有机修饰 壞 土表面特性的研究*

. CEC 和比表面

孟昭福¹ 张一平² 郭仲义³

(1 西北农林科技大学理学院,陕西杨凌 712100)(2 西北农林科技大学资源环境学院,陕西杨凌 712100)(3 西安市环境监测站,西安 710054)

SURFACE CHARACTERISTICS OF ORGANIC MODIFIED SOIL I. CEC AND SPECIFIC SURFACE AREA

Meng Zhaofu¹ Zhang Yiping² Guo Zhongyi³

(1 College of Science, Northwest A &F University, Yangling, Shaanxi 712100, China)
(2 College of Resource and Environment, Northwest A &F University, Yangling, Shaanxi 712100, China)
(3 Xi 'an Environment Surveillance Station, Xi 'an 710054, China)

关键词 有机修饰土;表面特征;CEC;比表面;³/^姜
 中图分类号 S153 文献标识码 A

污染物在土壤中的行为与土壤的表面化学特性 密切相关,研究土壤的表面化学特性对于从微观领 域了解污染物行为及其变化规律,采取有效措施减 轻并消除土壤中污染物的危害,保护土壤环境和人 体健康具有重要意义。

为了增强土壤对有机污染物的吸附固定,国内 外开始研究应用阳离子型表面活性剂对黏土矿物或 土壤进行修饰,使土壤的表面性质由亲水性转变为 疏水性,增大对土壤中有机污染物的吸附能力^[1,2], 研究表明,利用阳离子型表面活性剂修饰黏土矿物 或土壤,可以显著增强土壤对水中有机污染物的吸 附固定能力^[3~7],但对于重金属离子却具有不同的 作用^[8~11]。

土壤胶体的比表面、离子交换能力是与土壤对 污染物吸持直接相关的土壤表面性质,对于它的测 定已经形成了完整系统的方法^[12]。目前关于土壤 或黏土矿物修饰后的比表面特性变化的研究并不多 见,仅有的结果也差异较大。有研究表明,用苯基磷 酸和苯基亚磷酸处理羟磷灰石,以 0.1、1 和 5mol L⁻¹的磷酸处理红壤表面,其比表面增大,且随处理 浓度的增大而增大^[13,14], Jaynes 等^[15]发现硅烷表面 上吸附短碳链的表面活性剂后具有很大的比表面; 但以壬基氯化铵修饰膨润土、海泡石和伊利石以从 水中吸附硼^[16]或百草枯^[17],修饰后黏粒矿物的比 表面均下降,同样柠檬酸处理的活性炭以及石油烯 在黏粒表面的吸附也均有类似的结果^[18,19]。有报 道表明^[20],石油烯吸附在不同的黏粒矿物上,会使 得矿物的表面电荷减小,凝聚性增加,CEC下降。造 成黏粒矿物或土壤修饰后比表面增大的主要原因在 于表面修饰使得矿物孔隙减小^[13],而比表面的减小 主要是由于小空隙体积的减少或者被吸附的有机物 造成了黏粒矿物之间的聚集的缘故^[19]。

目前对于土壤或黏粒矿物表面特性的研究虽 有报道,但系统研究表面活性剂修饰后土壤的比表 面、CEC等表面特性的变化尚未见到报道。本研究 主要以不同电荷性质、不同碳链长度的有机表面活 性剂对^操土耕层、黏化层土样进行表面修饰,系统 探讨其 CEC、比表面变化规律,从微观角度为有机 修饰土中有机、重金属污染物行为特性的研究提供 理论依据。

^{*}国家自然科学基金项目(40301021)和西北农林科技大学青年学术骨干支持计划资助 作者简介:孟昭福(1968~),男,博士,副教授,主要从事土壤环境化学与土壤修复方面的研究。E-mail: zfmeng1996 @263.net 收稿日期:2006 - 10 - 30;收到修改稿日期:2007 - 01 - 18

