DOI: 10.11766/trxb202312090523

CSTR: 32215.14.trxb202312090523

刘鹏, 桑春晖, 张红振, 肖萌, 孟豪, 李香兰. SiteWise[™]评估原位化学氧化修复地下水污染环境足迹研究[J]. 土壤学报, 2025, 62(2): 448-458.

LIU Peng, SANG Chunhui, ZHANG Hongzhen, XIAO Meng, MENG Hao, LI Xianglan. Environmental Footprint Assessment of *In Situ* Chemical Oxidation Remediation for Contaminated Aquifer Based on SiteWiseTM Method[J]. Acta Pedologica Sinica, 2025, 62 (2): 448–458.

SiteWise[™]评估原位化学氧化修复地下水污染环境足迹 研究^{*}

刘 鹏^{1,2}, 桑春晖¹, 张红振³, 肖 萌¹, 孟 豪¹, 李香兰^{1†}

(1. 北京师范大学地理科学学部全球变化与地球系统科学研究院,北京 100875; 2. 北京建工环境修复股份有限公司,北京 100015; 3. 生态环境部环境规划院土壤保护与景观设计中心,北京 100012)

摘 要: 污染场地原位化学氧化修复技术(ISCO)的环境足迹评估对推动绿色可持续修复具有重要的科研价值与实践意义。 以华北某氯代烃污染场地为研究对象,地下水 ISCO 修复分为材料消耗、运输过程、修复过程和样品测试四个环节,采用 SiteWiseTM工具开展环境足迹评估。结果表明,采用 ISCO 技术修复 7.38 万 m³污染含水层,温室气体(GHG)排放 1 261 t CO₂-eq、总能耗 16 876 GJ、硫氧化物(SO_x)排放 4 096 kg、氮氧化物(NO_x)排放 2 678 kg、可吸入颗粒物(PM10)排放 912 kg,其环境足迹主要来自材料过硫酸钠和氢氧化钠的使用,施工电能消耗造成了较高的大气污染物排放。蒙特卡洛分析 结果表明,温室气体排放量的变异系数低于 10%,不确定性来源主要包括 ISCO 冗余设计以及国内外机械效率和排放因子等 方面差别较大。SiteWiseTM工具对中国污染场地 ISCO 修复工程的环境足迹评估具有参考价值,未来研究工作中应考虑机械 类型与效率、排放因子和计量单位等进行本土化更新,以更适用于我国污染场地环境足迹评估工作。

关键词:氯代烃;生命周期分析;温室气体;原位化学氧化(ISCO)

中图分类号: X53 文献标志码: A

Environmental Footprint Assessment of *in Situ* Chemical Oxidation Remediation for Contaminated Aquifer Based on SiteWiseTM Method

LIU Peng^{1, 2}, SANG Chunhui¹, ZHANG Hongzhen³, XIAO Meng¹, MENG Hao¹, LI Xianglan^{1†}

College of Global Change and Earth System Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China;
 Beijing Construction Engineering Group Environmental Remediation Co., Ltd, Beijing 100015, China;
 Center for Soil Protection and Landscape Design, Chinese Academy of Environmental Planning, Beijing 100012, China)

Abstract: [Objective] The environmental footprint assessment of *in-situ* chemical oxidation remediation technology (ISCO) for polluted sites has important scientific research value and practical significance for promoting green and sustainable remediation. However, its application in chlorinated hydrocarbon-contaminated sites has not received much attention. [Method] This study

* 通讯作者 Corresponding author, E-mail: xlli@bnu.edu.cn
 作者简介: 刘 鹏(1983—), 男,博士研究生,从事绿色可持续修复研究。E-mail: 202131490018@mail.bnu.edu.cn
 收稿日期: 2023-12-09;收到修改稿日期: 2024-06-04;网络首发日期(www.cnki.net): 2024-07-15

^{*} 国家重点研发计划专项(2022YFC3703300)资助 Supported by the Special Project of the National Key Research and Development Program of China (No. 2022YFC3703300)

employed the ISCO method to remediate a chlorinated hydrocarbon-contaminated site. The remediation of polluted sites using ISCO is divided into four stages: material consumption, transportation process, remediation process, and sampling testing. SiteWiseTM tool was used to conduct an environmental footprint assessment. [Result] The results showed that using ISCO technology to remediate 73 800 cubic meters of polluted aquifers resulted in 1 261 tons of greenhouse gas (GHG) emissions, total energy consumption of 16 876 GJ, 4 096 kg of SOx emissions, 2 678 kg of NOx emissions, and 912 kg of particulate matter 10(PM10) emissions. The environmental footprint mainly came from the use of materials such as sodium persulfate and sodium hydroxide, and the consumption of construction electricity caused higher atmospheric pollutant emissions. The Monte Carlo analysis results indicated that the coefficient of variation of greenhouse gas emissions was less than 10%. Also, the sources of uncertainty in this study mainly included redundant designs from ISCO, as well as significant differences in mechanical efficiency and emission factors between different countries. [Conclusion] The SiteWiseTM tool has reference value for the environmental footprint assessment of ISCO remediation projects in polluted sites in China and future researchers should update it locally by considering machinery types and efficiencies, emission factors, and units of measurement. These considerations will improve applicability to the environmental footprint assessment of polluted sites in China.

