DOI: 10.11766/trxb202209080499

朱濛,何玉环,魏小宝,李元,杨如意. 铁还原和硫酸盐还原对红壤中二苯砷酸释放与硫化的影响[J]. 土壤学报, 2024, 61 (3): 770–782. ZHU Meng, HE Yuhuan, WEI Xiaobao, LI Yuan, YANG Ruyi. Effects of Iron and Sulfate Reduction on the Mobilization and Thionation of Diphenylarsinic Acid in Acrisol[J]. Acta Pedologica Sinica, 2024, 61 (3): 770–782.

铁还原和硫酸盐还原对红壤中二苯砷酸释放与硫化的影响*

朱 濛^{1, 2, 3},何玉环¹,魏小宝¹,李 元¹,杨如意^{1, 2, 3†}

(1. 安徽师范大学生态与环境学院,安徽芜湖 241002; 2. 皖江流域退化生态系统的恢复与重建省部共建协同创新中心,安徽芜湖 241002;3. 安徽省水土污染治理与修复工程实验室,安徽芜湖 241002)

摘 要:二苯砷酸(diphenylarsinic acid, DPAA)是含砷化学武器在环境中的主要降解产物之一,研究铁还原和硫酸盐还原 对土壤中 DPAA 释放与硫化的影响对于深入认识 DPAA 的环境地球化学行为至关重要。考察了在淹水和添加不同浓度乳酸 钠(C)和硫酸钠(S)培养时花生地和林地红壤中 DPAA 的释放与硫化情况,并分析铁还原和硫酸盐还原的影响。结果显 示:(1)对花生地而言,与不添加硫酸钠和乳酸钠(S-C-)以及仅添加硫酸钠(426 µg·g⁻¹,以S计,S+C-)的处理相比, 同时添加硫酸钠和乳酸钠(1300 µg·g⁻¹(以C计,下同),S+C+; 2170 µg·g⁻¹,S+C+)的处理中 DPAA 释放明显增强,这 与乳酸钠促进了铁还原(>45%)从而有利于 DPAA 的释放有关;(2)在花生地的 S+C+处理中硫酸盐还原最为显著(13 周 时溶解态硫化物浓度为 11.28 mg·L⁻¹),DPAA 的关除率(59.6%)最高且主要发生硫化,而在 S+C++处理中铁还原程度的增 加和硫酸盐还原程度的降低不利于 DPAA 的硫化;(3)与花生地不同,无论是否添加乳酸钠和硫酸盐,林地中未见 DPAA 的释放与硫化现象,这与其铁还原程度较低(<25%)和硫酸盐未发生还原(未检测到溶解态硫化物)有关;(4)与林地相 比,花生地中梭菌属、芽孢杆菌属和脱硫芽孢杆菌属的丰度明显增加,这很可能分别促进了铁还原和硫酸盐还原,最终对 DPAA 释放和硫化产生了更显著的影响。总体而言,与铁还原促进 DPAA 的释放和进一步的硫化相比,硫酸盐的还原程度以 及溶液相中硫化物的浓度很可能是控制淹水红壤中 DPAA 硫化的一个更重要的因素。研究结果将为深入认识 DPAA 的环境 行为和发展 DPAA 污染红壤的生物刺激修复技术提供理论基础。 **关键词:**二苯砷酸;铁和硫酸盐还原;释放;硫化;花生地;林地

中图分类号: X53 文献标志码: A

Effects of Iron and Sulfate Reduction on the Mobilization and Thionation of Diphenylarsinic Acid in Acrisol

ZHU Meng^{1, 2, 3}, HE Yuhuan¹, WEI Xiaobao¹, LI Yuan¹, YANG Ruyi^{1, 2, 3†}

(1. School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China; 2. Collaborative Innovation Center of

^{*} 国家自然科学基金项目(41807117)、安徽师范大学项目培育基金项目(2022xjxm049)和大学生创新创业训练计划项目(S202210370320) 资助 Supported by the National Natural Science Foundation of China (No. 41807117), the Project Incubation Foundation of Anhui Normal University, China (No. 2022xjxm049) and the Project of Innovation and Entrepreneurship Training for College Students of China (No. S202210370320)

[†] 通讯作者 Corresponding author, E-mail: yangruyi@mail.ahnu.edu.cn

作者简介:朱 濛(1991—),女,安徽桐城人,博士研究生,副教授,主要从事土壤有机金属的污染与修复研究工作。E-mail: mzhu@ahnu.edu.cn

收稿日期: 2022-09-08; 收到修改稿日期: 2023-03-19; 网络首发日期 (www.cnki.net): 2023-05-29

771

Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, Anhui 241002, China; 3. Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu, Anhui 241002, China)

Abstract: [Objective] Diphenylarsinic acid (DPAA) is one of the main degradation products of arsenic-containing chemical weapons in the environment. The objective of this study was to investigate the effects of iron and sulfate reduction on the mobilization and thionation of DPAA in soil. [Method] Acrisol from a peanut field and woodland was selected for soil incubation experiment, and both were spiked with DPAA and different concentrations of sodium lactate (C source) and sodium sulfate (S source) under flooded condition. Four treatments were established in the current study, treatment one (S-C-) was created without the addition of S or C sources, treatment two (S+C-)only received 426 $\mu g \cdot g^{-1}$ S, treatment three (S+C+) received 426 $\mu g \cdot g^{-1}$ S and 1 300 μ g·g⁻¹ C, and treatment four (S+C++) received 426 μ g·g⁻¹ S and 2 170 μ g·g⁻¹ C. Samples of the soil and supernatant were collected for the analysis of DPAA, Fe^{2+} , HCl-extractable Fe^{2+} , SO_4^{2-} , sulfide, pH, Eh and bacterial community structure. [Result] Results for the peanut field indicated that the mobilization of DPAA was significantly enhanced in the S+C+ and S+C++ treatments due to the addition of carbon, as compared to S-C- and S+C- treatments without carbon. This difference was likely caused by the elevated Fe reduction (> 45%) due to lactate addition, which then promoted DPAA mobilization. In comparison to other treatments, sulfate reduction was most significant in the S+C+ treatment of the peanut field (with the concentration of dissolved sulfide reaching 11.28 mg L^{-1} after 13 weeks of incubation), where the removal rate (59.6%) of DPAA was the highest and DPAA was primarily thionated. However, the increased Fe reduction and decreased sulfate reduction in the S+C++ treatment were not conducive to the thionation of DPAA. Unlike peanut land, the mobilization and thionation of DPAA were not observed in woodland regardless of the addition of sodium lactate and sulfate. This difference can be explained by the lower degree of Fe reduction (< 25%) and the absence of sulfate reduction (without the detection of dissolved sulfide) in woodland. The relative abundances of Clostridium, Bacillus and Desulfosporosinus were significantly higher in the peanut field soil than those in woodland. This probably promoted the occurrence of iron and sulfate reduction, respectively, and both processes ultimately had a stronger influence on the mobilization and thionation of DPAA. [Conclusion] Generally, instead of the stimulating effect of Fe reduction on DPAA mobilization, the degree of sulfate reduction and the concentration of sulfide in the liquid phase is a more significant factor in determining DPAA thionaiton in Acrisol under flooded condition. The findings will serve as a theoretical foundation for the in-depth understanding of the environmental behavior of DPAA as well as the development of biostimulation remediation solutions for DPAA-contaminated Acrisol.