材料与方法 1

1.1 材料

供试土样采自西北农林科技大学西农校区北校 门外 200 m 处农田,为黄土母质的壤土,其中耕层采 样深度 0~10 cm.黏化层采样深度 1.1~1.3 m。两 个土样均风干,过1mm 尼龙筛,备用。供试土样基 本理化性质见表 1。

为了探讨具有不同电荷和不同碳链长度的土壤 表面修饰剂对土壤表面性质的影响 ,同时考虑表面 修饰剂应价廉易得,因此阳离子型的表面修饰剂采 用分子结构相似的长碳链的十六烷基三甲基溴化铵 (CTMAB, AR)和短碳链的四甲基胺(TMA, AR), 阴离 子型表面修饰剂采用长碳链的十二烷基磺酸钠 (SDS,AR)。三种表面修饰剂的基本性质见表 2。

表1 供试土样基本理化性质表1							
土壤	рН	黏粒(<0.01 mm) (g kg ⁻¹)	OM (g kg ⁻¹)	CEC (cmol kg ⁻¹)	CaCO ₃ (g kg ⁻¹)	土壤矿物组成	
- 塿 土耕层	8.66	452.2	11.2	20.60	75.5	蒙脱、伊利为主,含少量	
壤土黏化层	8.24	530.4	8.8	28.09	3.20	钠长石 ,方解石	

表 2 表面修饰剂基本性质							
表面修饰剂	分子式	电荷性质	20 水中溶解度(gL ⁻¹)	熔点()	$CMC(mol L^{-1})$		
十六烷基三甲基溴化铵	$CH_3(CH_2)_{15}(CH_3)_3N^+Br^-$	正电荷	13	248 ~ 250	9.2 ×10 ⁻⁴		
四甲基胺	$(CH_3)_4 N^+ Cl^-$	正电荷	600	420	-		
十二烷基磺酸钠	CH ₃ (CH ₂) ₁₁ SO ₃ ⁻ Na ⁺	负电荷	420	140	9.8 ×10 ⁻³		

不同类型修饰剂的加入量均按公式 $W = m \times$ CEC $\times M \times 10^{-5} \times R$ 计算。式中, W 为表面修饰剂 质量 g; m 为土样质量 g; CEC 为被修饰土样的阳离 子代换量, cmol kg^{-1} ; *M* 为修饰剂的摩尔质量, g mol⁻¹; R 为修饰比例。

1.2 土样修饰实验

土壤表面修饰采用湿法^[10]。称取一定质量的 修饰剂,加入去离子水中,加热至60,搅拌使其溶 解。在搅拌下,加入供试土样,水浴保持温度反应 3 h,真空抽滤,以去离子水洗涤 5 遍,60 烘干至恒 重,过1mm尼龙筛,备用。CTMAB + SDS 混合型修 饰土样的制备采用先加入 CTMAB 反应 3 h,再加入 SDS 反应 3 h 的制备方法。

供试土样壤土耕层、黏化层土样分别为1 kg.修 饰剂用量按土样 CEC 的 25 %、50 %、100 %、150 %、 200 %比例 CTMAB、50 %比例 TMA、50 %比例 SDS、 100 %比例 CTMAB + 20 %比例 SDS 进行修饰。以未 修饰原土为对照,每个处理设4个重复。

为叙述简便,以G表示耕层,N表示黏化层;未 修饰土样以 CK 表示, CTMAB、SDS、TMA、CTMAB+ SDS 修饰土样分别以 CB、DS、MA、CS 表示,同时在表 示修饰土样种类符号前面添加数字表示修饰比例。 土样符号构成如下:修饰比例 + 土壤层次 + 修饰剂

种类.如 50GCB。

1.3 分析测定

1.3.1 阳离子代换量(CEC)测定 取过 1mm 筛 的风干土样采用乙酸钠-火焰光度法测定。

1.3.2 比表面测定 取一定质量的钙饱和土样 采用乙二醇乙醚法测定^[21]。其中,钙饱和土样的制 备是将未修饰的壤土耕层、黏化层土样以及修饰后 的壞土耕层、黏化层土样以 0.5 mol L⁻¹ CaCl₂溶液饱 和 4 次,使之 Ca²⁺ 饱和,用去离子水抽滤洗涤至无 Q⁻,电渗析除去游离的离子,60 烘干至恒重,过 60目筛、备用。

