序列与已知 *M. oxyfera* 的 16S rRNA 基 因相似度为 92.8%~96.4%。系统发育分析表明(图 2), Cluster A 中的序列与黄河口泥沙^[38]、水稻土 (NCBI 登录号为 KR048273, unpublished)中报道 的 NC10 门序列具有较高亲缘性(相似度分别为 92.8%~98.8%和 94.2%~98.6%)。Cluster B 包含的 序列占比超过 75%,该基因簇中的序列与东湖沉积 物^[31]、黄河口泥沙^[38]、水稻土^[30]、泥炭地(NCBI 登录号为 KX237759, unpublished)中报道的 NC10 门序列高度相似(相似度分别为 97.4%~99.0%、 96.9%~100%、97.4%~98.6%、97.1%~98.8%)。 多样性分析结果显示,单个土壤样品中 *M. oxyfera*like 细菌 16S rRNA 基因的 OTUs 数为 6~17,高于 先前稻田土壤中的报道值(3~6 OTUs)^[23.39]。

本研究还发现,大气 CO2浓度升高对稻田土壤 中 M. oxyfera-like 细菌的群落组成具有显著影响 (P<0.05)(图 3A)。大气 CO2浓度升高使得本研究 中各生育期部分深度土壤中 WC、NO₃和 NH⁺含量 发生了显著变化(P<0.05)(表 1)。前人研究也表 明, CO₂浓度升高会导致土壤中 WC 和无机氮水平 发生改变^[15, 38]。Tian 等^[19]与 Hui 等^[39]研究发现, WC和NO⁻含量对稻田土壤中*M. oxvfera*-like细菌的 群落组成和多样性有显著影响。Chen 等^[40]和 Shen 等^[35]研究表明,NH₄⁺和 NO₃含量是影响湿地沉积物 中 M. oxyfera-like 细菌群落结构的重要环境因子。 由于 M. oxyfera-like 细菌是一类厌氧菌,其对于氧 气浓度的变化较为敏感^[41]。Wang 等^[42]研究发现, 累积淹水时间对淡水沉积物中 M. oxyfera-like 细菌 群落结构有重要影响。因此, WC 很可能通过影响 稻田土壤中氧气浓度对 M. oxyfera-like 细菌群落结 构产生影响。此外,土壤中 NH₄和 NO₃含量的变化 会改变硝化和反硝化作用强度,继而通过影响 NO-的供给对 M. oxyfera-like 细菌产生影响。

4 结 论

大气 CO₂ 浓度升高在一定程度上提高了稻田 n-damo 活性和 *M. oxyfera*-like 细菌丰度,且显著改 变了此类细菌的群落结构。大气 CO₂浓度升高增加 了土壤中可溶性有机碳含量,并通过改变 CH₄ 和 NO₂的供给,进一步影响 *M. oxyfera*-like 细菌的生长 和代谢。此外,土壤中含水量、NO₃和 NH⁴₄含量的 变化对 *M. oxyfera*-like 细菌群落组成有显著影响。

参考文献(References)

