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Abstract: [Objective] Plant-soil microbe interactions are the cornerstone of grassland ecosystem function and stability.
Elucidating the relationship between plant biomass and soil microbial diversity, along with its environmental dependencies, is
essential for understanding ecosystem maintenance mechanisms and predicting future dynamics. However, most studies focus
primarily on bulk soil microbes, while integrated investigations examining the effects and relative contributions of both bulk
and rhizosphere soil microbes on plant biomass remain scarce. Therefore, this study aimed to elucidate the effects of soil
microbes on aboveground biomass (AGB) under the combined influence of biotic and abiotic factors. [Method] This study
was conducted in the desert steppe on the eastern foothills of the Helan Mountains. The characteristics of soil microbial
communities in both bulk soil and the rhizosphere soil of dominant plants across different plant communities were analyzed.
The effects of soil microbes on aboveground biomass (AGB) under the combined influence of biotic and abiotic factors were
elucidated. [Result] Theresults revealed that: 1) No significant difference was observed in microbial alpha diversity between
bulk and rhizosphere soils (P > 0.05), whereas beta diversity showed significant differences (P < 0.05). The absolute abundance
of both bacteria and fungi in the rhizosphere soil of all dominant plants was higher than that in the corresponding bulk soil,
except for bacterial abundance in the rhizosphere of Stipa breviflora. Stochastic processes dominated the microbial community
assembly in both bulk and rhizosphere soils. 2) AGB was significantly positively correlated with the biotic factors of plant
diversity and Faith’s phylogenetic diversity of fungi in bulk soil, as well as the abiotic factors of ectorhizosphere soil pH and
total nitrogen content (P < 0.05). Conversely, it was significantly negatively correlated with mean annual temperature, soil
moisture content, and available phosphorus in bulk soil (P < 0.05). 3) Plant diversity was the primary factor explaining the
variation in AGB, accounting for 41.5% of the explained variance, followed by soil physicochemical properties. 4) In contrast
to rhizosphere microbes, bulk soil microbial diversity acted as the key mediator linking environmental factors to AGB. The
effects of climatic and soil physicochemical factors on AGB were primarily indirect, transmitted through this mediating
pathway. [Conclusion] In conclusion, the diversity of plant and bulk soil microbiomes is a key biological regulator in
maintaining plant AGB of the desert steppe ecosystem, a role that is modulated by climatic factors and soil physicochemical
properties.
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Desert steppe
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TR, TSR AR TR BRI A WG A [ R R VA AR o B R ) A AR AR
Vol xamin S L], R 8 R A SRR ORI I 5 I g 151, b 4ERFRE M) A M) B A AR RE
VEo BEE EERR AR, A Ve 4R R AR & 5 T AR P R AR R B WE TR
TRV BRI T S E v A R R 2 A (Y A R e R B TR MR
WA, BEREYIIR D AR, AR TEY AR RC, R, REE T 3 X PR A
Vi S FRFAIE S LS MR ) 2B W AR B, AN B AL TR AR AL T 5 R Nt B AL
HIRTEAR, XA IR E A K S R G R s B AT BB R R

PE XA R0, ESRGNIIVER L, BEAKM D> HIEBTHRRE . 7570 ST AR i A o5 5

5 hRetE— DR XBE . PRIL, RTaR G R ST LR S R R TR R AR A
SR RURFAE , XA ) IR AE N S T DGR S RAWE RTS8 . ARF AL IR 2210 2R
BT JFONE O B, ST AR E B P EOR, 6 EE A ARRR b AT A VAR P A=
WZRENE VIR R LA RHE, BTERT: (D ARAE GEARPRARER) 3R 2 0
PES DM EAEYIRERSCR: () AMAAREY N TR EAE Y R A E R (3) IR
WA AR T 22 SR S st BV S ROSRSIER], DU 53 3 X i 55 53 A
SWEANE M PR AR HRAE .