Key words: Diphenylarsinic acid (DPAA); Fe and sulfate reduction; Mobilization; Thionation; Peanut field; Woodland

二苯砷酸(diphenylarsinic acid, DPAA)是含 砷化学武器二苯氰砷(diphenylcyanoarsine, DA) 和二苯氯砷(diphenylchloroarsine, DC)在环境中 的主要降解产物^[1]。在世界大战期间, DA 和 DC 被 大量制造和使用, 战后仅通过土地填埋等措施进行 处理, 因而周边土壤非常容易受到砷的污染。目前, 已经在中国、欧洲和日本等多个国家化学武器埋藏 区的土壤(<10 mg·kg⁻¹)和地下水(<15 mg·L⁻¹)等 不同环境介质中检出了 DPAA^[1-3]。研究表明, DPAA 在环境中存留时间长、毒性强^[4],能够通过"土壤-水稻-人体"^[5]的途径传递,最终危害人体健康。2002 年, 日本发生了一起 DPAA 污染井水导致的集体中 毒事件^[6], 此后这种新兴环境污染物引起了政府机

构和学术界的高度关注。研究 DPAA 在土壤中的释放和转化过程对于深入认识 DPAA 的环境地球化学行为至关重要。

土壤中无机砷的释放和转化与铁还原以及硫酸 盐还原过程密切相关^[7]。最近针对 DPAA 的研究发 现,淹水土壤中的 DPAA 主要发生脱苯环生成苯砷 酸(phenylarsonic acid, PAA)^[8],而在硫酸盐还原 条件下, DPAA 主要发生硫化并生成二苯基硫代砷 酸(diphenylthioarsinic acid, DPTAA)^[9]。前期的 研究还发现,在铁含量低而有机质含量高的黑土中, 铁还原促进了 DPAA 释放和进一步的硫化^[10];而在 铁含量高而有机质含量低的红壤中,铁还原产生的 Fe(II)与硫酸盐还原产生的硫化物反应,通过消

耗硫化物从而不利于 DPAA 的硫化^[11]。由此可见, 铁还原和硫酸盐还原对 DPAA 释放与硫化的影响在 不同类型土壤中明显不同。此外,添加硫酸盐的生 物刺激修复被认为是去除土壤中 DPAA 污染的一种 有效方法^[12]。但目前相关的研究主要关注添加碳源 和硫酸盐等人为调控措施对 DPAA 释放与硫化的影 响,针对不同土壤类型、不同土地利用方式导致的 氧化铁含量、形态及微生物群落结构等土壤物理化 学、生物学性质的差异对 DPAA 释放与硫化的影响 尚有待深入研究。

我国热带、亚热带红壤是一种典型的高氧化铁 土壤,对 DPAA 具有较强的吸附能力^[13];但在淹水 还原条件下,铁还原促进红壤中 DPAA 释放的效应 很可能较为显著。而这类土壤是我国化学武器埋藏 区的主要土壤类型之一,并在南方经济发达地区和 粮食主产区广泛分布,更有可能引发 DPAA 污染问 题。鉴于此,本研究选取两种不同土地利用方式(花 生地、林地)的红壤作为研究对象,考察添加不同 浓度乳酸钠及硫酸钠培养时 DPAA 的释放与硫化情 况,并分析铁还原和硫酸盐还原的影响,以期为准 确评估 DPAA 的环境健康风险和发展 DPAA 污染红 壤的生物刺激修复技术提供理论依据。

材料与方法 1

1.1 仪器与试剂

TSO Quantum Access MAX 型高效液相色谱-质谱联用仪(HPLC-MS/MS, TSO Quantum Access MAX, Thermo 公司, 美国), 恒温培养箱(BSG-300 型,上海博迅),原子荧光光谱仪(AFS9700型, 北京海光),紫外分光光度计(UV752型,上海佑 科), 真空冷冻干燥机(YWLG-10A型, 南京研沃 生物科技),离心机(L530型,湖南湘仪)。DPAA (纯度 97%)购自日本 Wako 公司,甲醇和甲酸为 色谱纯,其余试剂为分析纯。实验用水为 18.2 MΩ 超纯水。

1.2 供试土壤

供试土壤采自江西鹰潭中国科学院红壤生态实 验站的花生地(28°15'N,116°55'E)和林地(28°12'N, 116°56'E), 为不含 DPAA 的表层土壤 (0~15 cm)。 土壤经室内风干、除根和研磨过 2 mm 筛后备用。 土壤基本性质见表1。

 Table 1
 The physicochemical properties of the tested soils
总砷 非晶质氧化铁 有机质 全铁 游离氧化铁 土壤类型 $pH(H_2O)$ Total As Total Fe DCB-Fe₂O₃ Oxalate-Fe₂O₃ Soil organic matter Soil type $/(g \cdot kg^{-1})$ $/ (mg \cdot kg^{-1})$ / (g·kg⁻¹) $/(g \cdot kg^{-1})$ / (g·kg⁻¹) 红壤(花生地)^① 4.56 8.60 22.85 49.87 30.47 1.29

7.30

表1 供试土壤的理化性质

19.99

52.84

4.35 ①Acrisol (peanut field); ②Acrisol (woodland).

