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Abstract: Dissimilatory Fe(l11) reduction represents a fundamental microbial respiratory process in anoxic soils and
sediments, exerting profound influence on the biogeochemical cycling of iron, carbon, and sulfur. In recent years,
accumulating evidence has revealed that under specific environmental conditions, metabolically active archaea can

outnumber bacteria in certain soil ecosystems, indicating their non-negligible contribution to global carbon and
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nitrogen cycling. Compared with bacteria, however, the study of Fe(lll)-reducing archaea remains in its infancy.
Existing research has demonstrated that these archaea are capable of utilizing Fe(I1l) (hydr)oxides as terminal
electron acceptors for anaerobic respiration via both direct and indirect electron transfer pathways. This review
provides a comprehensive overview of the diversity of Fe(lll)-reducing archaea and their distinctive extracellular
electron transfer (EET) mechanisms. Direct EET appears primarily reliant on multiheme c-type cytochromes, but
may also involve archaea-specific key components such as molybdopterin oxidoreductases (MoOR), heterodisulfide
reductases (HdrDE), and methanophenazines (MP). Indirect pathways may involve the secretion of yet-unidentified
endogenous electron shuttles or the utilization of exogenous redox mediators that facilitate long-range electron
transfer to extracellular Fe(I11) oxides. Also, distinct archaeal groups, including hyperthermophiles, methanogens,
and anaerobic methanotrophic archaea (ANME), exhibit remarkable variation in substrate utilization, electron
acceptor preference, and ecological distribution. These differences reflect both the metabolic versatility and
evolutionary innovation of archaeal electron transfer systems. Despite these advances, the mechanistic understanding
of archaeal Fe(lll) reduction remains limited, largely due to challenges in cultivation and genetic manipulation.
Future research should prioritize the development of efficient archaeal genetic systems, and the establishment of
genetically tractable model organisms to uncover novel uncultivated Fe(l11)-reducing archaeal taxa. Analyzing the
molecular mechanisms and ecological roles of archaeal Fe(lll) reduction will provide critical insights into the
evolutionary diversification of microbial respiration and the functioning of redox processes in natural ecosystems.
Moreover, quantifying the ecological impact of these archaea in global Fe-C coupling will enhance our
understanding of nutrient dynamics and redox regulation in soils and sediments. Ultimately, these efforts will
contribute to a more comprehensive and mechanistic model of archaeal participation in Earth’s biogeochemical
networks.

Key words: Dissimilatory Fe(lll)-reducing archaea; Extracellular electron transfer; Iron reduction mechanism;

Biogeochemical cycling; Soil microorganisms
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Fe(I)HEAT PREEIR CEI AL Fe(LINIEJR ) 15161, iy Ak Fe(1)ik R A A Mt 7t £ SR FE4H
B, R A S . 2 A Fe(IN)IB R B (ARG D AR IS (R
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Thermococcus J& 15 B (Thermococcus sp. T642. Thermococcus sp. T739. Thermococcus sp.
T13044) HJRELL Ho SR FUIRIE NIRAIRIE R Fe(1), 3X 5 Vargas ZEMON1 A 51 45 AR & —
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Ho N HFHRIE IR Fe(I)RE T2 A Z B HGE B LG RIE . [RIFEHD, ATV L5 1 2 th
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ARSIl B 7R A KR, [H])E T Geoglobus J& ) Geoglobus acetivorans M EEWS DL ZBR & R
Eh TNEAIR £ 5 2 Pl HLME N B T AR IR Fe(INSE AR, T #v ity TR AN A2 BIAR
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111 Methanosarcina barkeri. Methanococcus voltaei) & G5 Ha F1HEEIE I Fe(lll) (2D 4
& Fe(INAIZE . 240 0.1 mmol-L2 (Y fE-2, 6-—fifilid% (Anthraquinone-
2, 6-disulfonate, AQDS) i ] & Z hiis Fe(11)it 5k 2, H LA Ha Jy o 7 AR N 15 % A w5 (26],
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F ¢ TE Methanosarcina acetivorans 1M & , S IZKERA f&, [l i 25 48 % B (1) bt r i
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F o fERHATEE M HER L3 rh, PRACH B a4 B8 LT 58 A8 Fe(1)iE JE SR A AL F e, 1%
T FEAR A Fe(IN)f 7R PR 42 Je 484k (Fe(l11)-dependent anaerobic oxidation of methane,
Fe(I1)-AOM) . 225N Ry, Fe(IN)AR AL PR A F e S8 A I AR AAAE AR B =X, o —
Pl 2R IR A e A v T 78 4 AR S AN AR B AT Td et R s B R A 5 1 ) B e A R
BAREAR R, | SE SRR R AR CREE SCEEN F IR RS M IG5 R, Rt
VR TR H 7 B el I g N AR IR B AL T 2R A AN NI PR ) Fe(LINET B394, 5 —F & HL
AU, WARE R A HSYIE R E (W Geobacter. Desulfuromonas #1
Acidobacteria) M HEAAF. PR F G e B~ R R Ak, X se iR iR sh 5 H
SIS R AN, e R RN Fe(1)I8 SR Fe(ll). Beal Z5EBSICUIE S /) A 7E
WEDURY F I ANME-1 il ANME-3 1] 5 3 Se 4 B (Bacteriodes . Proteobacteria
Acidobacteria Z5) AR R, &5 Fe(N)FIILJR M, 4L, ANME-2a f1 ANME-2c
B S BA Fe(1)H 828 PR 48 FR e S8 Ab g 71960,