- Jin J, Wood J, Franks A, et al. Long-term CO₂ enrichment alters the diversity and function of the microbial community in soils with high organic carbon[J]. Soil Biology & Biochemistry, 2020, 144: 107780.
- Liu S W, Ji C, Wang C, et al. Climatic role of terrestrial ecosystem under elevated CO₂: A bottom-up greenhouse gases budget[J]. Ecology Letters, 2018, 21 (7): 1108—1118.
- [3] van Meijl H, Havlik P, Lotze-Campen H, et al. Comparing impacts of climate change and mitigation on global agriculture by 2050[J]. Environmental Research Letters, 2018, 13 (6): 064021.
- [4] le Mer J, Roger P. Production, oxidation, emission and consumption of methane by soils: A review[J]. European Journal of Soil Biology, 2001, 37 (1): 25-50.
- [5] Kirschke S, Bousquet P, Ciais P, et al. Three decades of global methane sources and sinks[J]. Nature Geoscience, 2013, 6 (10): 813-823.
- [6] Shen L D. A review of study on microbial ecology of nitrite-dependent anaerobic methane oxidation[J]. Acta Pedologica Sinica, 2015, 52(4): 713—722. [沈李东. 亚 硝酸盐型甲烷厌氧氧化微生物生态学研究进展[J]. 土 壤学报, 2015, 52(4): 713—722.]
- [7] Vaksmaa A, Lüke C, van Alen T, et al. Distribution and activity of the anaerobic methanotrophic community in a nitrogen-fertilized Italian paddy soil[J]. FEMS Microbiology Ecology, 2016, 92 (12): fiw181.
- [8] Shen L D, Liu J Q, Yang Y L, et al. Activity, abundance and community composition of nitrite-dependent methanotrophs in response to fertilization in paddy soils[J]. Applied Soil Ecology, 2021, 166: 103987.
- [9] Fan L C, Shahbaz M, Ge T D, et al. To shake or not to shake: ¹³C-based evidence on anaerobic methane oxidation in paddy soil[J]. Soil Biology & Biochemistry, 2019, 133: 146-154.
- [10] Raghoebarsing AA, Pol A, van de Pas-Schoonen K T, et al. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440(7086): 918—921.
- [11] Ettwig K F, Butler M K, le Paslier D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010, 464 (7288): 543-548.
- [12] Xu Z J, Zheng X H, Wang Y S, et al. Effects of elevated CO₂ and N fertilization on CH₄ emissions from paddy rice fields[J]. Global Biogeochemical Cycles, 2004, 18 (3): GB3009.
- Liu Y, Liu X Y, Cheng K, et al. Responses of methanogenic and methanotrophic communities to elevated atmospheric CO₂ and temperature in a paddy field[J]. Frontiers in Microbiology, 2016, 7: 1895.

- [14] Tokida T, Fumoto T, Cheng W, et al. Effects of free-air CO₂ enrichment (FACE) and soil warming on CH₄ emission from a rice paddy field: Impact assessment and stoichiometric evaluation[J]. Biogeosciences, 2010, 7 (9): 2639-2653.
- [15] Wang Y Y, Hu Z H, Shen L D, et al. The process of methanogenesis in paddy fields under different elevated CO₂ concentrations[J]. Science of the Total Environment, 2021, 773: 145629.
- Yang L X, Wang Y L, Huang J Y, et al. Seasonal changes in the effects of free-air CO₂ enrichment (FACE) on phosphorus uptake and utilization of rice at three levels of nitrogen fertilization[J]. Field Crops Research, 2007, 102 (2): 141—150.
- [17] Okubo T, Liu D Y, Tsurumaru H, et al. Elevated atmospheric CO₂ levels affect community structure of rice root-associated bacteria[J]. Frontiers in Microbiology, 2015, 6: 136.
- [18] Liu X, Shen L D, Tian M H, et al. Effect of slow increase of atmospheric CO₂ concentration on methane oxidation in paddy soils[J]. Acta Pedologica Sinica, 2022, 59(2): 568—579. [刘心, 沈李东, 田茂辉, 等. 大气 CO₂浓度缓增对稻田土壤甲烷氧化过程的影响[J]. 土壤学报, 2022, 59(2): 568—579.]
- [19] Tian M H, Shen L D, Liu X, et al. Response of nitrite-dependent anaerobic methanotrophs to elevated atmospheric CO₂ concentration in paddy fields[J]. Science of the Total Environment, 2021, 801: 149785.
- [20] Liu C, Hu Z H, Yu L F, et al. Responses of photosynthetic characteristics and growth in rice and winter wheat to different elevated CO₂ concentrations[J]. Photosynthetica, 2020, 58 (5): 1130–1140.
- [21] Bao S D. Soil and agricultural chemistry analysis[M].
 Beijing: China Agriculture Press, 2000. [鲍士旦. 土壤 农化分析[M]. 北京:中国农业出版社, 2000.]
- [22] Ettwig K F, van Alen T, van de Pas-Schoonen K T, et al. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 Phylum[J]. Applied and Environmental Microbiology, 2009, 75 (11): 3656—3662.
- [23] Shen L D, Liu S, Huang Q, et al. Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field[J]. Applied and Environmental Microbiology, 2014, 80 (24): 7611-7619.
- [24] Shen L D, Huang Q, He Z F, et al. Vertical distribution of nitrite-dependent anaerobic methane-oxidising bacteria in natural freshwater wetland soils[J]. Applied Microbiology and Biotechnology, 2015, 99(1): 349—357.
- [25] Hu B L, Shen L D, Lian X, et al. Evidence for nitritedependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands[J].