1.3 土培试验设计

红壤(林地)²

以 100 mL 西林瓶作为培养容器, 加入 20.0 g 土壤,平整铺于底部,添加总体积为 29.7 mL 的含 不同浓度硫酸钠和乳酸钠的液体,采用硅胶塞和铝 盖密封瓶口;插入针管作为排气口,针管的另一端 埋入装有超纯水的玻璃试管中,定期补充水分以保 证半密闭环境[10]。试验共设置 4 个处理:不添加硫 酸钠和乳酸钠 (S-C-); 仅添加硫酸钠 (426 $\mu g \cdot g^{-1}$ 干土,以S计,下同)(S+C-);同时添加硫酸钠 (426 μg·g⁻¹干土)和乳酸钠(1 300 μg·g⁻¹干土,以 C 计, 下同)(S+C+); 同时添加硫酸钠(426 μg·g⁻¹ 干土)和乳酸钠(2170 µg·g⁻¹干土)(S+C++),每 个处理设6个重复。所有西林瓶置于25℃、避光条 件下预培养2周,再加入0.3 mL 2000 mg·L⁻¹DPAA 溶液, 使得 DPAA 的最终添加量为 30 mg·kg⁻¹干土 (低于《销毁日本遗弃在华化学武器土壤污染控制 标准》(GB 19062-2003)^[14]中规定的总砷浓度限 值—30 mg·kg⁻¹干土), 3 000 r·min⁻¹振荡 10 min 使 土水混合液充分混匀,置于恒温培养箱中继续 培养。

49.80

1.02

1.4 取样及测定方法

培养至 0、1、2、6 和 13 周时分别进行破坏性 取样。每个处理取 4 个重复,将土水混合液加入 1 mol·L⁻¹ HCI 溶液中 (ν/ν =1:9),振荡 24 h 后测定 HCl 提取态 Fe²⁺和 HCl 提取态总铁^[15]。剩余土水混 合液离心后,取上清液测定 DPAA、Fe²⁺、SO₄²⁻和 硫化物的含量,并分析 DPAA 的转化产物;土壤固 相经冷冻干燥后采用 Na₂HPO₄振荡提取^[16],测定固 相 DPAA 含量及其转化产物。另取 2 个重复用于测 定 pH、Eh 及细菌群落结构组成。为防止样品发生 反应或氧化:(1)整个取样过程在 N₂氛围下完成, 储存上清液或反应液的瓶子均通入 N₂;(2)上清液 用 H₃PO₄(200 mmol·L⁻¹, ν/ν =9:1)稀释后,储存 于 4°C;(3)离心后的固体储存于-20°C;(4)取样 结束后立即测定 Fe²⁺、SO₄²⁻和硫化物的浓度;(5)用 于 DPAA 及其转化产物测定的样品储存于-20°C。

按照下列公式计算 DPAA 去除率:

DPAA 去除率/%= $(M_0 - M_t) / M_0 \times 100$ (1)

式中, M_0 为0时刻土壤固、液相中 DPAA 含量之和, mg; M_t 为 t 时刻土壤固、液相中 DPAA 含量之和, mg。

DPAA 及其转化产物的测定采用 HPLC-MS/MS 法^[16]。溶解态 Fe²⁺和 HCl 提取态铁采用邻菲罗啉分 光光度法测定, SO₄²⁻采用硫酸钡比浊法测定^[17],硫 化物采用硫化铜比浊法测定^[18]。pH采用 pH 计测定, Eh 采用铂电极和饱和甘汞电极电位差法测定。

1.5 16S rRNA 测序

培养至 0、6 和 13 周时采集土壤样品,采用十 六烷基三甲基溴化铵(hexadecyltrimethyl ammonium bromide, CTAB)法提取 DNA,再用 1%琼脂糖凝 胶电泳检测 DNA 的纯度和浓度。采用引物 341F(5'-CCTAYGGGRBGCASCAG-3')和 806R(5'-GGACTA CNNGGGTATCTAAT-3')对细菌 16S rRNA 基因的 V3+V4 可变区进行 PCR 扩增。扩增程序:98℃预变 性 1 min;(98℃,10 s; 50℃,30 s; 72℃,30 s)×30 个循环;72℃修复延伸 5 min。根据 PCR 产物的浓 度进行等浓度混样,充分混匀后使用 1×TAE 浓度 2%的琼脂糖凝胶电泳纯化 PCR 产物,选择割胶回 收目标条带。使用建库试剂盒(TruSeq®DNA PCR-Free Sample Preparation Kit)进行文库构建, 构建好的文库经过 Qubit 定量和文库检测,合格后 使用 NovaSeq 6000 PE250 进行上机测序。测序服务 委托深圳微科盟科技集团有限公司完成。

1.6 数据分析

采用 Excel 2010 分析原始数据,所有结果用平均值±标准偏差表示。采用 Origin 2021 作图。

2 结 果

2.1 DPAA 的固液分配

两种土地利用方式红壤的固、液相中 DPAA 百 分含量的变化如图 1 所示。0 周时,花生地的 S-C-和 S+C-处理中液相 DPAA 百分含量分别为 57.2%和 66.1%(图 1a,图 1b),而 S+C+和 S+C++处理中液 相 DPAA 百分含量(70%~80%)有所增加(图 1c, 图 1d)。随着培养时间的延长,S-C-和 S+C-处理中 液相 DPAA 百分含量始终低于固相,而 S+C+和 S+C++处理中液相 DPAA 百分含量始终高于固相 (仅 1 个例外)。由此可见,对花生地而言,与 S-C-和 S+C-处理相比,S+C+和 S+C++处理中 DPAA 释 放明显增强。