BRI LLAR, 3045 VF 22 DA b S84 v 181 1) 27 78 MR I BRI RS & Fe(111)F2 BE 8 0A3L 5
O k| A i #2, ) 40 “ Candidatus Methanoperedens ferrireducens ” . “ Candidatus
Methanoperedens nitroreducens” 533371, [ [ Beg#E & Fe(11)ik R &AL ke b, DRAEH G
AL T I B BE S BRER £ 38 JE T (Sulfate-reducing bacteria, SRB) &7 3456 &, #iln,
McGlynn ZEB8IE 2015 4EAFFE R B, ANME-2 1Rk T AR R 2hid Jif, 383 BBl 8] FE T4
146 5 TR R0 SR R AT A L AR o TR AR A G ZR I DA R e Ak o R A A TR B
IR B A Fe(N)IE 54 B, AT TR O RIS AR ae 1 D i 7 SR 2hid
J5R A ] ) L L A 1B i A2 151,
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A (R Do Horp, B AR R R R AR T B AR SR R S Fe(IN)
SAACY R ELA R, XSS IR A B 2 MAL R ¢ BUAN I 3K 390, Ja) ik HL T 1%
HUAEE Sk B b ) T R AR o BT P MR Se AL Fe(IN)id Ji vt TR IE I, DUIE TS TE
R TR LS AN Fe(N) ALY, RN AMAS, THIEAE S Ah B 32 AR R 1A 2 TR ) 2
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Table 1 Summary of extracellular electron transfer in heterotrophic Fe(I11)-reducing archaea

T A T e R WL CINRCIIEN 2530k
Archaea Extracellular electron transfer mechanisms Electron donor References
Geoglobus ahangari B (MHCs) LGl [41]
Ferroglobus placidus H#% (MHCs) EFMTTHERE  [42]
“Candidatus Methanoperedens ~ Ei#% (MHCs) e [33]

ferrireducens ™
“Candidatus Methanoperedens  E$% (MHCs) e [37]

nitroreducens ”

H# (MHCs) [33, 36]
ANME-2 ) He

W OEFERR . BREIL. AN REYD [43-45]
Methanosarcina acetivorans H# (MHCs. HdrDE. MP %) s [32]
Pyrobaculum islandicum H# (MoOR) AR [46]
Pyrobaculum aerophilum BB CREDFTF A0 P RESRELY) [47-48]

H#% (MHCs)
Methanosarcina barkeri H e [49-50]

e (RETHF 5RO
E: MHCs, ZIMLHK ¢ M@K ANME, REFHENEH;: HIDE, [ HAYIEER: MP, FHBE; MoOR,

BRGNS S AL IR 5. Note: MHCs, Multi-haem c-type cytochromes; ANME, Anaerobic methanotrophic archaea; HdrDE, Heterodisulfide

reductases; MP, Methanophenazines; MoOR, Molybdopterin oxidoreductases.