2 结果与讨论

各供试土样阳离子代换量 CEC、比表面的测定 结果见表3。

2.1 表面修饰剂对土样阳离子代换量 CEC 的影响 2.1.1 修饰剂对土样 CEC 的影响 表3可见. 50%修饰比例下,不同修饰剂修饰同一种土样,其 CEC 均小于未修饰原土, 搏土耕层的变化顺序为 顺序为 NCK > 50NDS > 50NMA > 50NCB。与未修饰 原土比较,耕层各修饰土样 CEC 按上述顺序分别下

降了 15.19 %、18.40 %和 35.15 %,黏化层各土样分 别下降了 4.59 %、20.80 %和 36.95 %。

表3	供试土样	CEC、比表面的测定结果
ৰহ ১	供瓜工作	しし、山衣田的別た知木

	耕层				私化层			
修饰剂及比例	CEC	标准偏差	比表面	标准偏差	CEC	标准偏差	比表面	标准偏差
	(cmol kg ⁻¹)		$(m^2 g^{-1})$		(cmol kg ⁻¹)		$(m^2 g^{-1})$	
СК	20.60	0.39	43.91	4.26	28.09	0.28	70.68	2.78
25CB	15.14	0.98	69.66	0.13	18.98	0.17	96.95	3.28
50CB	13.36	0.42	80.73	0.77	17.71	0.34	108.78	0.71
100CB	10.70	0.08	82.27	0.91	16.91	0.96	110.90	5.85
150CB	8.48	0.50	79.52	4.26	12.75	0.23	101.78	0.88
200CB	8.61	0.26	58.54	1.72	12.24	0.14	98.03	1.40
120CS	10.01	0.26	_	_	13.55	0.28	_	—
50MA	17.47	0.23	52.74	0.27	22.23	0.56	73.45	1.85
50DS	16.81	0.70	48.58	4.51	26.80	0.28	39.50	2.57

不同碳链长度的阳离子型修饰剂在两个供试土 样中,TMA减小土样 CEC 的作用较 CTMAB 要小,说 明在相似的分子构型下,修饰剂疏水碳链长,其修饰 土样 CEC 的降低幅度大。这可能与短链修饰剂 (TMA)在土壤表面多呈孤立非水柱状分布,对土样 CEC 影响较小,而长碳链修饰剂(CTMAB)易通过疏 水键相互作用形成有机相聚合体对土样表面负电荷 交换点位造成掩盖作用有关^[2]。

对于带不同电荷的修饰剂,长碳链荷负电荷的 SDS 修饰剂减小 CEC 的比例要远远小于长碳链荷正 电荷的 CIMAB 修饰剂,这显然与壤土土样带负电有 关。两个土样中 SDS 修饰剂均减小了土样的 CEC, 说明吸附在土壤表面上的 SDS 的长疏水碳链所形 成的聚合体,也对土样表面的吸附交换点位具有一 定的掩盖作用。但与短碳链的 TMA 比较,在黏化层 土样中,SDS 仅减小原土 CEC 的 4.59%,而在耕层, SDS修饰剂减小原土 CEC 的比例则达到 15.19%, 这与黏化层土样黏粒含量较高,负电性较强相对应。 SDS 修饰剂对耕层 CEC 影响较 TMA 略大,显示在土 样负电性相对较低的情况下,土样对 SDS 的电性斥 力相对较小.SDS 的长疏水碳链聚合体对土样表面 的吸附交换点位的影响相对较大。上述结果同时说 明.与土壤带有同种电荷的表面修饰剂对于土样 CEC 的影响主要取决于土壤黏粒等影响土壤电荷的 土壤性质。