与花生地相比,林地的 4 个处理在 0 周时液相 DPAA 百分含量差异明显,分别为 40.6%、59.6%、 67.8%和 86.7%(图 1e~图 1h)。其中,与 S-C-和 S+C-处理相比,S+C+和 S+C++处理中 DPAA 的释 放明显增加,且 S+C++处理中 DPAA 的释放最为明 显。上述结果说明,与花生地相比,乳酸钠对林地 中 DPAA 释放的促进作用更强。此外,与 S-C-处理 相比,S+C-处理中 DPAA 的释放明显增加,这很可 能与 SO₄²⁻ 阴离子与 DPAA 阴离子在土壤表面的竞 争吸附有关^[19]。培养 1 周后,林地的 4 个处理中固 相 DPAA 百分含量始终高于液相(图 1e~图 1h)。 由此可见,对林地而言,与 S-C-和 S+C-处理相比, 随着培养时间的延长 S+C+和 S+C++处理中未见明 显的 DPAA 释放现象。

2.2 DPAA 的转化

两种土地利用方式红壤的总 DPAA 百分含量随时间的变化见图 1。总体而言,花生地和林地的 4 个处理中总 DPAA 百分含量均表现为随时间的延长不断降低。与其他处理相比,花生地的 S+C+处理中 DPAA 的转化速率和最终转化率均明显增加,13 周

100

80

60

40

20

C

140

120

100

80

60 40

20

0 2 4 6 8 10 12 14

 0^{2}

4

h) 林地 Woodland S+C++

10 12 14

8

林地 Woodland S+C+

时间 Time/Week

100

80

60

40

20

0

0 2

4 6 8 1 时间 Time/Week

8 10 12 14

10 12 14

8

注: S-C-, 不添加硫酸钠和乳酸钠; S+C-, 仅添加硫酸钠; S+C+, 同时添加硫酸钠 (426 µg·g⁻¹) 和乳酸钠 (1300 µg·g⁻¹, 以 C 计); S+C++, 同时添加硫酸钠 (426 µg·g⁻¹) 和乳酸钠 (2170 µg·g⁻¹)。总 DPAA 百分含量为取样时刻 DPAA 含量与初始 DPAA 投加 量 (0.6 mg)的比值, 液相 DPAA 百分含量为取样时刻溶解态 DPAA 含量与初始 DPAA 含量与初始 DPAA 含量为取样 时刻固相结合态 DPAA 含量与初始 DPAA 投加量的比值, 下同。Note: S-C-, without the addition of sodium sulfate or sodium lactate; S+C-, only with the addition of sodium sulfate; S+C+, with the addition of sodium sulfate (426 µg·g⁻¹) and sodium lactate (1300 µg·g⁻¹ dry soil, in terms of C); S+C++, with the addition of sodium sulfate (426 µg·g⁻¹) and sodium lactate (2170 µg·g⁻¹ dry soil). The percentage content of total DPAA was calculated as the ratio of the mass of total DPAA obtained at each sampling point to the mass of dissolved and solid-phase-associated DPAA were calculated as the ratio of the mass of dissolved and solid-phase-associated DPAA added, respectively, the same below.

时间 Time/Week

图 1 花生地(a~d)和林地(e~h)中二苯砷酸(DPAA)百分含量随时间的变化

Fig. 1 Changes in the percentage content of diphenylarsinic acid (DPAA) in peanut field (a-d) and woodland (e-h) with time

后 DPAA 的转化率可达 59.6% (图 1c);而林地的 4 个处理中 DPAA 的最终转化率均小于 45% (图 1e~ 图 1h)。根据保留时间和碎片离子的信息^[10]可知, 在花生地 S+C+处理的固、液相中均检测到 DPAA (保留时间 t_{R} =6.6 min,定性离子对为 263/245、 263/141)的硫化产物——DPTAA (t_{R} =7.3 min,定 性离子对为 279/261、279/183) (图 2a,图 2b);而 在其他处理中均未检测到 DPTAA 和 PAA(数据未显示),推测可能存在其他的 DPAA 转化路径,如通过逐步脱苯环最终降解为无机砷,或者发生甲基化等^[8]。

对于花生地的 4 个处理,在 0~2 周总 DPAA 的 减少主要是由于液相 DPAA 的降低;2 周后总 DPAA 和固、液相的 DPAA 均表现为随时间的延长有不同

DPAA百分含量 Percentage content of DPAA%

DPAA百分含量 Percentage content of DPAA/%

DPAA百分含量 Percentage content of DPAA% 140_r

120

100

80

60

40

20

0

140

120

100

80

60

40

20

0

140

120

100

80

60

40 20 Ā

0

g)

0 2 4 6 8 10 12 14

图 2 花生地的 S+C+处理在培养 13 周后上清液(a)和土壤浸提液(b)的 HPLC-MS/MS 总离子流图 Fig. 2 Total ion chromatograms in HPLC-MS/MS analysis of supernatant (a) and soil extract (b) in S+C+ treatment of peanut field after 13 weeks of incubation

程度的降低,其中 S+C+处理中固、液相 DPAA 降低的趋势最为明显(图 1a~图 1d)。对于林地的 S+C+处理,在 0~6 周总 DPAA 的减少主要是由于液相 DPAA 的降低,而在 6~13 周总 DPAA 的减少是由于 固相 DPAA 的降低;对于其他处理,在 0~6 周总 DPAA 和液相 DPAA 随时间的变化趋势基本一致,而 6 周后总 DPAA 和固、液相的 DPAA 百分含量变化不明显(图 1e~图 1h)。上述结果表明,花生地和林地 液相中的 DPAA 先发生转化/降解,当其含量逐渐减 少时,固相 DPAA 也可继续发生转化/降解。