2.1 EREBTEIENS

2002 4, Kashefi Z52UE Yk B # T 1 Geoglobus ahangari [¥) Fe(IH)i& 5 fE 11, e
85 °C N rlK T Fe(IN)AE ALY (4 FeOOH) & JFUNREEE™ (FesOs)o Fifif5, Manzella £
M2 70 B IS AR AL, A B G. ahangari #{LZE7/E 12-kDa FLA2 i IR &1
BRER NI LR R Fe(HN K G246, T 4Es i vl 25 & FLAR B B 7 2842k AQDS I I ] LA
KA Fe(l)iB . b4k, $EEL G. ahangari 3577 (1) FIG BRI T# A F AT Fe(1N)
W JE SIS AR EE 2] Fe(INBEIAJH . BHEEAT L, G.ahangari 3= EAK5E H Bk Fe(11)E LD
KIC ST, EREARE W L T R, A BB A RE 1SRG R Fe(11)Y, [F#fHh, Ferroglobus
placidus. Geoglobus acetivorans 7 JC7ATE B FR EhERER N IE IR Fe(LIN2, 3 — D1 70 R TN,
Z MK ¢ B (Multi-haem c-type cytochromes, MHCs) 7E'EA1HIfuAh H AL L
HilHp LR T OB IER . 7E G. ahangari I&JR Fe(IH)/K &SRS RE A, T 50 3 A 22 5]
AR EA KEREARARMINZ T, KX NAnRmR =5, ik
205 Fe(H) 38 J5AE AU, 128 ol A A0 GE J5 2 T 2 R A 22 SR T B A S AN Fe(11)%8U4L
VIR ER Ak, A BT RN YR I (R B A . BRI AR, PR ZH A R
E7n, G.ahangari & A 19 MENR gD 2 M2 %= ¢ ANt R IR, mEfIgmign s
A RELE Fe()i8 JEat FE bt B B RI/E Y, Manzella B0k 8 G. ahangari I8 24 —
FhRERL IR AY NapC/NirT i Mk i 0B A0 -+ I 20 AN i e R ¢ 3ER (GAH_01256), %%
H5 Shewanella oneidensis MR-1 HJPUIMZL R EZE ¢ (CymA) FJgF— MK, 1M
CymA 1E/2 S. oneidensis MR-1 4T i 41 L - & 13830 J5E Fe(11) Y D8 FE 4% 1 i B 41 7 052,
[Al It G. ahangari FAFLEM I 2L 24l HL (3R ¢ T RETE Fe(IN)ik JEd FEHREE R 1 OB PEMER .
Ak, —SeH T w2 ma R EER o MERE, Wi T4k -1 GAH_01306.
GAH_00286. GAH_01534. GAH_01253 11 GAH_01256 1 A] it 7 i Bt FL 7-4% 336 % 5 T ke 3
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THEEEH, WE 1R, Xt R A s AN IR G, ahangari [ H04h
FAEIENLHTR AL T OCBELR R . SR, Wi HI 2, T80 WA R R, TR
T I DR AR T B, A OB A P £ R R R SR R R B R IE X Sk R R T S 5 A
TALH, FERATATT Fe(l)IE R ¥ TTERE .

R fe fe fe

7 fia BE
Cell wall

7 Q
1
QH, Membrane

F: Q: FE; QH2: &fE; GAH_01306. GAH_00286. GAH_01534. GAH_01253. GAH_01256: mJ g
AN FAL BT EE 3L R . Note: Q, quinone; QHz, quinol; GAH_01306, GAH_00286, GAH_01534, GAH_01253 and
GAH_01256, potential extracellular electron transport function genes.

K& 1 mE3 B Geoglobus ahangari 7T RE 8 U4k B 71538 iR 42 53

Fig. 1 The proposed extracellular electron transfer pathways in the hyperthermophilic archaeon Geoglobus ahangarit>!

FAuHh, 7ERERH A F placidus HFRIFE S A K EAIMI L E ¢ Smith SRR AR LT3
g Fe(IN)iEJ5 1 1, F. placidus &G 8 £ 40 %K ¢, Hrb 83.3%M4l 3 ¢ 7 —A
DA BRI AL ER - %) F placidus E PR ZH ()40 AT R W, AR N AFLE 30 DMomAt il 2 ¢ HI5EA,
H. F placidus #15 =F7£ Geobacter J& "1 ##x Jy Chcd F2k 4 i {4 2 S LA R s . £ Geobacter
B DA 5 PR TR A s 2 o (A A B, FREE R B R (i
OmceS. OmcZ. OmcE) &z 4HMi7k, Ched RIRefE NI 24 5 2% M A& i Hh i — /N1 iR
FEERBY, Flin, F—NFEM4IiE R Cocl 5 P BRAH IS, Tl w44 it 5 DR i i s 56
UERH, 7B AR IE R AL (A0-100 mV)IF) Fe(HD)SE ALY AT B AR AL 7% v )it RE v k5 B2
ERBS, i 8 F 2 A A LA AT TR DL, =R 2 MR EER ¢ (Ferp_0670.
Ferp_0672. Ferp_1267) 7t Geobacter J& BA [FRIJRIEH, XL FEYEERFMRE =55
T Geobacter (Lt 200, BT uth, (EFMENX =MZ MARMMETR ¢ T F
placidus i&JiE Fe(H) AT ge B A VE/E M EZ/EA .