1 MRS T

1.1 #5R XL

BIF 52 DX AL 158 22 1 4R 7 AR i e e JE X (38°397217—38°47'20" N, 105°57'54"—106°03'49" E ),
A MARBE R RS ARSE, BRI TR R AT, SFEHERE, TROW, ZRE
Ko SR J9 A A L AR R, MR A, VORRIRZ, MR R E, IR IR
Wt BRESE, FRORE. MY, MEESEK EMERERD, AKFERSI A
1.2 #ihigE SEYF AT

T 2021 4£,2022 4 8 HAEYIAEKHE RGN HA, 7657 =2 L RN 5E : 7508 T (SYKD  R/KZE (DSQ)D .
P (HLK) FIEEE (CQKD Fa B 5 X FLIREL 4 AN DAAS[RIRE YR 0 2H B A AR 1) S B RE H A R
TR G, A EENIAT 1 9 NMEEEA/NT 50 m Hifgdk . HUEAIT . SHEMIRER
77, BILAS Smx 5 m EAREYEET NRE 1A 1 mx 1 m EREYWEETT . DSQ FEHL A T HEA A KAX
MREAMYIFE T, 4 DFEHILREE 63 My, HARERMMFETT 274, FAMYIFE T 36 4>, id
SKERNFE T K (Elevation, ELE) FE S ALKRE B o 40 Tl R B B FE 77 P E . BAEMIRETR 4L,
ME AR = B a8 IR DA REACE NS, I8R5 B A v S . BRI
T NANFEE M EEE, SEEYBERREBEDA T RS (R D .
1.3 H@RRESSK. HRHIEIREL

T BEAR T IRETT N &N EAR P IARERR, W8 —JEARHE AR LU B R/ INE O AR TERR B, IRt
S FETT SRR AR ERR S . SR iR BYUL A RRMEIbRERL,  ICRARHER XS AR
AERR ) A7 b, RIS 55 HOX B B AAE Y RE 7 N BT A R 3Ry, oy [R] 556 2 40 T3l Bk EUHE A A v A A
TR E, SRGE THA AL 65 °C&AM N IEE, FREULTE. FIFEASRER T HE &I
XPBRUERR B o B DA AR RS, TH R PSR EAR R AR, FEJT A &SRR I AR )
B2 AN ERP AR, SEAEY I F AR NI E EAEY TEZM R D o FITH#ER
Y5 S ARG A2 i, B eih FAY&E (Aboveground biomass, AGB) .
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KH “TLEIE” R C“BHURIE” 42 91REE 0~10cm L ZHAERFR 138 (Bulksoil, BS) . 3 4H
YIIMLFE 4% (Ectorhizosphere soil, ES) M HARFRA3# (Rhizospheresoil, RS) #fh. Hr, BS R
LT EHEHEY) . TR R EKIREE XK. ES REZERMFETT ki 5 phig R B KH— B A
YItERE, IR ERRERER, RN SR R R BRI 3, BE S F 0B B RAT 4R B A
R (<2mm) R RS, ES 5 RS # SRR EEREE PRI K [F—HE 77 RS [F) 26 4%
FEMIHANREN—NMRERE, FESE—id 2 mm . FEABEED b2l AT RCEY 7 BS F1 RS
FEA RN 15 mL o BB T, BT TR, R RIS = T-80 °Cfiff; RIS BS A4
HRHT BS FF N EE N H AT, BB I 0 o T IR e o ARVUCRAESLIRIS 108 /> 158 4F
Wi o

i ArcGIS v10.8.2 #2HUEEAN R AL 55 2000—2021/2022 4F % 1 4E“F ¥R € (Mean annual
temperature, MAT) | 5133 [% /K & (Mean annual precipitation, MAP) , 3% ¥ (Slope degree, DEG) .
I 1] (Slope aspect, ASP) o H /1, S G A K UE T B 5 35 76k = )5 B 2% 0 0 Chttps: //data.tpde.ac.cn/)
HE 1 km 3 HERIE AR BHBEKERIEESE . DEG A1 ASP $2 5 H H B 7 (5] #4% == DEM £
$& (https: //www.gscloud.cn/) . VE4IEE LK 1.