2.3 铁还原特征

两种土地利用方式红壤的土水混合液中 HCl 提取态 Fe²⁺与 HCl 提取态总铁的比值以及溶液相中 Fe²⁺含量随时间的变化如图 3 所示。由图可知,对

于花生地的 4 个处理,2 周后 HCl 提取态 Fe^{2+} 与 HCl 提取态总铁的比值随时间的延长不断增加,说明铁 还原在持续进行^[15]; 13 周后铁还原程度表现为: S+C++>S+C+>S-C->S+C-,铁还原程度最高可达 58.3%(图 3a)。其中,S+C+和 S+C++处理中铁还 原程度的增加很可能与添加的乳酸钠作为电子供体 有关^[20];S-C-处理的铁还原程度高于 S+C-处理,推 测可能是因为后者添加的硫酸盐发生还原(图 4a), 通过竞争乳酸钠从而不利于铁还原的进行。此外, 由于 S+C+和 S+C++处理中铁还原程度较高,溶液 相中有大量 Fe^{2+} 的检出(<80 mg·L⁻¹,图 3b)。与花 生地不同,林地的 4 个处理中铁还原程度均较低 (<25%)(图 3c),且在整个培养过程中溶解态 Fe^{2+} 浓度均低于 10 mg·L⁻¹(图 3d)。

3期

图 3 花生地(a, b)和林地(c, d)土水混合液中 HCl 提取态 Fe²⁺与 HCl 提取态总铁的比值以及溶解态 Fe²⁺浓度随时间的变化

Fig. 3 Changes in the ratios of HCl-extractable Fe²⁺ to HCl-extractable total Fe in the soil-water mixture and the concentrations of dissolved Fe^{2+} in peanut field (a, b) and woodland (c, d) with time

2.4 硫酸盐还原特征

两种土地利用方式红壤中溶解态 SO_4^{2-} 和硫化 物浓度随时间的变化如图 4 所示。由图可知,对于 花生地的 4 个处理,在 0~6 周溶解态 SO_4^{2-} 浓度有 所增加或者降低后再增加(图 4a),这很可能与淹 水后土壤 pH 的变化(图 5a)和铁还原(图 3a)等 引起的 SO_4^{2-} 的吸附-解吸有关^[21];6 周后溶解态 SO_4^{2-} 浓度随时间的延长均有不同程度的降低,与此 同时在添加碳源的 S+C+和 S+C++处理中有溶解态 硫化物(<12 mg·L⁻¹)的检出(图 4b),且体系处于 强还原状态(Eh<100 mV,图 5b)。上述结果表明, 对花生地而言,S+C+和 S+C++处理在6周后发生了 硫酸盐还原,且 S+C+处理中硫酸盐还原更为明显; 其中,S+C++处理中硫酸盐还原程度的降低很可能 与其铁还原程度更高(图 3a)有关。与花生地不同, 林地的4个处理中SO₄²⁻浓度均表现为随时间的延长 不断增加或略有降低(图 4c),同时在溶液相中未 检测到硫化物,且体系一直处于中度或弱度还原状 态(0 mV<Eh<400 mV,图 5c,图 5d),这说明林 地的4个处理中硫酸盐未发生还原。值得注意的是, 仅花生地的S+C+处理在培养6周后出现了明显的 黑色沉淀,这很可能与其铁还原和硫酸盐还原同时 显著发生,产生的溶解态 Fe^{2+} 非常容易与硫化物反 应并生成 $FeS(K_{sp}=6.3\times10^{-18})沉淀有关。$

2.5 细菌群落结构变化特征

两种土地利用方式红壤中的优势细菌在门和属水平 上的相对丰度变化见图 6。由图可知,花生地的 4 个处理在门水平上的优势菌群包括厚壁菌门 (Firmicutes)、变形菌门(Proteobacteria)、酸杆菌门 Acidobacteria)、绿弯菌门(Chloroflexi)、WPS_2、

注: 林地的 4 个处理中均未检测到溶解态硫化物。Note: Dissolved sulfide was not detected in four treatments of woodland.

图 4 花生地 (a, b) 和林地 (c) 的溶解态 SO₄²⁻和硫化物浓度随时间的变化

Fig. 4 Changes in the concentrations of dissolved SO_4^{2-} and sulfide in peanut field (a, b) and woodland (c) with time

注: 0周、6周和 13 周为土培试验进行的时间。相对丰度大于 1%的定为优势菌门或优势菌属,相对丰度低于 1%的定为其他。 Note: 0, 6 and 13 weeks is the time for the soil incubation experiment. Those with relative abundances greater than 1% are designated as dominant phylum or dominant genus, and those with relative abundances below 1% are designated as others.

图 6 花生地(a, b)和林地(c, d)的优势细菌在门和属水平上的相对丰度随时间的变化

Fig. 6 Changes in the relative abundances of dominant bacteria in peanut field (a, b) and woodland (c, d) at the phylum and genus levels over time

778

放线菌门(Actinobacteria)、芽单胞菌门 (Gemmatimonadetes)、疣微菌门(Verrucomicrobia)、 OD1、AD3 和拟杆菌门 (Bacteroidetes) (图 6a)。 其中, S+C+和 S+C++处理中厚壁菌门的相对丰度分 别由 0 周的 34.7%和 10.5%增至 13 周的 53.1%和 90.6%,说明随着时间的延长厚壁南门逐渐占据优势 地位。此外,花生地的4个处理在属水平上的优势 南群包括梭菌属(Clostridium)、芽孢杆菌属 (Bacillus)、脱硫芽孢杆菌属(Desulfosporosinus)、 伯克霍尔德氏菌属 (Burkholderia)、凯斯特杆菌属 (Kaistobacter)、罗尔斯顿菌属(Ralstonia)、瘤胃球 菌属(Ruminococcus)、假单胞菌属(Pseudomonas)、 乳酸杆菌属(Lactobacillus)和柯氏假丝酵母菌属 (Candidatus-Koribacter)(图 6b)。其中,厚壁菌门 中的梭菌属和芽孢杆菌属与铁还原过程密切相 关^[22]。在花生地土壤整个培养过程中, 梭菌属和芽 孢杆菌属的丰度在 S+C+和 S+C++处理中分别为 1.2%~43.8%和 5.7%~34.8%, 而在 S-C-和 S+C-处 理中分别为 0.1%~3.2%和 0.2%~2.0% (图 6b), 这 与 S+C+和 S+C++处理中铁还原程度增加的结果 (图 3a)一致。此外,脱硫芽孢杆菌属与硫酸盐还 原过程密切相关^[23]。对于花生地而言,在 S+C+和 S+C++处理中,0周时均未检测到脱硫芽孢杆菌属, 在 6 周时其丰度分别为 21.6%和 0.5%, 在 13 周时 的丰度分别为 13.1%和 2.2%; 而对于 S-C-和 S+C-处理,在整个培养过程中均未检测到脱硫芽孢杆菌 属(图 6b),这与花生地的 S+C+处理中硫酸盐还原 最为明显的结果(图 4a)较为吻合。