Proceedings of the National Academy of Sciences of the United States of America, 2014, 111 (12): 4495–4500.

- [26] Xie F, Ma A Z, Zhou H C, et al. Niche differentiation of denitrifying anaerobic methane oxidizing bacteria and Archaea leads to effective methane filtration in a Tibetan alpine wetland[J]. Environment International, 2020, 140: 105764.
- [27] Zhang M P, Huang J C, Sun S S, et al. Depth-specific distribution and significance of nitrite-dependent anaerobic methane oxidation process in tidal flow constructed wetlands used for treating river water[J]. Science of the Total Environment, 2020, 716: 137054.
- [28] Shen L D, Ouyang L, Zhu Y Z, et al. Active pathways of anaerobic methane oxidation across contrasting riverbeds[J]. The ISME Journal, 2019, 13(3): 752-766.
- [29] Shen L D, Wu H S, Gao Z Q, et al. Presence of diverse Candidatus Methylomirabilis oxyfera-like bacteria of NC10 Phylum in agricultural soils[J]. Journal of Applied Microbiology, 2016, 120 (6): 1552—1560.
- [30] Wang Y, Zhu G B, Harhangi H R, et al. Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil[J]. FEMS Microbiology Letters, 2012, 336 (2): 79–88.
- [31] Zhu G B, Zhou L L, Wang Y, et al. Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in Chinese wetland ecosystems[J]. Environmental Microbiology Reports, 2015, 7 (1): 128–138.
- [32] Segarra K E A, Schubotz F, Samarkin V, et al. High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions[J]. Nature Communications, 2015, 6: 7477.
- [33] Sun X, Han X G, Ping F, et al. Effect of rice-straw biochar on nitrous oxide emissions from paddy soils under elevated CO₂ and temperature[J]. Science of the Total Environment, 2018, 628/629: 1009–1016.
- [34] Qin S P, Hu C S, Clough T J, et al. Irrigation of DOC-rich liquid promotes potential denitrification rate and decreases N₂O/ (N₂O+N₂) product ratio in a 0-2 m soil profile[J]. Soil Biology & Biochemistry, 2017, 106: 1-8.
- [35] Shen L D, Wu H S, Liu X, et al. Cooccurrence and potential role of nitrite- and nitrate-dependent methanotrophs in freshwater marsh sediments[J]. Water Research, 2017, 123: 162–172.
- [36] Carnol M, Hogenboom L, Jach M E, et al. Elevated atmospheric CO₂ in open top Chambers increases net nitrification and potential denitrification[J]. Global Change Biology, 2002, 8 (6): 590-598.
- [37] Shen L D, Yang Y L, Liu J Q, et al. Different responses of ammonia-oxidizing Archaea and bacteria in paddy soils to elevated CO₂ concentration[J]. Environmental Pollution, 2021, 286: 117558.

6期

- [38] Yan P Z, Li M C, Wei G S, et al. Molecular fingerprint and dominant environmental factors of nitrite-dependent anaerobic methane-oxidizing bacteria in sediments from the Yellow River Estuary, China[J]. PLoS One, 2015, 10 (9): e0137996.
- [39] Hui C, Guo X X, Sun P F, et al. Depth-specific distribution and diversity of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in uplandcropping soil under different fertilizer treatments[J]. Applied Soil Ecology, 2017, 113: 117-126.
- [40] Chen J, Zhou Z C, Gu J D. Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR

amplification of both 16S rRNA and pmoA genes[J]. Applied Microbiology and Biotechnology, 2015, 99(3): 1463—1473.

- [41] Luesken FA, Wu ML, den Camp HJMO, et al. Effect of oxygen on the anaerobic methanotroph 'Candidatus Methylomirabilis oxyfera': Kinetic and transcriptional analysis[J]. Environmental Microbiology, 2012, 14(4); 1024—1034.
- [42] Wang Y, Huang P, Ye F, et al. Nitrite-dependent anaerobic methane oxidizing bacteria along the water level fluctuation zone of the Three Gorges Reservoir[J]. Applied Microbiology and Biotechnology, 2016, 100(4): 1977—1986.

(责任编辑:卢 萍)