1 HRHEEHAER
Table 1 Overview of the study site

" R
. RHR Fit A
wesy o EEH EEH WMEEE Noof o (TR
e . Fy R Yo Yo . B . W Dominant
) Geographic ) W [k = Plant families,
Site . Sampling ELE/m DEG/° ASP . AGB/ plants
coordinates MAT/°C MAP/mm community genera,
year . (gm?) (Importance
species
value)
38°42' 05"N FA R B3 149.62=  JEAEEF"
SYK o 2021 1350 4.86 2] 8.88 198.85 8/10/10
106°00" 03"E STAEAT S HEM 15.50ab (0.88)
38°39723"'N P JUT A 4062¢  JUTE®
DSQ ocor man 2022 1365 4.09 9.15 206.83 12/17/17
105°58'03"E K LRETN 3.38¢ (0.45)
38°44'47"N AN WS T - 15539  WEHTE?
HLK ot enm 2022 1430 422 8.80 219.90 9/17/19
106°01" 54"E #b ERER TN 19.30a (0.82)
38°47'20"N 28 RURPCYIRS 104.93+ g4 )L
CQK s A 2021 1460 4.94 8.53 224.66 8/14/14
106°03"49"E K KA I 16.98b (1.00)

VE: SYK: ZRADFEHL; DSQ: R/KIEAFEHE; HLK: BU20ARHL; CQK: FECIFEHL. Mo HAME DCPIEARHEREER (h=9) ,

FF AR NG FRER R AR FRSBAAE P < 0.05 /KT E2ZF 2. Note: SYK: Suyukou site; DSQ: Dashuiqu site; HLK: Helankou site; CQK:
Chagikou site. Aboveground biomass is presented as mean + SE (# = 9). Different lowercase letters within the same column indicate significant
differences among sample sites at the P < 0.05 level. (DStipa breviflora; @Enneapogon desvauxii; @ Leptodermis ordosica; @Caragana stenophylla.
1.4 HIRIBUMHERNE

AR bR A AR Bl L35 K& (Soil moisture, SM) 1 pH 43 AR FHETFRE L ANZ 12
ML KB 2.5:1) M5E; A MUK (Soil organic carbon, SOC) . 4% (Total nitrogen, TN) -
4% (Total phosphorus, TP) 87375 H KaCroO7 EALAMINFAGE . 4 H Bh i 8L g &% . NaOH
Yo bR B P LE BRI 5E s TR A (Alkaline hydrolysis nitrogen, AN) « f5 % (Available phosphorus,
AP) FIEZHH (Available potassium, AK) & &7 K AT H0Z . NaHCOs 2 #E—HBhb b (i
A NH4OAc & - K I BE I E
1.5 HIRMEERTE SN FFE R FHIRLE