林地的 4 个处理在门水平上的优势菌群包括变 形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、 厚壁菌门(Firmicutes)、WPS_2、放线菌门 (Actinobacteria)、绿弯菌门(Chloroflexi)、拟杆菌 门(Bacteriodetes)和OD1(图 6c)。其中,变形菌 门(17.1%~75.1%)的丰度始终高于厚壁菌门 (3.8%~37.3%)。此外,林地的 4 个处理在属水平 上的优势菌群共有 9 个,分别为假单胞菌属 (*Pseudomonas*)、伯克霍尔德氏菌属(*Burkholderia*)、 罗尔斯顿菌属(*Ralstonia*)、马赛菌属(*Massilia*)、 梭菌属(*Clostridium*)、中华单胞菌属(*Sinomonas*)、 乳酸杆菌属(*Lactobacillus*)、凯斯特杆菌属 (*Kaistobacter*)和芽孢杆菌属(*Bacillus*)(图 6d)。 其中,芽孢杆菌属(<3.7%)和梭菌属(<8.4%)的 相对丰度较低,且未检测到脱硫芽孢杆菌属,这与 林地的4个处理中铁还原程度较低(图3c)以及硫 酸盐未发生还原(图4c)的结果一致。

3 讨 论

3.1 铁还原对红壤中 DPAA 释放的影响

培养 0 周时, 乳酸钠仅在一定程度上促进了花 生地中 DPAA 的释放,而对林地中 DPAA 释放的促 进作用明显增强(图 1a~图 1h)。根据以往的研究 可知, 土壤中的氧化铁, 尤其是非晶质氧化铁提供 了 DPAA 吸附的主要位点^[13], 而乳酸钠很可能通过 覆盖氧化铁表面的吸附位点或竞争吸附等作用降低 土壤对 DPAA 的吸附^[10]。据此推测,由于花生地的 非晶质氧化铁含量高于林地(表1),因而对 DPAA 的吸附能力更强,这很可能降低了乳酸钠对 DPAA 释放的促进作用。随着培养时间的延长,与 S-C-和 S+C-处理相比, S+C+和 S+C++处理中 DPAA 的释 放明显增强(图 1a~图 1d),这很可能与后者铁还 原程度增加而导致花生地中更多氧化铁的吸附位点 被破坏有关^[10]。与花生地不同,林地的4个处理未 见明显的 DPAA 释放现象(图 1e~图 1h)。这进一 步说明,当铁还原程度降低时,铁还原促进 DPAA 释放的效应较为有限。此外,结合2种花生地红壤 中铁还原影响 DPAA 释放的结果(表 2)可知,随 着铁还原速率和程度的增加,铁还原促进红壤中 DPAA 释放的效应明显增强。综上可知,虽然富铁 红壤对 DPAA 的吸附能力较强, 但经淹水和添加乳 酸钠处理后,由于其中的氧化铁(尤其是非晶质氧 化铁)非常容易在微生物作用下发生还原^[24],由此 导致的 DPAA 污染问题值得关注。

3.2 铁还原和硫酸盐还原对红壤中 DPAA 硫化的 影响

本研究(图 4a~图 4b)中,花生地的 S+C+处 理中硫酸盐还原最为显著,且 DPAA 主要发生硫化; 与 S+C+处理相比,S+C++处理中铁还原程度增加而 硫酸盐还原程度降低,溶解态硫化物浓度始终低于 4 mg·L⁻¹,同时未检测到 DPTAA;此外,花生地的 S-C-和 S+C-处理(图 4b)以及林地的 4 个处理(数 据未显示)中硫化物浓度均较低,且未检测到 DPTAA(数据未显示)。前人的研究也发现,添加

6	1	卷

土壤类型 Soil type	土壤中铁的含量	铁还原特征	对 DPAA 释放的影响	对 DPAA 硫化的影响	参考文献
	Fe content in the soil	Characteristics of Fe	Effects on DPAA	Effects on DPAA	Reference
	/ $(g \cdot kg^{-1})$	reduction	mobilization	thionation	Reference
红壤 Acrisol	总铁 49.87	13 周铁还原程度小	促进 DPAA 释放	消耗硫化物从而抑制	本研究
(花生地 Peanut field)	游离氧化铁 30.47	于 60%	(固相>液相)	DPAA 硫化	
	非晶质氧化铁 1.29				
红壤 Acrisol	总铁 52.84	13 周铁还原程度小	促进 DPAA 释放的效	—	本研究
(林地 Woodland)	游离氧化铁 49.80	于 25%	应不明显		
	非晶质氧化铁 1.02				
红壤 Acrisol	总铁 55.10	8周铁还原程度小	促进 DPAA 释放	促进 DPAA 的释放和进	[11]
(花生地 Peanut field)	游离氧化铁 37.30	于 60%	(2周后几乎全部释	一步硫化; 消耗硫化物	
	非晶质氧化铁 0.87		放)	从而抑制 DPAA 硫化	
黑土 Phaeozem	总铁 34.70	0 国建达面积南小	促进 DPAA 释放	伯冲的林的教神和冲	
	游离氧化铁 11.50	o		此近 DFAA 的样成相进	[10]
	非晶质氧化铁 1.11	1 93%		一少 咖 化	

表 2 不同类型土壤中铁还原对 DPAA 释放与硫化的影响

Table 2 Effects of Fe reduction on the mobilization and thionation of DPAA in different types of soil