Key words: Chlorinated hydrocarbon; Life cycle assessment; Greenhouse gas; In situ chemical oxidation(ISCO)

原位化学氧化修复技术(ISCO)具有修复速度 快、污染物去除效率高等优点,从 20 世纪 90 年代 开始广泛应用于污染地下水修复^[1-4]。据美国环保署 (EPA)统计,1981—2020年期间,化学修复技术在 污染土壤修复中应用 96 项,地下水修复中应用 163 项^[5]。欧盟对农药污染场地修复技术进行统计,化 学氧化技术应用比例达 30%^[6]。化学氧化技术在我 国污染场地修复中也得到了大规模应用^[7],据中国 环境保护产业协会统计,2020年我国工业污染场地 修复应用化学氧化技术 29 次,占比 19.2%^[8]。

ISCO 修复活动涉及修复材料(氧化药剂及激活 剂)使用、设备运行耗能等,会造成温室气体(GHG) 排放等环境足迹^[9-10]。为降低修复工程的环境足迹, 国际上广泛采用生命周期评价法(LCA)对修复过 程的环境影响进行定量评估^[11-14]。Lemming 等^[15]采 用 LCA 方法研究了丹麦某三氯乙烯 (TCE) 污染场 地修复工程,发现化学还原修复的环境足迹低于原 位热修复、开挖填埋,但较监测自然衰减高16倍^[9]。 Khan 等^[16]研究了巴基斯坦某石油烃污染场地修复 项目,指出环境足迹主要来自修复施工用电,可通 过使用新能源使 CO2 和大气污染物的排放量降低 29%~68%。Lemming 等^[9]与 Huang 等^[17]研究了 ISCO 修复每立方米污染土的 GHG 排放水平,结果 显示约为 12.25~12.79 kg·m⁻³ 污染土。国内未检 索到对应用 ISCO 修复地下水污染的 LCA 或绿色 可持续性评估,在评估方法和实践应用方面仍然 存在挑战。

生命周期评价方法(LCA)是从环境角度对某 一特定活动全生命周期内的能源、原材料消耗、不 同类型的排放和其他因素进行核算,以分析该活动 对生态系统"从摇篮到坟墓"的影响。该方法被认为 是评估环境影响最全面的方法,但存在技术要求高、 操作复杂,定义系统边界和功能单元等过程存在不 确定性等问题^[18]。SiteWise[™]工具由美国海军、美 国陆军工程兵团(USACE)和巴特尔(Battelle)实 验室联合开发,采用基于活动的足迹分析方法,核 算修复活动全生命周期的资源消耗和 GHG、大气 污染物排放等环境足迹,从而实现对修复方案的优 化^[18-19]。SiteWise[™]工具将修复过程分解为多个模 块,采用积木法进行累加核算,减少了环境评价中 的冗余内容,使环境影响分析更容易接受和应用。 因此本研究选用 SiteWise[™]工具开展研究。

Kim 等^[20]采用 SiteWise[™]工具研究了韩国某土 壤淋洗修复案例,识别出该修复工程环境足迹的主 要贡献来自化学材料和电能的使用,对 GHG 排放、 总能耗和耗水量的贡献率分别为 63.1%、67.5%和 37.4%。Ferdos 和 Rosen^[21]采用 SiteWise[™]工具研究 了瑞典两个工业场地修复项目的环境足迹,指出修 复工程采用电力较化石能源产生的环境足迹低,污 染土壤采用船运会造成较高的氮氧化物(NO_x)、 硫氧化物(SO_x)和可吸入颗粒物(PM10)等大气 污染物的排放。Pagano 等^[22]采用 SiteWise[™]和环境 足迹分析计算工具(SEFA)对比研究了意大利博洛 尼亚一个沥青厂修复项目,指出生物修复的 GHG 排放低于 ISCO, ISCO 因高锰酸钾氧化剂的多次注 入而造成较高环境足迹。周游等^[23]指出, SiteWiseTM 应用于我国修复工程环境足迹分析,可识别出造成 环境影响的关键修复环节,并可对不同修复方案进 行对比分析。目前采用 LCA 方法对污染土壤异位修 复的环境足迹研究较多,但对地下水原位修复的评 估案例相对较少。对于我国地下水污染的 ISCO 修 复,采用 SiteWiseTM工具研究环境足迹的案例鲜见 报道。