fiiH] FastDNA® SPIN Kit (MP Biomedicals, 3%[E) 33 K 4 57 G F2 B -3 K 5 s DNA,
TR e B L WREERI BT . S AE VIR R I 4600 i€ B, ZE4R I DNA HbnoN 9 A n#% Il
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N T ERAPRFS (Synthetic spike-in) Ulo BEJS, 435l 40 B A B RFAE 7 511 1E4T PCR 4715
51204 515F (5'-GTGCCAGCMGCCGCGG-3") /907R (5'-CCGTCAATTCMTTTRAGTTT-3") ¥~
FEZHE 16S rRNA S V4-V5 42X {51 %F ITS3F (5-GCATCGATGAAGAACGCAGC-3")
NITS4R (5'-TCCTCCGCTTATTGATATGC-3") ¥ #§ H & 1TS2 [X. ¥4z mlif. 2ife. & &
—Ab SRR RSO, SCEL R AE A 4% )5 T 1llumina NovaSeq 6000 ~F- & #E4T 2x250 bp Xl o £
FI QIIME 2™ v2022.8 ZbFE 75 4s FHLF A, Snbiids. Wl B, BrE R LR GRS 0 g,
AR YT 1 51 284K ( Amplicon sequence variant, ASV) o B )5, 3T spike-in 5 51 Fll /bR #H 28 5 RE,
THRARA LIERE A TP A0 . FR ASVs B4 15 (LA w3848 DUEGt) , A DB v5.6
K PERLIEAN T 16S rRNA JEA#% DI, )5, A RDP v11.5 1 UNITE v9.0 £dfs 2 73 55l X6 40 1 Al
H A ASVs BEATYIRN 73 RIERE
1.6 HIELLIE
ANFIFEM IR AL BT alpha AR ZREPER 22 5, ARIEEE () IEZS PRI TT 22 50 VA 45
KA ZR 7 72 93 BT Bl Kruskal-Wallis £r 30347 VRS . #Rain g REE (P <0.05) , MBTZHELIL
B SERGIRBARARYE 7 2R B4 BIR A LSD v48% Games-Howell #6556,  JEZ 504856 £504# >R
M Dunn %, [Fl—#E IR R IR Z R, ARPEBERRIER A ¢ K250 Wilcoxon FF 5 KK . ATy
P {EHZ R R I FEREE . 3£ T Bray-Curtis #7215 56 & 8t & & IH 25 (Beta Mean Pairwise Distance,
BMPD) [ 3 i B Ak R IRV AR . RGK B S R4k, A AL FR 70 (Principal
Coordinates Analysis, PCoA) HEAT A ¥4k, H- K H B 4t £ 5077 % 73 #T (Permutational multivariate analysis
of variance, PERMANOVA) iz g B EM. BT RAKE AN ERL 5T (infer Community
Assembly Mechanisms by Phylogenetic-bin-based null model analysis, iCAMP) fiffx€ 3% VRIS 4H
FERFIENO, 275 Ning U518, THEREXFEAR Z B A bin 1 B #5454 (beta Net Relatedness
Index, BNRD) FZ IEM Raup-Crick 82 (RChry) » MBEVE KT _EVTASG AN [F) A2 250 R (R AE X 2 224
K LRPEIR A RN AR (Linear Mixed Effects Models, LMM; #4115 B N FEALE ) F1 Spearman

FHORME AT 3 B SR . TIRUAEM ZFEE S AGB 0 R, LR ZH S, Ak, T
FHIKZR. b5, FIFZERS % (Hierarchical Partitioning, HP) ZM#TIEANHE . <Mk, Y. 13,
TIEGAEYIERRE AGB AL R A B . AR HTHT, iR 2 EmAL A, R R A

(Principal component analysis, PCA) $EHUT5 LIBRHA IR BRI AS F sy, FHHE A R A
T 177 Z MK T (Variance inflation factor, VIF) , HIBRsEILLEMERIFERR (VIF>5) o &5, i
B BN TR (Piecewise Structural Equation Model, Piecewise-SEM) 4457 A=W FIHEAE W K]
FLAER T IR AGB B2, PLESHTIET R 55T “iICAMP”  “psych”  “lmed”

“ImerTest”  “multifunc”  “piecewiseSEM” fL5ZH

2 45 W

21 HAEIRIR-ESAOOL SR B R R
4 AR B S SO SR SR M R 2 R 8 AR LR D R AT -5
BESAIRSL AT B R (P<0.05) . Fobt, WRBLIERFS (SYK BRI Sb, JCMBORS MR FE +i
SM 38 F HLARM R HE, 8 pH B 05 T8 CHLK B 46, B3 e F LA b
£ SOC. TP 4 FofE SYK. DSQ REH b #I TR R -H 3 T SR B AR 14, HLK. CQK
REMMIAS : AERHSE . WP T B RIEMARAG L (CQK R HIFE 3 TN & s T AL IR A+
HE. BRI BR S R AT P L R B, T M R R AR L AN & B9 BB T
FCARRRBR L (P<0.05) , FAEEHSFHRIE 1 AP 4t B35 2 T 2AEARER 14 (P<0.05) , AK &
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R ECT IR L5 (P<0.05) , JUTIE (DSQ FE#) « ASREF T & AP n- 4 xS ) LAL 4% AP
BT HARRES 58, SR A SR T AR I AK SR R T AR PR
2 ANEFEHIERPRAASBAEYIR E TIRB UM R