硫酸盐促进了土壤中 DPAA 的快速硫化,而添加硫酸盐 亿 原的 抑制剂—— 钼酸钠后,未检测到DPTAA^[12]。最近,何玉环^[25]对红壤性水稻土进行灭菌处理后再添加乳酸钠和硫酸盐,培养 20 d 后在土壤固、液相中均未检测到DPTAA,且培养体系中未见硫酸盐发生还原产生硫化物。进一步的机理研究还发现,溶液体系中 DPAA 的硫化^[26]很可能是硫酸盐还原菌介导下的化学过程,即DPAA 与硫酸盐还原产生的硫化物反应继而生成DPTAA。针对无机砷的研究也表明,高浓度的硫化物能够明显促进无机砷的硫化^[27]。综上可知,硫酸盐的还原程度以及溶液相中硫化物的浓度很可能是控制淹水红壤中DPAA 硫化的重要因素。

本研究中,花生地的 S+C+处理在 6 周后发生了 硫酸盐还原,13 周时在其固、液相中均检测到 DPTAA;而在花生地的 S+C++处理中,虽然铁还原 促进 DPAA 释放的效应更强,但由于硫酸盐还原程 度的降低,13 周时仍未检测到 DPTAA(数据未显 示)。由此可见,对花生地而言,铁还原通过促进 DPAA 释放进而促进其发生硫化的效应不明显。可 能的解释是:由于铁还原通过产生的 Fe(II)消耗 大量硫化物或者通过竞争电子供体从而有效抑制硫 酸盐还原,导致与铁还原促进 DPAA 的释放和进一步的硫化相比,硫酸盐的还原程度及溶液相中硫化物的浓度很可能是控制花生地红壤中 DPAA 硫化的一个更重要的因素。这也解释了与花生地的 S+C++处理相比,S+C+处理中铁还原程度的降低和硫酸盐还原程度的增加有利于 DPAA 硫化的原因。结合不同类型红壤的结果,随着铁还原速率和程度的增加,铁还原促进 DPAA 释放和进一步硫化的效应随之增强(表2);对比红壤(花生地)和黑土的结果(表2)可知,随着土壤中总铁含量的增加和硫酸盐还原程度的降低,铁还原通过消耗硫化物从而抑制 DPAA 硫化的效应有所增强。

土壤中铁还原和硫酸盐还原反应的发生,除了 与氧化铁的形态(晶质、非晶质)和添加的电子供 体(如乳酸钠)有关,还与土壤本身的微生物学特 点密切相关^[28]。本研究中选择的2种土地利用方式 红壤,在添加不同浓度乳酸钠和硫酸盐后土壤细菌 群落结构及其变化明显不同:与林地相比,花生地 的4个处理中梭菌属和芽孢杆菌属的丰度明显增 加,且S+C+和S+C++处理中脱硫芽孢杆菌属的丰 度明显提高(图6b,图6d),这很可能分别促进了 铁还原^[29]和硫酸盐还原^[30],最终对DPAA释放和硫 化产生更显著的影响^[10.12]。综上所述,未来仍需关 注土壤自身理化性质及微生物学特点导致的铁还原 和硫酸盐还原过程的差异及其对 DPAA 释放与硫化 的影响。值得注意的是,本研究中的供试红壤均为 旱地土壤,所得到的研究结果势必与一直处于淹水 或者干湿交替条件下的水稻土(如红壤性水稻土) 不同;但考虑到土地利用方式的变更(如旱地改水 田)是南方红壤区改良土壤和提高土地生产力的常 用措施^[31],本文的研究结果将为红壤中 DPAA 环境 行为的研究、环境风险的预测以及污染修复策略的 制定提供理论依据。

4 结 论

在添加不同浓度乳酸钠及硫酸钠培养的条件 下,花生地和林地红壤中 DPAA 的释放与硫化情况 明显不同。同时添加乳酸钠和硫酸盐显著促进了花 生地中铁还原和硫酸盐还原的发生,从而增强了铁 还原促进 DPAA 释放的效应, 而铁还原程度的增加 和硫酸盐还原程度的降低不利于 DPAA 的硫化;与 花生地不同,无论是否添加乳酸钠和硫酸盐,林地 中未见 DPAA 释放与硫化现象,这与林地中铁还原 程度较低且硫酸盐未发生还原有关。总体而言,与 铁还原促进 DPAA 的释放和进一步的硫化相比,硫 酸盐的还原程度以及溶液相中硫化物的浓度很可能 是控制淹水红壤中 DPAA 硫化的一个更重要的因 素。此外,淹水条件下花生地中梭菌属、芽孢杆菌 属和脱硫芽孢杆菌属丰度的增加很可能分别促进了 铁还原和硫酸盐还原,从而对 DPAA 释放与硫化产 生更显著的影响。未来仍需关注土壤自身理化性质 及微生物学特点导致的铁还原和硫酸盐还原过程的 差异及其对土壤中 DPAA 释放与硫化的影响。

参考文献(References)

- Kinoshita K, Shida Y S, Sakuma C, et al. Determination of diphenylarsinic acid and phenylarsonic acid, the degradation products of organoarsenic chemical warfare agents, in well water by HPLC-ICP-MS[J]. Applied Organometallic Chemistry, 2005, 19 (2): 287–293.
- Zhang Y, Zhu Y B, Zhao S P, et al. Arsenic in soils contaminated by arsenic - containing chemical weapons in a site of Jilin, China: Fraction and bioaccessibility[J]. Environmental Science and Pollution Research, 2022, 29 (19): 28957–28972.