土壤和地下水作为污染场地有害物质的承载 体^[24],被氯代烃等污染物污染后对人体有极大危害^[25-26], 场地修复迫在眉睫。本文以华北某氯代烃污染地下 水 ISCO 修复工程为研究案例,基于全生命周期评 估理念,构建 ISCO 修复过程的环境足迹评估框架、 系 统 边 界 与 项 目 输 入 清 单 , 采 用 SiteWise[™] (Version3)工具分析 GHG 排放、资源消耗和大气 污染物排放等环境足迹,并进行不确定性分析。本 文探索了 SiteWise[™] 工具在我国地下水污染 ISCO 修复评估中的适用性,为构建和优化环境足迹评估 方法与工具、推动绿色可持续修复在我国的应用提 供了重要支撑。

1 材料与方法

1.1 地下水污染地块案例

该污染地块位于天津市区,场地总面积 3.41 万 m²,是我国化学试剂行业重点生产地之一,主要生 产有机通用试剂、指示剂和基准试剂等。在长期生 产过程中,场地地下水受到氯代烃污染,包括氯乙 烯、反-1, 2-二氯乙烯、1, 1-二氯乙烷、顺-1, 2-二氯乙烯、1,2-二氯乙烷、三氯乙烯、四氯乙烯、 1, 1, 2, 2-四氯乙烷等, 土壤污染面积 2 770 m², 地下水污染面积 3.34 万 m², 受污染含水层体积为 7.38 万 m³。场地地层岩性从上至下为杂填土、粉质 黏土、砂质粉土、粉质黏土,潜水层水位埋深 1.34~ 6.56 m, 地下水主要补给来源为大气降水入渗。地 块未来规划为住宅用地,要求 ISCO 修复工程在 3 个月内完成。本研究的功能单元为:将受到氯代烃 污染的 7.38 万 m³ 含水层介质, 在 3 个月内通过 ISCO 修复至目标值。地下水污染物浓度及修复目标 详见表1。

表1 地下水中污染物浓度及修复目标值

 Table 1
 The concentration of pollutants and the target value in groundwater

皮旦	シーニンカ」 けの	浓度范围	修复目标值
庁ち	行柴物	Concentration/	Target value/
NO.	Pollutants	$(\ \mu g{\cdot}L^{-1}\)$	$(\ \mu g{\cdot}L^{-l}\)$
1	氯乙烯	115~3 660	90
2	反-1,2-二氯乙烯	177~328	148.5
3	1,1-二氯乙烷	58.6~332	50
4	顺-1,2-二氯乙烯	86~4 190	70
5	1,2-二氯乙烷	56~110	40
6	三氯乙烯	300~2 800	210
7	四氯乙烯	50~907	40
8	1,1,2,2-四氯乙烷	2.3~54	2

该场地地下水氯代烃污染区采用 ISCO 进行修 复。将氧化剂过硫酸钠、激活剂氢氧化钠等药剂溶 解配制成浓度 260~300 g·L⁻¹的药液,通过药剂加 入钻机注入目标区域, 药剂注入深度为地表至地下 14.5 m, 注药孔间距为 3.5 m, 注浆泵压力 30 MPa, 氧化药剂的质量投加比为 0.3%~0.5% (药剂质量/ 含水层介质质量)。注入地层的氧化剂产生硫酸根自 由基,将氯代烃污染物氧化分解为 CO₂、H₂O 或其 他低毒性物质,实现场地修复目标。因地层岩性和 污染分布的不均质性,部分污染较重区域需多次注 药方可合格。根据环境足迹评估要求,将 ISCO 施 工内容划分为四个环节。ISCO 修复所用材料主要是 化学氧化药剂过硫酸钠和激活剂氢氧化钠,其他材 料还包括地下水监测井的聚氯乙烯(PVC)管等。 运输过程指 ISCO 修复工程所需的药剂注入钻机、 溶配药与注浆泵等设备以及各类修复药剂(过硫酸 钠、氢氧化钠等)和施工人员进出场需通过汽车或 铁路运输,该运输过程会消耗燃油和电能。施工过 程包括药剂溶解配制与注入操作,涉及配药搅拌 机、药剂注入钻机等设备的电能消耗。样品测试指 采集土壤和地下水样品测试目标污染物浓度,并采 集环境空气样品确认修复过程是否造成大气环境 二次污染。

1.2 评估方法与工具

1.2.1 系统边界确定 根据全生命周期评价的方法学要求,本案例环境足迹核算的系统边界(图1),

Fig. 1 System boundary of In-situ chemical oxidation remediation technology (ISCO)

为该氯代烃污染含水层进行 ISCO 修复的全过程, 包括药剂及各类材料的消耗、药剂机械运输进场、 药剂溶配注入施工和样品测试各环节的物质、能源 消耗量。ISCO 不产生固废及污水,因此无废物处置 相关分析。