Table 2 Physicochemical properties of bulk soil and dominant plant ectorhizosphere soil across various sampling sites

R IDACS
R ) EKE EEIRT S 25 X TRUAR A A Rk R
Site sl SM/% Pl SOC/(gkg™)  TN/gkg')  TP/gkg™) AN/(mg-g™) AP/(mg-g") AK/(mg-g?)
location

BS 0.15+0.02¢ 8.26+0.02a 19.23+0.80a 1.27+0.04b 3.53+0.82a 25.66+0.84c 2.5740.29cd  289.9+31.2a
SYR ES 0.13+0.02c ~ 7.83+0.02b™"  11.814+0.34b™ 1.93+0.0.092""  3.08+0.59a 38.07+£2.01a""  4.75+0.31ab™"  190.7+4.8b"

BS 2.99+0.05a  7.44+0.09cde  12.70+3.71b 0.91+0.14bc 0.28+0.02¢ 2.07+0.14d 4.24+0.31ab 110.0+£6.8¢c
psQ ES 3.05+0.09a 7.23+0.02¢ 11.35+0.87b 0.64+0.01¢ 0.27+£0.01¢c 2.57+0.05d™ 3.61£0.19bc 110.3+4.8¢

BS 2.83+0.04a 7.37+0.02d 7.12+1.18¢ 1.12+0.15bc 0.16+0.01d 2.25+0.10d 2.26+0.44cd 55.5+2.3d
e ES 3.05+0.10a  7.66+0.03c™" 7.13+0.45¢ 1.32+0.23abc 0.17+0.01d 2.55+0.10d" 2.14+0.11d 63.5+1.4d"
oK BS 0.22+0.03¢ 7.83+0.04b 11.55+0.78b 1.50+0.12ab 0.45+0.02b 30.07+0.39b 4.59+0.19a 311.3£20.6a

ES 0.53+0.07b"  7.68+0.05bc  14.37+1.17ab 1.58+0.15ab 0.47£0.02b  34.91+1.242ab™ 4.59+0.26ab  277.4+13.6a

vE: SYK. DSQ. HLK. CQK FEhfRsAMEY o AIAMEACE 2. TR, AT &, 89 L. BS: dRARPRL3E; ES: ARME L.
BAR U BEARHERZERR (n=9) o FIFIARVNG TR A F R 3 i 7] Welch’s ANOVA BY Kruskal-Wallis #2575 P < 0.05
KPR R REN: BSRORE— A E 350 8 ¢ 1505K Wilcoxon FF S #GINM 22 7 M, *. **, #=3j|FIR P<0.05. P<0.01
A P<0.001. Note: The dominant plant species in the SYK, DSQ, HLK, and CQK sites were S. breviflora, E. desvauxii, L. ordosica, and C. stenophylla,
respectively. BS: bulk soil; ES: ectorhizosphere soil. Data are expressed as mean = standard error (#=9). Different lowercase letters in the same column
indicate significant differences among all soil samples from different sites, as determined by Welch’s ANOVA or Kruskal-Wallis tests at P < 0.05.
Asterisks indicate significant differences between soil locations within the same site, as determined by t-tests or Wilcoxon signed-rank tests: *, P < 0.05;
#* P <0.01; and ***, P <0.001.

2.2 FEARFRAABEIRPR TR E Y SN

3 IE T IR . E B Shannon ZAEMEF Faith RGKE 2 (B 1D o 857 ER, 44
FEHLFTAT LI S AT 4018 Shannon ZFEMEZ R AEZE (P>0.05; Kl la) o AFRFrH8Z (A, HLK
FE 3B B Shannon 2 FEPE i), H B Shannon 2 FEMEAE SYK PR = H 523 =T DSQ Ffth (P
<0.05) . CQK #EMiAFMRPr L3 AM TR . 3 A i i) Faith REKE ZHME, BWREEST SYK.
DSQ M HLK ##ts (P<0.05) o AT HARMEHAAEMMR R 138, U ARPRZ0TE Shannon £ %
i, W T AP EE Shannon ZFEMER &, (A5 HAMEAEM B TR ZEEZE R (P>0.05) , ¥
ARG JLARBRAIER . HA Faith REIKE SRS, HWEZ ST HMRHEY (P <005 . F—
FEHLARRR bR 5 AR PR 328 Y Y LRSS R R BRI 2 5+ (P> 0.05)