Z MR c MARGERFANSS 7 IRAR AN, FEAmMARN, #HHERES
IM4T 3 ¢ BLA AR 22 11 ANME-2 ol B 7E Fe(HN)H B PR A e S pb I R b R 4% 7 SR A
Cai %3 3 “Candidatus Methanoperedens ferrireducens”, ‘& L 4w “ & Fkedpl” i1z
PIFERIM Z ML R ¢ Btz . ZAe A i ior, 78 PREH be A A2 g i be
HE1R. R4 Rieske/leytb HA 1. NrfD 25 ZIREE (FeS) 55 ¢ UMt 3 I BE R R
5 B, RUEHEN Z o AT R An iR R ¢ BL Fe(INPE AR i R T 3244, ST/ S IREH
b A i 1 . Zhang S5 0B7R H B AL 22 00 i T Btk — BHIE ] T 2 AL &R ¢ AR RA R i
1k % B “ Candidatus Methanoperedens nitroreducens ” fitg #h H, - 4% 33 AL 1] o i) B 4k

“Candidatus M. nitroreducens” FJAEPIIRAEIAMR 220 Hr 45 R B, AR THAFAE — R AT 4
IR R U, 2R ELALARRS TR AES AR 2 N-20 MV, 1X 5 Shewanella J& [ 4MEZH A 425 ¢ 11
HLAZAE ARS8, Shabh, A TR 2 A= ER (AcMet) 5 “Candidatus M. nitroreducens” )
MR ¢ SAMEHREE, KIWAEYBAZREH R REAE AR, BT R R,
BTN B E ¢ i 5 ik BREAHEAER, % “Candidatus M. nitroreducens” i

Fe(II)
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AL A5 15158,

[FIFEHE, 3T 2 MALER ¢ BUAN A € 3 2 1 F e b B 2 (1) A FEL AR s L 2 — 590, M.
acetivorans Al I Z Bk Ji — A A ™= F e, (H 9 7R 51 N A AL b S8 AL e 70 i R R
HlE ML JREE (Mer) J5, TR A FGEAE i, 38 et 308 1) s I A ol B v s e ) o ) A
¥y, BN mee0, #£ M. acetivorans Al Fe(111)ak AQDS 1 i 2% H, 1 32 4 S Ak H o 1 it 2
t, BERE R R-EIML R ¢ B G R MmcA, SRR o0 R, Mk
mmcA [ 5 M. acetivorans i& 5 Fe(IH) 3 2 525 HFEEY, MmcA & Rnf S5 141G H
gy, HTERZ Al RS 25 A, Gupta S EUHENL vl BRiE T 5 Rnf B & IG5 5 A
FHEAR R e T b, 2 —Fh FEOREE S5, ) F A 22 SEER A IR K 3, MmcA 7E4 UL
% (Indium tin oxide, 1TO) HIMRFRIA AT R A FAMGIEJERE I I E R, R ERES
MR AT FL 28, R MmcA BEATIE MR 434 A, &I EAE-100~-450 mV Z [8] B4 7]
B A SR, BE— BRI, Rnf 2 AACK BT MEREIE A (Fdo. Fdr) %%
%2 MmcA, MmcA R i 71518 B 4 & T EA H e (MP) 2, SR7, MmcA
e EAES MP MEARE, bR AR AR, Bt AEE. BRI, MmeA #
A A5 T M Rnf SE KM Hs 2R RE—2 (Bl 2). MmcA 5 Rnf 24
VIR RAEF= e ol B AR AA AR, MEH B R AR, XE—PIESE T MmcA £y Rnf
HARF MP 2 [ hURs i 745 S I ThEE3, EE A5 1) Fpo BAE (Fao: FHIEWYBRALL
EJRE AR MP 3T R 7312, Fpo i@ St FaoHo A2 BRIV IE SR Y FE ey 1E (MPH,)
WA E R AR 4 MmcA, I 5 B MmcA K B 1A% 54 42 g 41 fL 7 52 4R 154,