100 %CTMAB + 20 % SDS 混合修饰土的 CEC 值 与 100 %CTMAB 修饰土样比较,其值要略低一些,显 示长碳链修饰剂之间通过疏水键相互作用,对 CEC

掩盖作用有所增强。

图 1 不同比例 CTMAB 对修饰土样 CEC 相对下降值 *R*₁ 及 CEC 相对下降率 *R*₂的影响 (1. 耕层 *R*₁, 2. 黏化层 *R*₁, 3. 耕层 *R*₂, 4. 黏化层 *R*₂)

2.1.2 修饰剂比例对土样 CEC 的影响 表 3 可见,不同比例 CIMAB 修饰的两个土样的 CEC,从总体趋势上看均随修饰比例的增加而减小。

定义修饰土样 CEC 的相对下降值 R_1 为: R_1 = | CEC_m - CEC_u| / CEC_u,式中,CEC_m为修饰土样 CEC, CEC_u为未修饰原土 CEC,cmol kg⁻¹;定义 R_2 为 CEC 相对下降率, $R_2 = R_1/P_m$,式中, R_1 为相邻修饰 比例下 R_1 之差值, P_m 为对应的相邻修饰比例差。 R_2 值可用来表征修饰比例增加值对相对 CEC 下降 值 R_1 影响程度。不同比例 CIMAB 修饰土样的 R_1 、 R_2 结果见图 1。

图1 中 R₁曲线显示,在 25%的修饰比例下,

CEC 减小量相对较大,耕层、黏化层分别达到 27 %、 30%,超出了修饰剂 CTMAB 的添加比例。CTMAB 在低修饰比例下若完全以离子交换的形式修饰在土 壤表面上,其 CEC 应降低 25 % 左右,从以上结果看, 实际测得的 CEC 值的差异并不太大,略高一点可能 是十六烷基形成的有机相所导致的掩盖作用所致: 随着修饰比例增高至 50 %, CEC 下降相对量减小, 仅为 35 %、38 %,显著小于 CTMAB 添加比例,而且 随 CTMAB 添加比例增大而减小,但减小的比例均小 于 CTMAB 的添加比例,说明 CTMAB 在小于 50 %的 添加比例下,对 CEC 影响较大,而高添加比例对于 CEC影响相对减小,即使到 100 %~200 %添加比例 区间,土样的 CEC 也未减小至 0,依然保持着相当数 量的表面负电荷吸附点位。作者以前的研究^[10]也 证实了这一结果.以 CTMAB 修饰的境土对镉离子的 吸附能力减弱,但即使修饰比例达到100%,也并未 使修饰土完全丧失对镉离子的吸附能力。该结果同 时说明 CTMAB 对于土样表面的修饰并非单一电荷 引力形式,可能共存着多种修饰反应模式,而且反应 模式与修饰剂添加的比例相关^[22]。

图 1 同时可见,除 200 CCB 外,两个土样 R₂均呈 现相似的变化规律,当修饰比例小于 50 %时,R₂下 降较大,修饰比例大于 50 %后,R₂值下降明显变缓, R₂变化曲线呈现明显的两段直线型变化形式,快速 下降阶段和慢速下降阶段,两阶段的转折点两个土 样均在修饰比例 50 % 左右,表明该转折点前后, CTMAB 对供试土样的修饰可能具有不同的机理。 该结果也与 R₁的结论相互印证。

2.2 表面修饰剂对土样比表面的影响

2.2.1 修饰剂对土样比表面的影响 表3显示, 在 50%修饰比例下,耕层土样比表面的大小顺序为 CCK < 50 CDS < 50 CMA < 50 CCB,黏化层土样比表面 的大小顺序为 50 NDS < NCK < 50 NMA < 50 NCB,除 黏化层 50 NDS 土样外,其他修饰剂均使修饰土样的 比表面增加。