http://pedologica.issas.ac.cn



+ %
Acta Pedologica Sinica

a._ 19 . . . . b) 6.5 : . .
= 2 a
w5 1, ,14 [IN #HE abe | e I abc abcl ab  pc
o pndg sy 8884848
£ g ?@' : i'%% £z 45 %' ! !
c = o Q
EE 93 1 1 1 2 g | 1 1
R ° Ao | Ao 55 55 I 1 1
%2 Z R B A
wE 70 1 1 Al =5 1 1 1
£
=8| I I I x5 e I I
/M 6.7 1 4 I 1 1 1 15 1 1 1 1 1
BS RS BS RS BS RS BS RS BS RS BS RS BS RS BS RS
SYK DSQ HLK CQK SYK DSQ HLK CQK
*C) 400 ‘ ' g aA Md) 220 : ' ' a
Era 1 1 1 oz I 1 1a_ 4\
RN o 1 1 1 N, Z be | 1 1
wEE 300fb D, | | § 22 o A &t I
HES HES ®
HELY PO L Y RN
i rEAT R LY PN 4 f.o
=28 = 3
82 A | 1 S22 N ’I I
® & 1 1 1 &= g | 1 1
s 1 1 1 11 1 s 1 11 1 1 1
100 40
BS RS BS RS BS RS BS RS BS RS BS RS BS RS BS RS
SYK DSQ HLK CQK SYK DSQ HLK CQK
P Site e Site

@ JEHRBrR L3 Bulk soil A PR 15E Rhizosphere soil
M RS: RPREIE, AR/NGFREFRIRAN FREH AT L3 5 (8] B R 307 22 73 Hr el Kruskal-Wallis #5645 P < 0.05 /KF 1
{25 57 5.3 1 o Note: RS: thizosphere soil. Different lowercase letters indicate significant differences among all soil samples from different
sites, as determined by one-way ANOVA or Kruskal-Wallis tests at P < 0.05.
Bl 1 A FREAER B AR S YR bR - 38 40 B A LR alpha 2 FEME
Fig. 1 Alpha diversity of bacteria and fungi in bulk soil and dominant plant rhizosphere soil across various
sampling sites
PCoA /TR, RIFEAH B iR TAE (B 2a) « B (B 2b) BEEA 34.6%- 18.2%117%
Sty (Al A A EAR BR AN AR PR T R R . R VR AL B R 43 5 . PERMANOVA 4ttt — 20 K3,
4 AMFEHL R (R2=0.44, P=0.001) . HE (R?=0.32, P=0.001) BEAMREMTEZESR.
FHZ N, PCoA Zririas, P R IH o Alfiire 7 aiw (Bl 20) « HiF (Bl 2d) #ERAKE
Z5K: 9.1%H1 7.8% )2 57 . PERMANOVA 70127, 4 MEHLEIRYHE (R2=0.11, P=0.001) . K
(R?=0.15, P=0.001) H&ERGARKBLHEREEZR. BRI TTH, 4 MEAEYRERANTE
B BRSNS AR PR TR B E 2R (P<0.01) , TkM-H#XS ) LAR bR g BEvE 4L ak . LT
HRPFAE WS RGBS AR LR EZR (P>0.05) .
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Fig. 2 Beta diversity of bacteria and fungi in bulk soil and dominant plant rhizosphere soil across various sampling
sites
=3 IR SIRF R EMR RSN ERS TR EN T
Table 3 PERMANOVA of microbial community composition between bulk soil and rhizosphere soil