4 i fiE

Membrane

F420

W Fpo: FaoWWREAIEEMEE AR MP: SULBIH M, MPHy: GBI SEWye: Fao: HHAE Faos FazoHz: PY
SN Froos Fdo: BREILEAEAMEY: Fdr: PEILEAILERF. RnfA. RnfB. RnfC. RnfD. RnfE. RnfG. Rnf &
A 6 MZ 0 IEHE . Note: Fpo: Fa: phenazine oxidoreductase complex; MP, oxidized methanophenazine; MPH,, reduced MP;
Fa20, cOENZYME Fa20; Fa20H2, Fa20H, dehydrogenase; Fdo, ferredoxin oxidase; Fdg, ferredoxin reductase; RnfA, RnfB, RnfC, RnfD,
RnfE, RnfG, the six core subunits of the Rnf complex.
P& 2 Methanosarcina acetivorans 7] G () i 41 B 714 3 & 42 61

Fig. 2 The proposed extracellular electron transfer pathways in Methanosarcina acetivorans[®]
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bR T 2 M % ¢ B AR RSN LSS, B8 — S H RSB Z A AR
¢ HRERTT LLIEAT 4k Fe(I)IE 5L, B nh = 4B e 438 ¢ 1 P islandicum, ‘& m] FIH Fe(lIl). i
ACHR R 25 A0 B B AR dE AT DRI, (R R 2 B AN I S e A Be A, BAEIE SR 7%
AR AR AT AR H - 2 AR R 48], AH R4 S A8 iR i (Molybdopterin oxidoreductases, MoOR)
& P.islandicum Be44 FL 1L 25 B b Fe(1) ALY ) OB 4H 73 1461, 2 R AN e 1 6 kA=
VIR AR B AR L 2 AR, SRR TAESRZ 2 M2 ML % ¢ BB E R T,
B AT AR AL TR 0 B AR AR R A
2.2 (B TFIRIEBHLE

PR T B A A s, DTy Bl I YA BRI F ] 2 P R AR AR S e AL Fe(11)
WIEFI R A — e, ARSI AER. S, AHB0ERKR], Methanosarcina
barkeri ]IS H & 7 WA R A A RN I BA AL JEVER P IR T R RS, (HAZA)
JOR A AR I B T AR 2 A ) B AR ML 0 7 PR AN L0, RV = ik Fe(1N) I8 Ji o B £ 3))
Gy AR AT, AR AT AT I AR BRI TR LR I L AR AR S B A A
%o i, ERFFRERGETE Pyrobaculum aerophilum i Fe(IH)iE R AE ST, SR BRI
Rk, REFEESAENE Fe(l)EWIBENT G, (BAERIARKE T RER
Fe(I)it )5, ZIN R AT e S B RHEEUH mik B AL 3 R 2B oA 7481, I 22 A
B RE TS A FL T R AR (A AR SR Fe(1N)IR )i, 5 ML FA& 8 B VAN L 1 2R AR 1
AL R A VIO . ShrrES AR, 24 pH=7 B, Fe(I)ZA LA LIE [ BT
1£-100~+100 mV, 1fii 8 2 53 F (AL S5 LA AE-210~-240 mV,  HH T HLF 5 MG B A [ 1
WA, DR, ERATRE/E RIS E T M4k, 78 P aerophilum 5142 A4k 1% i i
To

24l s, Methanosarcina acetivorans AEUS IR AQDS, 3 B H: B 404 o 75 7% 2 AN s iR
Kb EWIGE 1. ShrEE AL, 24 pH=7 I}, AQDS %Lt EHfr (En=-184mV)
FF i 2 M4 &K ¢ B4 2 MmcA (En = -100 ~ —450 mV) 5 Fe(lI)& /LY (En =-100
~+100 mV) Z [H], J&—FhBEENS H A% i 2 M AN 1 LT F AR ARISU . R BRI iR B,
FE DA H Bt A T i ANME-2d SEHE ) I oh fL AR AL AR O B, TR AE IR kUL Al
J 4 5 G 35 T S B e A 0 R R S DU B R S, AR 5 L AL AE X T
Ag/AQCI HiZ 9-305 mV, KT HIsMET 324k (En=+445mV), KB ER AT R B IR 1E N
M RIS T 2 BB R RSN R SR AL ZITE-250 ~ 0 mVI®], A3 ¢ (1)
SFULIE 5 R 38 H E-200~350 mVI8], X [EIAER I, ol T REA B AN ER S S B HL T AR
£ Fe()ELM I