1.2.2 项目输入清单 按照美国可持续修复论坛(SURF)提出的修复行业环境足迹分析步骤,统计 ISCO 修复工程各施工环节的能耗、材料与机械使用 量、运输距离等实际发生的数据,编制项目输入清 单(表2)。机械设备的燃料和电力消耗根据设备功 率和作业时间进行核算,材料根据实际用量统计, 运输环节的燃料消耗根据运输量、运输距离和运输 工具能耗进行核算。

材料使用方面,现场建设地下水监测井 50 口, 每口监测井深 14.5 m,井材料为 DN50 的 PVC 管。 化学氧化药剂过硫酸钠使用 559 t,氢氧化钠使用 170 t。运输过程考虑了人员、设备和材料的进出场 运输。人员运输统计了施工人员和管理人员的进出 场与日常交通方式、频次、距离;氧化药剂和井材 料主要从外省市厂家运至现场;机械设备中2台药 剂注入钻机由300km外运至现场,2台变压器为本 市采购,运输距离50km。在修复过程中,2台药剂 注入钻机和2台药剂配制系统作业720h,完成化学 氧化药剂的混配与注入;1台直推式钻机作业250h 完成地下水监测井的建设。在样品测试环节,采集 774个地下水样品、553个土壤样品和186个环境空 气样品,以判断修复效果和二次污染防治效果。

1.2.3 评估工具 基于全生命周期评估理念,采 用 SiteWise[™]软件对该氯代烃污染场地 ISCO 修复 工程开展环境足迹评估。SiteWise[™] 软件内置参数 来源于 EPA、能源部等机构的数据库,考虑到我国 与美国电力系统及其他能源结构的不同,根据 2019 年中国区域电网基准线对电力排放因子进行了更 新,NO_x、SO_x和 PM10 排放系数根据我国能源结构 进行了更新(表 3)。

1.3 敏感性与不确定性分析

为识别造成环境足迹的各因素的敏感性,本研 究采用式(1)进行敏感性分析。

表 2 原位化学氧化修复技术(ISCO)环境足迹核算项目输入清单

Table 2 Input list of environmental footprint accounting project for In-situ chemical oxidation remediation technology (ISCO)

类别 Type	项目 Item	规格参数 Characteristics	数量 Quantity
材料	监测井	DN50, 聚氯乙烯 (PVC), 14.5 m 深	50 口
消耗	氧化药剂	过硫酸钠	559 t
Material consumption	激活剂	氢氧化钠	170 t
	水资源	水	2 811 t
运输	人员交通	工人及管理人员(进出场)	24 人次,运输距离 200 km
过程		日常交通	每天 18 人次,每次 20 km, 90 d
Transportation	材料运输	过硫酸钠,氢氧化钠,井管	729 t, 运输距离 300 km
	设备运输	药剂注入钻机	2 台, 每台 10 t, 运输距离 300 km
		630 kW 变压器	2 台, 每台 8 t, 运输距离 50 km
修复	监测井建设	直推式钻机	1 台, 作业 250 h
过程	药剂配制	0.55 kW 搅拌机	2 台, 作业 720 h
Remediation	高压注入药剂	药剂注入钻机	2 台, 作业 720 h
样品测试	实验室分析	水样, VOCs 检测	774 个
Sampling & Testing		土壤, VOCs 检测	553 个
		环境大气监测	186 个

表 3 部分指标排放因子更新值

Table 3 Updated values of several emission indicators

排放指标 Emission indicators	单位 Unit	值 Value
CO ₂	kg- (kW-h) $^{-1}$	9.419×10^{-1}
NO _x	kg- (kW-h) $^{-1}$	1.648×10^{-3}
SO _x	kg- (kW-h) 1	4.035×10^{-3}
PM10	kg· (kW·h) $^{-1}$	2.763×10^{-5}

注: NOx, 氮氧化物; SOx, 硫氧化物; PM10, 可吸入颗 粒物。下同。Note: NOx, Nitrogen oxide; SOx, Sulfur oxide; PM10, Particulate matter 10. The same as below.

$$SR = \frac{\frac{Y_2 - Y_1}{Y_1}}{\frac{P_2 - P_1}{P_1}}$$
(1)

式中, SR 为参数敏感性, 无量纲; $P_2 和 P_1$ 为变化 前后的参数值, $Y_2 和 Y_1$ 为分别基于 $P_2 和 P_1$ 计算得 出的环境足迹量化结果。