带正电荷的表面修饰剂在两个土样中均使供试 土样比表面增加,碳链长度越大,比表面增加的比例 就越大。表3显示TMA 仅使耕层、黏化层比表面分 别增加了20.11%、3.92%,TMA 没有长碳链的结构, 其在黏粒矿物表面上的吸附是孤立的,相互并不接 触,即使吸附在黏粒矿物的内表面上也不会造成晶 间的膨胀^[2];而长碳链的 CTMAB 分别使得比表面增 加了83.85%和53.90%,这与 CTMAB 吸附在膨胀黏 土矿物内表面造成的晶间膨胀有关;SDS 修饰对土 壤比表面的影响与土层性质有关,耕层修饰土样增加了 10.64%,而黏化层则减小 44.11%,SDS 修饰剂使耕层土样比表面略有增加,是由于 SDS 具有负电性,荷负电的¹/要土土样表面对其吸附较弱,因此其长碳链对于¹/要土的比表面贡献较小,但黏化层修饰土样比表面显著下降,比较两个土样的性质,这种差异可能与土样有机质、CaCO3和黏粒含量不同有关,但 其机理有待进一步研究。

2.2.2 修饰剂比例对土样比表面的影响 表3显 示,随修饰比例的增加,CTMAB修饰土样在0%~ 100%修饰比例区间呈现比表面增大的趋势,在0~ 50%修饰比例时比表面上升较快,而后随修饰比例 增大比表面增加缓慢。在100%修饰比例左右比表 面达到最大值,随后在100%~200%修饰比例区间 随修饰比例的增加比表面从最大值开始下降。

定义比表面相对变化率

 $R_3 = \frac{f(A_{m6+1} - A_u) - (A_{mi} - A_u) f(A_u)}{P_m} = \frac{(A_{m6+1} - A_{mi})/A_u}{P_m}$ 。 式中, A_m 为修饰土样比表面, $m^2 g^{-1}$,下角 i + 1、i 分 别代表相邻两级的修饰比例,i + 1 代表高一级的修饰 比例,i 代表相邻低一级的修饰比例; A_u 为未修饰土样 比表面, $m^2 g^{-1}$; P_m 为对应的相邻修饰比例差, $P_{i+1} - P_i$ 。 R_3 值可以用来表征修饰比例增加值对相 对比表面变化值的影响程度。从 R_3 数值上分析, $R_3 > 0$ 表明比表面随修饰比例增大呈增大趋势, $m R_3 = 0$,则表明达到比表面增大趋势与减小趋势的分界点。

图 2 不同比例 CIMAB 对土样相对比表面变化率 R₃的影响

图 2 为不同比例 CIMAB 修饰土样的 R₃结果。由 图 2 可见,在 R₃ > 0 范围内,两个土样的比表面相对变 化率 R₃随修饰比例的增加均呈现曲线下降趋势,表明 随修饰比例的增加,比表面的增加率减小。修饰比例 小于 50%时,曲线下降幅度较大,表明对比表面增加的 影响较大,当修饰比例大于 50 %时,曲线向 X 轴弯曲, 表明对比表面增加的影响减小。耕层、黏化层两条比 表面相对变化率曲线均在修饰比例 110 %处与 X 轴相 交,即 $R_3 = 0$,可见修饰比例 110 %是随修饰比例的增加 土壤比表面由增大趋势转变为减小趋势的分界点。该 结果和 Xu^[22]的结果相吻合,显然这一转折点与 CIMAB 在土样表面上以疏水键形式的结合直接相关,这是由 于疏水键形式在 110 %左右开始占据绝对优势,因此导 致土壤黏粒聚集,使得比表面开始下降。

耕层 200 %CTMAB 修饰土样其 R₃曲线点下降,表明在该修饰比例比表面相对下降量比较大,这一点也与耕层 200 % CTMAB 修饰土样 CBC 的特殊变化相对应。