SR T B b IR T F AR I A PR, (BRI AT S, B e 785 F)
H AQDS. MIAMNEEY). JRFERRSE 1 TR AR 58 o RO M TR0 . BRI Fe(11)id 5
A ELFE AL, 0] Rl o PRI TR FRE L 18 2 R B B o SR R AR S T 2 T
T AL, AP R Fe(lN)id R A IE N5 B TE H

3 W SYHE A Fe(1D)IR JRHLHINT H 5 A4 25 Tk

Ak Fe(H)IE J5 1 18 5 A0 Fe(IN)IE SR 40 B (1) B4 FL AR B L . PRBE RO B Tk A7 7
REGMEZESR, W 2 fian. LL Geobacter. Shewanella J& K HIFAL Fe(11)iE J5 40 5 A
AN AL IR O FE 18 A )2 T 200 I R IR, BT BN A AAMIE 2 121 3 ¢ R4 o
ERNTESH B FE#E1% . 10 Geobacter metallireducens # ] OmcB. OmcC. OmcE %54 Ifi.
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213 ¢ BYARM 0 30N FL 1 ELREAL 0 2 PR AT, Rtk DAL, ISR S AN, S HE B (PIIAD
5 OomeS HIthMEHZH1S G. metallireducens REHE AL 1% HL+ & U A1) ) — B ELiR 42 681,
Shewanella oneidensis MR-1 Il LI MtrCAB-CymA 5 A s 4k A% Lo, W5 oo 14538 E M4~
V) SR SR IO, R T B AL A, Al T o WA R A AV F AR A (R ED
B FE AL i 40T, TR T A Fe(IN) W TN S, BT Bz B iife TR, HALRIBE RN
HR. HoiERZEP T 20O R ¢ B ERMIER, W — T 2L Ndam
Methanosarcina J&H ) MmcA L} Geoglobus A Ferroglobus )% ML %K ¢ R4 &
(GAH_01256. Ferp 0670 5). {HFR T MmcA & [4h, HABLERThALE PR T4 24
T B, AR NI AL Z A BRIESL . M= it 2 ¢ i) Pyrobaculum islandicum MK 5E4H
WA S8 A 3 IR I 50 BRORT AN 1 Fe(TN) Y BLEZ FEL 15388 o AR (A3 AR U7 THT, 21 B e 20 WA B
P AT 1 - 2 AR A AR s -, T oty T DU 3 A MRS I ) B PR v ) L R A
(i AQDS) HEAT AL 1A% s
A Fe()ik J5 48 B 75 H iR R K DT Y . FEH 38 R S /KE55 S S A WL IR 5%
ti V2 AEAE . 1 Anaeromyxobacter 7 /K% H 33 b L PR B DA AT IA 4 Tt 108 Aol
Geobacter J&7E/KFEM xR T35 40 g B V& 0 o Lhg 5%, S IREIR R A b 32 S AL Bk
JRAHTE « X EE AL Fe(I)IE R B A 2 “ Bl ok 18 Z i IKa) # 7 2 — 2, (R ik AT
JHERIR KT, Geobacteraceae ££ % /> sl H (AR = B2 38 o5 5 35 LL I 031, [R) e b, 76 8HS
P ] 3 [X 0 R BLAAE R E AR5 9710 Shewanella J& & #0041, X7 T EAIER KITAY)
B2 0 A5 2R . TR, AE I A Fe(11)38 iR i FEAE RIS TR P AN iy ZRpk 1
BN R DTRR R LN 44%051, A Fe(IN)IE R AN CK A ALK EAL S Fe(11)id J5 4%
&, HESh IR ) (WA 3880 AR, —RIKEHSEH AR 1 3 Eig e —
[68]o
5540 Fe()I& R A0 ANE], Ak Fe(1)IE iR 1 B 70 A R R e AR A s ol &
FRGEUTRRYI, SRR S w5 N 2 -moc = e BA AT BRI Tk, 758 Sk
FEF BB (s £ & A2 ), Methanosarcina J&F1 Methanocella J& 3 & & 2 7
1, H 2 50 JFOS R nT Y SRR, e SRR LR A B B A P L <2 — D76l
FfeiHh, 75 SPEA B R AR, REERAT IREN IR R A b A A T TR ANME-2a
AT B B RRTT, S BRI B BA th— AN SE A AR BB, o AR VR A= 1) el e
QU A = AR B OCE B FEYOKAES RS GEA . . i JLytiRyD, Fe(in)
MR PR A bt A R T2 AR AE T8 BB o T e A0S, DRItz R AT e A A
EJFER & EREm ST, W@t E2E R /KT R+, LL Candidatus
Methanoperedens A=) ANME-2d o B 1 5 BB 0.2%~4.7%, H Fe-AOM # %A 110
pmol-mLtd? (BL CHa i), BEHEGESE [ iZad B sTmk. R WIE TR PR b S8 Ak 48
(11 Ca. Methylomirabilis oxyfera) AJfit 5 ANME 34700, (HMNABRNE S, RAR K
FME AR G 3 AL, S R PR b A FERHLE 7 909% LA E I FRGE 2IA & 4=
Ak Fe(I)id J5 7 B HiBR R R G [RIFE BA Re R PR R ok . 29 28 T X331 Geoglobus
ahangari®, Ferroglobus placidus*?, Pyrobaculum islandicum 814 kg # it 14 58 LA Ho 579 il
FRAE IR R Fe(L)EALYD, #R7R 1 IR IR rh G0 1) — P B AR D& A%, 43D 1 o
WEE -l &
* 2 HESHE R Fe()EENS 54 S RE LR
Table 2 Comparative analysis of the mechanisms and ecological contributions of archaea and bacteria in dissimilatory Fe(l11)