因修复技术的工法效率、工程冗余设计等因素, 所统计工程数据存在一定不确定性。在材料使用方 面,高压药剂注入通常有返浆现象存在,导致一部 分过硫酸钠、氢氧化钠药剂失效,此外,因地层岩 性和污染分布的不均质性,部分污染较重区域需多次注药方可合格。本工程所用施工钻机、氧化药剂和建井材料由 300 km 外调运至现场,可通过使用本地设备、材料来减轻运输过程环境足迹。在样品采 集阶段,由于环境足迹占比较低,本研究并未考虑样品采集与运输过程的影响。中国的药剂注入钻机、搅拌机等机械在能耗和作业效率方面与美国有差 异,该部分环境足迹的核算引用 SiteWise[™]软件默 认值,存在一定的不确定性。本研究使用 Oracle Crystal Ball 工具中蒙特卡洛方法^[27],对 GHG 排放 评估结果进行不确定性分析。

2 结果与讨论

2.1 ISCO 环境足迹评估结果

经核算,该 ISCO 修复工程的 GHG 排放总量为 1 261 t CO₂-eq,总能耗为 16 876 GJ,折合修复每立 方米含水层的 GHG 排放量 17.09 kg CO₂-eq,能耗 228.7 MJ。大气污染物 NO_x排放 2 678 kg, SO_x排放 4 096 kg, PM10 排放 912.4 kg;水资源消耗仅发生 在药剂配制环节,总用量为 2 811 t。详见表 4。

Table 4 Energy consumption and emission accounting results of ISCO						
施工环节	能耗	GHG/	水资源	NO _x /kg SO _x /kg	DM10/kg	
Remediation	Energy consumption/GJ	$(t CO_2-eq)$	Water/t		r M10/kg	
材料消耗 ^①	15 899	1 073	2 811	2 380	3 365	905.3
运输过程 ²²	338.4	23.44	0	6.19	20.42	0.64
施工过程 ³³	630.7	164.1	0	286.6	700.8	4.87
样品测试⊕	8.04	0.41	0	4.74	10.3	1.54
合计 ⁵	16 876	1 261	2 811	2 678	4 097	912.4

表 4 ISCO 能耗及排放量核算结果

注: GHG, 温室气体。下同。Note: GHG, Greenhouse gas. The same as below. ①Material consumption, ②Transportation, ③ Remediation, ④Sampling & Testing, ⑤Total.

在 ISCO 施工各环节中,所用材料过硫酸钠的 生产过程造成的环境足迹最高(图 2),占 GHG 排 放总量的 65.6%、总能耗的 78.2%,占大气污染物 NO_x、SO_x和 PM10 排放量的 61.8%、80.8%、72.5%。 材料氢氧化钠的生产过程所造成 GHG 排放、能耗、 NO_x、PM10 排放分别占总量的 18.5%、15.5%、 26.1%、25.5%, 施工过程的电能使用造成的 GHG 排放、能耗、NO_x、PM10 排放分别占总量的 13%、3.7%、10.7%、17.1%。因氧化药剂过硫酸钠、氢氧 化钠的生产过程环境足迹高, 生产 1 kg 过硫酸钠产 生 1.48 kg CO₂, 生产 1 kg 氢氧化钠产生 1.37 kg CO₂, 以及 ISCO 修复工程药剂用量大、施工强度高,

图 2 ISCO 各环节排放强度占比分析

Fig. 2 Analysis of the proportion of emission intensity in each link of ISCO

因此材料过硫酸钠、氢氧化钠的生产以及施工过程 电能消耗这三项是 ISCO 环境足迹的主要贡献源。 人员及设备材料的交通运输因运输距离和次数有 限,样品测试分析的排放因子较低、样品数量较少, 相比碳足迹高的氧化药剂生产,其环境足迹均较低。 因此,控制材料过硫酸钠和氢氧化钠的使用量、降 低施工能耗,可有效降低 ISCO 的环境足迹。

2.2 ISCO 环境足迹关键因素

2.2.1 造成 GHG 排放的关键因素 对于 ISCO 修 复工程的 GHG 排放,所用修复材料过硫酸钠、氢氧 化钠是主要原因,其排放量分别达到 827.3 和 232.9 t (图 3),占总排放量的 65.6%和 18.5%。该部分 GHG 主要在化学品过硫酸钠和氢氧化钠生产过程中排 放。其次施工过程的机械能耗造成 GHG 排放 163.5 t CO₂-eq,占总排放 13%。运输与样品测试环节 GHG 排放均较低。

图 3 ISCO 各环节 GHG 排放强度 Fig. 3 GHG emission intensity of each step of ISCO

2.2.2 造成能耗的关键因素 ISCO 修复过程的 能耗,材料消耗环节贡献最为突出,氧化剂过硫酸 钠和激活剂氢氧化钠的生产分别造成13 192 GJ、2 609 GJ 的能耗(图 4),分别占总能耗的 78.2%、 15.5%。其次是修复过程机械的直接能耗,达 625 GJ, 占总能耗的 3.7%,由药剂溶配、注入机械的电能消 耗引起。运输和样品测试环节的能耗在整个 ISCO 修复过程中贡献较低。