JERR B AT bR 0T B 2K, F R MRETERRAK ALY ARG RG TS
P 3 Bacterial community Fungal community Bacterial community Fungal community
Site Bulk soil and composition composition phylogenetic structure phylogenetic structure

rhizosphere soil R? P R? P R? P R? P
SYK BS vs. RS 0.21 0.001 0.21 0.001 0.06 0.021 0.09 0.001
DSQ BS vs. RS 0.21 0.001 0.13 0.001 0.06 0.001 0.06 0.269
HLK BS vs. RS 0.17 0.001 0.23 0.001 0.06 0.005 0.07 0.002
CQK BS vs. RS 0.15 0.005 0.12 0.002 0.06 0.368 0.08 0.001

2.3 FEIRBRFVABEYRIR IR E 43t B REFTEHER

ANFEREHARR PR 3 B (B 3a) « HE (K 3b) 4axf EEHF KRN CQK>SYK >DSQ>
HLK. CQK>DSQ>HLK >SYK, ARG FEE L0 =F BT O B 83 )L > 4
TEE S > LI > NEBETH. AEE TH > U > 8L > FAAes S . FAEH PR
A B L0t = AR T AR bR 33, JUTRE AN 28 T F AR PR A R . LB A0 AR B T R
bRt (P <0.05) o 4 /MEEHOIIEIT ASVs #FERER] 37 AN T 1A 14 DT, Hp, JERPR
FRR BR300 540 1 1 1% N BRFT 1] (Acidobacteria, BS: 12.2%~36.8%; RS: 14.9%~40.1%) -
T ] (Actinobacteria, BS: 18.0%~52.3%; RS: 14.8%~53.0%) FAEE ] (Proteobacteria,
BS: 8.6%~12.6%; RS: 7.1%~20.8%) - T %[ ] (Ascomycota, BS: 44.8%~96.8%; RS: 38.2%~
92.2%) FI4HFH ] (Basidiomycota, BS: 1.3%~34.0%; RS: 2.9%~35.7%) NMHAKIEEIT.
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T R AN R R e B R v A0 S B Rl ¢ KRR ER Wilcoxon AP S ARAYIR /M T. *. #*73HIFRIRTE 0.05 A10.01

KFEEREZE, ns RONEFALEE (P>0.05) . Note: The total absolute abundance of microbial communities among different soil

locations within the same site was compared using either a t-test or the Wilcoxon signed-rank test. Significance is indicated as: *, P <0.05

and **, P <0.01; ns, not significant (P> 0.05).

K 3 ANRIFEH AR B A0 35 AR B L 358 SR W 1 1K P 4 0 32 B2 5 v 2L Bk

Fig. 3 Microbial absolute abundance and community composition at the phylum level in bulk soil and dominant

plant rhizosphere soil across various sampling sites
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Fig. 4 Relative importance of different ecological processes in microbial community assembly in bulk soil and

dominant plant rhizosphere soil

2.5 HEYSHFNE. DRHEEDZEN. B EEYESEEYRTFERXAR

LMM 73 R SR (B 5) , DU R ARIRPR 3K Faith R EZHES AGB 2

BEMK (P<0.05) . FEEYZHMEIEIN, AGB & THE&EH, 1MhEIEMRPr LR Faith REKE
ZHREMEIE M, AGB 2 EFH#% (K 5a. B 5g) « bAh, AGB 53EMR PR 38405 Shannon 2 A1
Faith REiK B ZFENRPRAHE Faith R4tKH 2. HIE Shannon ZFEME R AR, HIER
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Plant diversity is represented by species richness. The black fitted line was generated using a linear mixed-effects model. Solid and dashed

lines denote significant and non-significant relationships at the 0.05 level, respectively. R’ (marginal R*) indicates the proportion of

variance explained by the fixed effects alone, and R;> (conditional R*) represents the proportion of variance expl.

and random effects combined. The same notation applies to the subsequent figures. The same below.
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Fig. 5 Relationships among plant diversity, soil microbial diversity, and aboveground
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SFYF%sKE . Note: ELE: elevation; DEG: slope degree; ASP (N): slope aspect (northness); ASP (E): slope aspect (eastness); MAT: mean

annual temperature; MAP: mean annual precipitation.