reduction
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Sk Fe(IN)ik JH 405

Dissimilatory Fe(l11)-reducing bacteria

FAk Fe()iE JE & &

Dissimilatory Fe(lI1)-reducing archaea

(S S

Responsible microorganisms

H 254 Habitat

i Ffit1& Electron donor

732 {& Electron acceptor

BT AL

Direct electron transfer

B 4% HL T AR I B
Indirect electron transfer
B TR
Mechanism research level
28 DN

Environmental contribution

%2 ik References

Geobacter metallireducens . Shewanella
oneidensis  MR-1 Pseudomonas

aeruginosa

FPRBOK TR L3 HURK: EAML
B

iR, . i

IKERI . AR

K FL (PIIA -OmeS). £ ML % ¢
4l tizk (OmeB/C/E. MtrABC. CymA)

MBI IR A

BALALE R, 2 THUER BN

RS INEr B L S U B A ]
Fe(IN)it 5t 2, KN Bk Bk B R A il

=

==X

[40, 67, 68, 81, 82]

Methanosarcina J& . Methanocella J& .
ANME-2d . Methanosarcinales H .
Geoglobus ahangari. Ferroglobus placidus.
Pyrobaculum islandicum

BRI BRI, R
PWAG KLDTRR

AN N

BRERD™. MEERET. JKEBRE

ZMAE ¢ BMMER (MmCA.
GAH_01256. Ferp_0670 %5). £HISE4 4 1k

HFISNENE T2 A4, 33K AQDS

iR T HEAIR RSk, WL BB A L

YA H ol i (Fe-AOMD: 4ERFRFFR UK
IR S RGYIT R

[21, 37, 41-42, 48, 51, 76-77, 83]

vE: AQDS, 2,6- M ¥R, Note: AQDS, Anthraquinone-2,6-disulfonic acid.

4 HE T Fe(HN)if R & X

4.1 FNEREREIE R FN R KT B IR

Ak Fe(IN)Id J5 32 BLIE i) 55 G O HE fL TR (U LR . Ho) M A% R 3 J A F e
o £ pH=7.0 i}, Fe(IN)EAIE IR AL (En=-100~100mV) & T-HiEEE (En=-220mV)
A COL/ % (En<-150mV) 31, [K, 2h 7 3R45 30 =00 H AU &, 7ER—1R &, Fe(lll)
AR T, DT S A PR R I SRR FE e

TR, 7ELL Fe(I). BRERELEL CO2 MIETE LT S2 AR pUAR Y, i im Fe(IN) L4
AIAS A IR R340 B P g 2 0 R [ 50%~100%, HATRIFERE 5 Fe(LN) B AL IR W24 4F
B ER, Yk R P AEAE AT AR R Fe(I) BN, #0P Hk  H SR T2
Fe(I)id Jigk A, FEACH e~ 526 1, FERRIR ik Ji 1 5 IR b i i L7 ik &,
B R #hd i B R AR RSB FIH Fe( AR 5. BRIk, & Fe(lI¥REEH, R4k Fe(11)id 5
F 55 T BRER Eh A 2 PR R e E A AR, B R F G S R AR A