2.2.3 造成水资源消耗的关键因素 在 ISCO 修 复工程中,氧化药剂配制用水 2 804 t,监测井所用

Fig. 4 Energy consumption in each step of ISCO

井材料的生产消耗水资源 7.075 t,总量为 2 811 t。 其他运输过程、施工过程及样品测试均不涉及水资 源消耗。水资源的节约可随着氧化药剂用量的节约 同步实现。

2.2.4 大气污染物排放关键因素 材料过硫酸钠 的生产造成大气污染物排放量最高,SO_x、NO_x和 PM10 排放量分别为 3 309 t、1 655 t、661.9 t(图 5), 占各项排放总量的 80.8%、61.8%、72.5%。氢氧化 钠的生产造成较高的 NO_x和 PM10 排放,分别达到 698.7 t和 232.9 t,占排放总量的 26.1%、25.5%,氢氧化钠生产引起的 SO_x排放较低。机械施工能耗造成的 SO_x、NO_x排放量分别达 700.5 t和 286.1 t,分别占排放总量的 17.1%、10.7%。机械能耗造成的 PM10 排放较低,仅 4.8 t。

因此,造成 GHG 排放、能耗和大气污染物排 放的关键因素是材料过硫酸钠的使用,其次是材料 氢氧化钠的使用以及施工环节的能耗。其他因素对 大气污染物排放的贡献较低。

2.3 敏感性与不确定性

对 ISCO 修复造成环境足迹各因素的敏感性进 行分析,结果显示氧化药剂过硫酸钠的使用量敏感 性最高,氢氧化钠次之,药剂注入氧化施工能耗对 GHG 排放的敏感性也较高(图6)。因此,通过技术 优化实现精准修复来降低氧化剂过硫酸钠和氢氧化 钠用量,降低药剂注入氧化施工能耗,可有效降低 ISCO 施工的 GHG 排放水平。

图 6 ISCO 各因素排放量敏感性分析 Fig. 6 Emission sensitivity analysis of factors for ISCO

采用蒙特卡洛法分析本研究碳排放量结果的不确定性, ISCO 修复工程碳排放平均值为 1 258±2.75 t, 95%置信区间为 1 113~1 400 t (图 7)。变异系数 6.92%,低于 10%,表明本研究碳排放量核算结果不确定性低。

Amponsah 等^[10]统计 ISCO 的 GHG 排放高达 150 kg·m⁻³, Lemming 等^[9]比较了多种技术修复某三 氯乙烯污染场地的碳排放量,结果显示 ISCO 每方 土壤/含水层 CO₂排放量为 12.25 kg CO₂-eq。Huang 等^[17]分析了台湾一个石油烃场地化学氧化修复的碳 排放量,结果为化学氧化修复每立方米石油烃污染 土的 CO₂排放量为 12.79 kg CO₂-eq。本文 ISCO 每 立方米含水层介质的 GHG 排放量为 17.09 kg CO₂-eq(表5)。不同案例中 ISCO 修复技术的 GHG 排放水平波动,可能的原因包括不同场地的污染物 类型、污染程度和水文地质条件的差异^[28],以及修 复工程量的大小均会造成投入药剂和能源的数量 差^[29],最终体现为 GHG 排放量的差异。

- 图 7 基于蒙特卡洛模拟的碳排放频率直方图(95%置信 区间)
- Fig. 7 Frequency histogram of carbon emissions based on Monte Carlo simulation (95% confidence interval)

表5 不同修复技术温室气体(GHG)排放水平比较

Table 5	Comparative analysis of greenhouse gas (GHG) emission		
levels of different remediation technologies			

序号 No.	GHG/ (kg·m ⁻³)	数据来源 Data source
1	17.09	本研究 This research
2	150	[10]
3	12.25	[9]
4	12.79	[17]

Vocciante 等^[30]研究了意大利托斯卡纳区一个 重金属铅、砷污染场地的修复活动,该案例中土壤 淋洗修复的 CO₂排放主要来自水资源消耗和污水处 理与污泥处置,电动修复的 CO₂排放主要来自电能 消耗和化学药剂硝酸的使用,植物修复在修复阶段 主要的 CO₂排放贡献来自化学品磷酸盐的使用。可 以看出使用化学品作为主要材料的修复工程,化学 品造成的环境足迹通常占比较高,与本文案例规律 类似。