Bl e M bAYrsE Y. TR 2R S A E T IR G R R
Fig. 6 Correlations of aboveground biomass and plant and soil microbial diversity with abiotic factors
AT HP 734t T AEVIAARE VI T4 AGB 223 A EEE (7)o [R5 & E AL
R, HJE SR A2 REE . HIEBAC BT R EY 2 REEIL R T AGB SRR 86.7%,
Y Z A AEARPRAIRR B LI B M 5. ML R, AR SRR bR AR bR 35 A
Z R RS B AR

8.81% Wi
Slope degree

1
|
1
] e R D
80 ! Slope aspect (eastness)
X PURB 5 Ry
) Second principal component of climatic factors
— e
60 ! Plant diversity
AR B 3R A e T 5 — 2 S
First principal component of bulk soil physicochemical properties

1

l

1

! R ] A O 2 — 3 gy

! Second principal component of ectorhizosphere soil physicochemical properties
' HH 5 -4 Shannon & P4

Bulk soil bacterial Shannon diversity

I I I

|—HI—| AEHLBR 3 0T Shannon % B
I
I

e

401 24.63%

ARXS At VB
Relative effect of estimates/%

Bulk soil fungal Shannon diversity

HEBR4H B Shannon 2 £ 14

Rhizosphere bacterial Shannon diversity
HRB# EC ¥ Shannon £ FE 4
Rhizosphere fungal Shannon diversity

T 1

204
22.33%

— — 2.70%
0 270%

R,*=0.25,R?=0.87 -1 0 1 2
fli1HE Estimate
HuTB R 7 AT RS EZ AR Bk e 1
Topographic factors Climatic factors Plant diversity Bulk soil physicochemical properties
R SR A A 5 ™ AEAR PR SRR 2 R4 m TRERAE 2 Pt
Ectorhizosphere soil physicochemical properties Bulk soil microbial diversity Rhizosphere microbial diversity

T BRI R T ROAR G E A DL T RN R AT AR R 2 R, AU ARRER AR B AT PCA AT

LU FE B 3HTRAE . F . Note: The relative importance of each predictor is expressed as the mean estimated effect size + standard

error. The climate and physicochemical properties of bulk soil and ectorhizosphere soil were characterized using principal components

extracted from PCA analysis. The same below.

Bl 7 B, i Y. 3. g gt b A AR X B
Fig. 7 Relative importance of topography, climate, plant, soil, and soil microbes on the aboveground biomass

2.6 EYFAEEYEFER T LIRMEYIXTH_ EE P ERIFNT

Piecewise-SEM 73 B &5 M 77 BB 4G /s 1 AE IR AR 100 AGB [RREI R 1E (18] 8) o 45
B, ARRER A IREY 2 R A RSB AR o £ R AN [ 5 OB AT BE LN )
PR AGB (MR 2208 61.0%. BRI S, AURKE T M2 FEVEREARRPS IR R 2 ek
Bixt AGB HA WM IE R B (P <0.05) o AL, 53Hrie 2S5 K1 A EAR br a5 2R Ak 1
Jo R 1 e AR AR b SR A e, HET (A5 AGB.
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Piecewise structural equation model fitting was conducted using a linear mixed-effects model, with the site as a random factor. Red solid
lines indicate significant positive paths, while gray solid lines represent non-significant paths. The numbers displayed on the paths are the
path coefficients, and the line width is proportional to the absolute value of the coefficients. The numbers below each predictor indicate
their standardized regression coefficients with aboveground biomass. The overall goodness-of-fit of the model was assessed using Fisher’s
C, where a P> 0.05 indicates an adequate fit of the model to the data. AIC: Akaike’s information criterion; Df: degrees of freedom.
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Fig. 8 The piecewise-SEM for soil microorganisms influencing aboveground biomass under the combined effects

of biotic and abiotic factors
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