IXFRINHI N 52 Fe(I)SE AL EE S FERC T . A LG s s SSRGS (En=-314mV), K45
i EAEN (En=-88mV) s e BEE M (En=14mV) EHLLRIAIK. Fe(lll)-O 4
REAIRSFRAE, 5 8O A i Fa A7 B8 vy s SR S PE B i, B S 9 S AR A I IR 0 Fe(11)
AMIERU g RO, RESEAA R I B Rg SR8 S5 5 B e 28 il

zi b, Sk Fe(IN)id 5k 8w ROR H Fe(ID ALY, 762 B 732 AR SEA7 I PR &R &
WA B R RE R S o 2 R AN FE e A R R R AR ) ST, AR AT
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V) C-Fe-S fEIA TP RFEEZIJRIEAEA, SRR W fE IR B A R b AR BAL b S5 iR S Sk
WPENLH B A EEE .
4.2 BHEAEKIRZE X SIMK IR &

H I SRR B, Fe(H) AT B8 5T B AL O B A B SR P 52 AR D0, 7E R
WIHLER PR EA B T, VAR EAHIRIE =, MRS Fe()FEE. YeBEAHIE,
Fe(I) B e84k AE i Fe(1NES), FERTRERLZVIRMEE S, FAHIWS Fe(l)i&EHHE &R T RE
U5 T 54k Fe()i8 JE AP 15 S0 7 (G A5E B2, HER_ BB T A= dr i L R RHL 56 (Last
universal common ancestor, LUCA) 5% i A4 1) PR AUEE S #4117 B (40 Ferroglobus placidus.
Geoglobus ahangari) R F|H Fe(IN)F N HLF 52 R 4k O FRAE K41 881, B B 3 1) Fe(111)
R AE AR HLBRE L R Py T EE A, HiZid ] GE R TRBR R . AR £hIE R
A E PR AL o B T X S R R () b5 22 T sk A, Ak Fe(1)iE JiR o B E IRAR 358
W HA TR Fe(NE e T8 CLHEFRD MEZRRLN], X4kt
B R E B R E A, AL Fe(HN)IE R & IR R 5 LR AL RS, AT s it
s HKR FEA R SIR . RSN R m S TR, fER K 8 (K
HD IR . BN, BEEREE (PO K 5 bt T BUALZETE Fe(IN) AL ) rhIBT, LAk,
PO e Z P JL &R/ 4@ (Clnfi Al B2 %) G Fe(1I)SE LYWL T B B3 . 4L Fe(1N)
0 5 AL SR 2 Fe(HHT) SIS, S BIRT W 454 B 55 W B 7, T8 E AR AN s 7o
#, DERSBEAEYASNE, R 5 AR R R AR

5 4k HEE

Sk Fe(H)iE J5 o T @ 7E T TR Ik Bk 5Ol 2, BE#ZS 5 Fe. S, C %t
R AV BRI EEA AR . B TR0 Fe(IN)IE J vy B M A B AR S AL CLEUAS — e T
TR, FELEPEEREINE FAHIERE, JEEFEIAAZ MR ¢ 40 G Z & a1
FEIE B ) E B Sy o BAE, b B (R EE MRS S . S R i R R ey e T
RE A2 L (5 3 A R 1) EE L2 R 23 SAMEAH L, A Fe(1I)IE 5L B 1) Fe(1)IE AL i aff
FRMSRAE T B, 2 LRI FEAREIN . R SR A 78RN A o] 2 A SR AR LR JLAN 7 T :
(1) R mus e TEBIF R, B, R B0 g TR ClnBi A i ) B 4 [m] S =
HIFHI-MHKREE R4, CRISPR-Cas) Wik 1AL A DGR R AT 18 s PR e, PG
UE LA M A1 AR L R AR A SRS AR S BB ILAE Fe(11)3A JEU 2 A 1 06 TP AT L A5 328
Tik. (20 EAMFFLEZEFRIA M. acetivorans A M. barkeri /EAMREME L, SRENT Fe(1l)
W FAHR 73 AL, 75— PR ML % b 5 T AR S Ntk [FIn, 456720
DRI 2H S5 AR RN R A [F) L e PR3 b R S EI S 7 IO W i RE TR SEIB E A Fe ()34 5o T8
FHE, VAR I H - ol o 1) 2 1 SRR . (3) BT R ANRI T 54k Fe(11)id iR
WA SR ERIA S R ) EES BE E T8 (WESEEEREE). o, P&k
EAEEBRE IR AEA CUyBh B e RO ok, seiihak Fe. C Zn &R LA
IR,
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