3 结 论

基于国内地下水氯代烃污染修复实际案例,细 化识别了 ISCO 工艺各项环境足迹的主要贡献源为

氧化药剂过硫酸钠和氢氧化钠的使用以及施工过程 的电能消耗。从"精准修复"降低氧化药剂用量和 施工能耗、选用单位用量环境足迹较低的氧化剂和 新能源替代几个角度进行设计优化,是下一步推动 ISCO 低碳绿色发展的重要方向。我国氯代烃污染物 的修复目标值相对美国较为宽松,如本研究中氯乙 烯修复目标值为 90 μ g·L⁻¹, 而美国为 1 μ g·L⁻¹。更严 格的目标值需要更多氧化药剂的投入,必然带来更 高的环境足迹。因此不同场景和修复目标决定了原 位化学氧化修复的碳排放水平,设置合理的修复目 标有助于降低修复工程能源与材料的投入,进而降 低环境足迹。结合国外经验和我国国情,建立 ISCO 修复工程的环境足迹评估模型,根据我国机械设备、 修复材料生产和能源特点构建排放因子库,形成适 用于我国 ISCO 环境足迹评估的专业工具,可有效 推动我国 ISCO 修复技术的绿色低碳发展。

参考文献(References)

- Krembs F J. Critical analysis of the field scale application of in situ chemical oxidation for the remediation of contaminated groundwater[D]. Colorado College: Colorado Springs, 2008.
- Siegrist R L, Crimi M, Simpkin T J, et al. In situ chemical oxidation for groundwater remediation[M]. New York: Springer, 2011.
- [3] Tsitonaki A, Petri B, Crimi M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40 (1): 55–91.
- Watts R J, Teel A. Treatment of contaminated soils and groundwater using ISCO[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2006, 10 (1): 2-9.
- U.S. Environmental protection agency. Superfund remedy report 17th edition: EPA-542-R-23-001[R]. Office of Land and Emergency Management, 2023.
- Vagi M C, Petsas A S. Recent advances on the removal of priority organochlorine and organophosphorus biorecalcitrant pesticides defined by Directive 2013/39/EU from environmental matrices by using advanced oxidation processes: An overview(2007–2018)
 Journal of Environmental Chemical Engineering, 2020, 8 (1): 102940.
- [7] Sun X K, Huang H, Wang H D, et al. Discussion of problems in the process of large-scale contaminate sites remediation and project practice[J]. Journal of Environmental Engineering Technology, 2020, 5 (10): 883-890.

- [8] China Environmental Protection Industry Association. China Environmental Protection Industry Development Report (2021) [R/OL]. (2021.10) [2022-01-19] http: //www.caepi.org.cn/epasp/website/webgl/webglControlle r/view?xh=1642560122335035024896.[中国环境保护产 业协会.中国环境保护产业发展报告(2021) [R/OL]. (2021.10) [2022-01-19]http: //www.caepi.org.cn/epasp/ website/webgl/webglController/view?xh=164256012233 5035024896]
- [9] Lemming G, Chambon J C, Binning P J, et al. Is there an environmental benefit from remediation of a contaminated site? Combined assessments of the risk reduction and life cycle impact of remediation[J]. Journal of Environmental Management, 2012, 112: 392—403.
- [10] Amponsah N Y, Wang J Y, Zhao L. A review of life cycle greenhouse gas (GHG) emissions of commonly used ex-situ soil treatment technologies[J]. Journal of Cleaner Production, 2018, 186: 514-525.
- [11] Hou D Y. Ten grand challenges for groundwater pollution prevention and remediation at contaminated sites in China[J]. Research of Environmental Sciences, 2022, 35 (9):2015—2025.[侯德义. 我国工业场地地下水污染防 治十大科技难题[J]. 环境科学研究, 2022, 35 (9): 2015—2025.]
- [12] Sang C H, Yang X T, Li X L, et al. Environmental footprint analysis of ectopic soil remediation based on SEFA method: A case study of a steel plant[J]. China Environmental Science, 2023, 43 (10): 5359—5367.[桑春晖,杨欣桐,李香兰,等. 基于 SEFA 方法的异位土 壤修复环境足迹分析——以某钢铁厂为例[J].中国环境 科学, 2023, 43 (10): 5359—5367.]
- [13] Lemming G, Hauschild M Z, Bjerg P L. Life cycle assessment of soil and groundwater remediation technologies : Literature review[J]. The International Journal of Life Cycle Assessment, 2010, 15 (1): 115-127.
- [14] Ren J B, Tang L, Geng C X, et al. Emission of acidified gas from intercropped wheat field based on LCA analysis[J]. Acta Pedologica Sinica, 2019, 56 (5): 1259—1268. [任家兵,汤利,耿川雄,等. 基于 LCA 分析的间作小麦土壤酸化气体排放[J]. 土壤学报, 2019, 56 (5): 1259—1268.]
- [15] Lemming G, Hauschild M Z, Chambon J, et al. Environmental impacts of remediation of a trichloroethene-contaminated site: Life cycle assessment of remediation alternatives[J]. Environmental Science & Technology, 2010, 44 (23): 9163—9169.
- [16] Khan M A A, Qadir Z, Asad M, et al. Environmental

footprint assessment of a cleanup at hypothetical contaminated site[J]. Applied Sciences, 2021, 11 (11): 4907.