- [3] Daus B, Hempel M, Wennrich R, et al. Concentrations and speciation of arsenic in groundwater polluted by warfare agents[J]. Environmental Pollution, 2010, 158 (11): 3439-3444.
- [4] Niemikoski H, Lehtonen K K, Ahvo A, et al. Metabolism and cytotoxicity of diphenylarsinic acid, a degradation product of sea-dumped chemical warfare agents, in a rainbow trout liver cell line RTL-W1[J]. Aquatic Toxicology, 2021, 241: 105993.
- [5] Arao T, Maejima Y, Baba K. Uptake of aromatic arsenicals from soil contaminated with diphenylarsinic acid by rice[J]. Environmental Science & Technology, 2009, 43 (4): 1097-1101.
- [6] Ishii K, Tamaoka A, Otsuka F, et al. Diphenylarsinic acid poisoning from chemical weapons in Kamisu, Japan[J]. Annals of Neurology, 2004, 56 (5): 741-745.
- [7] Chen X M, Zeng X C, Kawa Y K, et al. Microbial reactions and environmental factors affecting the dissolution and release of arsenic in the severely contaminated soils under anaerobic or aerobic conditions[J]. Ecotoxicology and Environmental Safety, 2020, 189: 109946.
- [8] Maejima Y, Arao T, Baba K. Transformation of diphenylarsinic acid in agricultural soils[J]. Journal of Environmental Quality, 2011, 40 (1): 76–82.
- [9] Hisatomi S, Guan L, Nakajima M, et al. Formation of diphenylthioarsinic acid from diphenylarsinic acid under anaerobic sulfate-reducing soil conditions[J]. Journal of Hazardous Materials, 2013, 262: 25–30.
- [10] Zhu M, Tu C, Hu X F, et al. Solid-solution partitioning and thionation of diphenylarsinic acid in a flooded soil under the impact of sulfate and iron reduction[J]. Science of the Total Environment, 2016, 569/570: 1579–1586.
- [11] Zhu M, Luo Y M, Cheng N N, et al. Contrasting effects of iron reduction on thionation of diphenylarsinic acid in a biostimulated Acrisol[J]. Environmental Science and Pollution Research, 2020, 27 (14): 16646—16655.
- [12] Guan L, Hisatomi S, Fujii K, et al. Enhanced transformation of diphenylarsinic acid in soil under sulfate-reducing conditions[J]. Journal of Hazardous Materials, 2012, 241/242: 355—362.
- Zhu M, Luo Y M, Yang R Y, et al. Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy[J]. Frontiers of Environmental Science & Engineering, 2020, 14: 58.
- [14] Chinese Research Academy of Environmental Sciences. Control standard of soil pollutants for the destruction of chemical weapons abandoned by Japan in China (GB19062-2003) [S]. Beijing: China Environmental Science Press, 2007. [中国环境科学研究院. 销毁日本 遗弃在华化学武器土壤污染控制标准(GB19062-2003) [S]. 北京:中国环境科学出版社, 2007.]

- [15] Kappler A, Benz M, Schink B, et al. Electron shuttling via humic acids in microbial iron (III) reduction in a freshwater sediment[J]. FEMS Microbiology Ecology, 2004, 47 (1): 85–92.
- [16] Zhu M, Tu C, Zhang H B, et al. Simultaneous determination of diphenylarsinic and phenylarsinic acids in amended soils by optimized solvent extraction coupled to HPLC-MS/MS[J]. Geoderma, 2016, 270: 109–116.
- [17] Lu R K. Analytical methods for soil and agrochemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000. [鲁如坤. 土壤农业化学分析方 法[M]. 北京:中国农业科技出版社, 2000.]
- [18] Cord-Ruwisch R. A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria[J]. Journal of Microbiological Methods, 1985, 4 (1): 33-36.
- [19] Wei J S, Shen B, Ye G, et al. Selenium and arsenic removal from water using amine sorbent, competitive adsorption and regeneration[J]. Environmental Pollution, 2021, 274: 115866.
- [20] Xia D, Yi X Y, Lu Y, et al. Dissimilatory iron and sulfate reduction by native microbial communities using lactate and citrate as carbon sources and electron donors[J]. Ecotoxicology and Environmental Safty, 2019, 174: 524-531.
- [21] Qiu R L, Wu Q, Yao W Y. Study in affecting factors of soil sulfate adsorption-desorption process in South China[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2001, 40 (4): 88—92. [仇荣亮, 吴箐, 尧文元. 南方土壤硫酸根吸附解吸影响因子研究[J]. 中山大学学报(自然科学版), 2001, 40 (4): 88—92.]
- [22] Luo D, Meng X T, Zheng N G, Li Y Y, Yao H Y, Chapman S J. The anaerobic oxidation of methane in paddy soil by ferric iron and nitrate, and the microbial communities involved[J]. Science of the Total Environment, 2021, 788: 147773.
- [23] Sato Y, Hamai T, Hori T, et al. Desulfosporosinus spp.

were the most predominant sulfate-reducing bacteria in pilot- and laboratory-scale passive bioreactors for acid mine drainage treatment[J]. Applied Microbiology Biotechnology, 2019, 103: 7783–7793.

- [24] Luo T, Huang Z L, Li X Y, Zhang Y Y. Anaerobic microbe mediated arsenic reduction and redistribution in coastal wetland soil[J]. Science of the Total Environment, 2020, 727: 138630.
- [25] He Y H. Study on the release and transformation process of diphenylarsinic acid in flooded soil[D]. Wuhu, Anhui: Anhui Normal University, 2022. [何玉环. 淹水土壤中 二苯砷酸的释放与转化过程研究[D]. 安徽芜湖:安徽 师范大学, 2022.]
- [26] Guan L, Shiiya A, Hisatomi S, et al. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions[J]. Biodegradation, 2015, 26 (1): 29-38.
- [27] Sun S T, Xie X J, Li J X, et al. Distribution and formation of thioarsenate in high arsenic groundwater from the Datong Basin, northern China[J]. Journal of Hydrology, 2020, 590: 125268.
- [28] Kappler A, Bryce C, Muammar M, et al. An evolving view on biogeochemical cycling of iron[J]. Nature Reviews Microbiology, 2021, 19: 360-374.
- [29] Wang Y H, Zhang G L, Wang H L, et al. Effects of different dissolved organic matter on microbial communities and arsenic mobilization in aquifers[J]. Journal of Hazardous Materials, 2021, 411: 125146.
- [30] Yoshikawa M, Zhang M. Constraints in anaerobic microbial dechlorination, fermentation, and sulfate-reduction induced by high concentrations of tetrachloroethylene[J]. Water, Air & Soil Pollution, 2020, 231: 390.
- [31] Li Z P, Cheng L L, Lin X X. Characteristics for changes of humus composition in Acrisol and its relationship with fertility evolution[J]. Soils, 2002, 34 (1): 9—15. [李 忠佩,程励励,林心雄. 红壤腐殖质组成变化特点及其 与肥力演变的关系[J]. 土壤, 2002, 34 (1): 9—15.]

(责任编辑:陈荣府)