- [17] Huang W Y, Hung W, Vu C T, et al. Green and sustainable remediation (GSR) evaluation: Framework, standards, and tool. A case study in Taiwan [J]. Environmental Science and Pollution Research, 2016, 23 (21): 21712-21725.
- Farzad F. Environmental footprints and sustainability of contaminated land remediation[D]. Göteborg, Sweden: Chalmers University of Technology, 2011.
- [19] Xiao M, Liu P, Meng H, et al. Carbon footprint on remediation of contaminated sites based on concept of green and sustainability: A review[J]. Soils, 2023, 55 (4): 708—717. [肖萌,刘鹏,孟豪,等. 基于绿色可 持续理念的污染场地修复碳足迹研究进展[J]. 土壤, 2023, 55 (4): 708—717.]
- [20] Kim D H, Hwang B R, Moon D H, et al. Environmental assessment on a soil washing process of a Pb-contaminated shooting range site: A case study[J]. Environmental Science and Pollution Research, 2013, 20 (12): 8417-8424.
- [21] Ferdos F, Rosén L. Quantitative environmental footprints and sustainability evaluation of contaminated land remediation alternatives for two case studies[J]. Remediation Journal, 2013, 24 (1): 77–98.
- [22] Pagano M, Mosangini C, Avantaggiato A, et al. A low impact technology chemical oxidation, bioremediation and groundwater reinjection analysed with SiteWiseTM and SEFA[R]. da Maggioli Editore, Ecomondo 2018.
- [23] Zhou Y, Xin Y, Feng T, et al. Environmental footprint analysis of contaminated site remediation based on Sitewise[™] and SEFA methods[J]. China Environmental Science, 2023, 43 (10): 5339—5348.[周游, 辛毅, 冯彤,等. Sitewise[™]和 SEFA 方法测算污染场地修复 环境足迹对比研究[J]. 中国环境科学, 2023, 43 (10): 5339—5348.]
- [24] Yan K, Lou J, Wang H Z, et al. Research of contaminated sites based on knowledge graph analysis and its development trend[J]. Acta Pedologica Sinica, 2021, 58 (5): 1234—1245. [严康, 楼骏, 汪海珍, 等. 污染场 地研究现状与发展趋势:基于知识图谱的分析[J]. 土壤 学报, 2021, 58 (5): 1234—1245.]
- [25] Li J J, Li X L, Liang L R, et al. Preparation of biochar-based microcapsules for sustained -release materials and enhanced chlorinated hydrocarbon degradation effects[J/OL]. Journal of Agricultural Resources and Environment, doi: 10.13254/j.jare.2023.

0807.[李俊杰,李锡林,梁龙瑞,等. 生物炭基微胶囊 缓释材料的制备及其强化氯代烃降解效果[J/OL]. 农业资源与环境学报, doi: 10.13254/j.jare.2023.0807.]

- [26] Zheng J R, Leng W P, Wang J J, et al. Bioremediation technologies for cleaning up chlorinated-hydrocarbon contaminated sites-a review[J]. Earth Science Frontiers, 2024, 31 (2): 157—172.[郑嘉睿,冷文鹏,王佳佳,等. 氯代烃污染场地微生物修复技术研究进展[J]. 地学前缘, 2024, 31 (2): 157—172.]
- [27] Wang S J, Mo H B, Fang C L. Carbon emissions dynamic simulation and its peak of cities in the Pearl River Delta Urban Agglomeration[J]. Chinese Science Bulletin, 2022, 67(7): 670—684.[王少剑,莫惠斌,方创琳.珠江三角洲城市群城市碳排放动态模拟与碳达峰[J]. 科学通报, 2022, 67(7): 670—684.]
- [28] Wu F Q, Zhang W H, Dong J, et al. Screening method and application research on groundwater pollution

remediation technology for coking sites in China[J/OL]. China Environmental Science , doi : 10.19674/j.cnki.issn1000-6923.20240221.001.[吴汾奇, 张伟红,董军,等. 我国焦化场地地下水污染修复技术 筛选方法及应用研究[J/OL]. 中国环境科学, doi: 10.19674/j.cnki.issn1000-6923.20240221.001.]

- [29] Meng X S, Chen H H, He Y P, et al. Establishment of the environmental indexes in selection of remediation schemes: A case study of an abandoned coking site[J]. Environmental Engineering, 2021, 39(2):153—159.[孟 祥帅,陈鸿汉,何亚平,等. 污染场地修复技术方案筛 选中环境指标建立初探:以某废弃焦化厂为例[J]. 环境 工程, 2021, 39(0): 153—159.]
- [30] Vocciante M, de Auris A D, Franchi E, et al. CO₂ footprint analysis of consolidated and innovative technologies in remediation activities[J]. Journal of Cleaner Production, 2021, 297: 126723.

(责任编辑:陈荣府)

http://pedologica.issas.ac.cn