以上分析同时表明,50%比例对于 CIMAB 修饰土 是比表面随修饰比例增大由增幅较大转变为增幅较小 的转折点,显然该修饰比例可能是 CIMAB 由在黏粒内 表面吸附转变为在外表面吸附的转折点,该转折点与 图 1中 CBC 的 *R*2值由快速下降到慢速下降的转折点 (50%)相对应。

3 结 论

不同修饰剂均可使土样的 CBC 减小,短碳链的 TMA 和阴离子型的 SDS 对供试土样 CBC 影响较小,而 长碳链的 CIMAB 则使土样 CBC 下降较多;对于比表 面,阳离子型表面修饰剂均使土样比表面增加,并随长 碳链的 CIMAB 的修饰比例增大,比表面呈现在 0~ 100%修饰比例区间上升,并在 110%修饰比例达到最大 值,随后在 100%~200%修饰比例区间从最大值开始下 降的变化趋势;阴离子表面修饰剂的影响与土样性质 有关。CIMAB 在小于 50%的添加比例下对 CBC、比表 面影响较大,而高添加比例则影响相对减小。

参考文献

- Boyd S A, Lee J F, Mortland M M. Attenuating organic contaminant mobility by soil modification. Nature, 1988, 333:345 ~ 347
- [2] 王晓蓉,吴顺年,李万山,等.有机黏土矿物对污染环境修复的 研究进展.环境化学,1997,16(1):1~13
- [3] Redding A Z, Burns S E. Organoclay sorption of benzene as a function of total organic carbon content. Journal of Colloid and Interface Science, 2002, 250(1):261 ~ 264
- [4] Wibulswas R, White DA, Rautiu R. Adsorption of phenolic compounds

from water by surfactant-modified pillared clays. Process Safety and Environmental Protection : Transactions of the Institution of Chemical Engineers , Part B , 1999 , 77 (2) :88 ~ 92

- [5] 陈宝梁,朱利中,林斌,等.阳离子表面活性剂增强固定土壤中 的苯酚和对硝基苯酚.土壤学报,2004,41(1):148~151
- [6] 孟昭福,张一平,李荣华. 有机修饰 美土对苯酚的吸附及其热力
 学特征. 环境科学学报,2005,25(10):1365~1372
- [7] Koh S M, Dixon J B. Preparation and application of organo-minerals as sorbents of phenol, benzene and toluene. Applied Clay Science, 2001, 18:111 ~ 122
- [8] Haggerty GM, Bowman R S. Sorption of chromate and other inorganic anions by organo-zeolite. Environ. Sci. Technol., 1994, 28:452~458
- [9] Krishna B S, Murty D S R, Jai Prakash B S. Surfactant-modified clay as adsorbent for chromate. Applied Clay Science, 2001, 20(1/2):65~71
- [10] 孟昭福, 张一平. 有机修饰土对镉离子的吸附及温度效应. 土壤 学报, 2005, 42(2):238~246
- [11] 孟昭福,张一平,龚宁. 有机修饰¹ 集土对 CO², 吸附特征的初步
 研究. 土壤学报, 2006, 43(1):104~110
- [12] 熊毅, 等编. 土壤胶体(第二册). 北京: 科学出版社, 1985
- [13] Hammari L E, Laghzizil A, Saoiabi A, et al. Chemical modification of porous calcium hydroxyapatite surfaces by grafting phenylphosphonic and phenylphosphite acids. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 2006, 289:84 ~ 88
- [14] Park S J , Seo D I , Nah C. Effect of acidic surface treatment of red mud on mechanical interfacial properties of epoxy/ red mud nanocomposites. Journal of Colloid and Interface Science, 2002, 251(1): 225 ~ 229
- [15] Jaynes W F, Boyd S A. Hydrophobicity of siloxane in smectites as revealed by aromatic hydrocarbon adsorption from water. Clays Clay Miner., 1991:428 ~ 436
- [16] Karahan S, Yurdakoç M, Seki Y, et al. Removal of boron from aqueous solution by clays and modified clays. Journal of Colloid and Interface Science, 2006, 293(1):36~42
- [17] Seki Y, Yurdakoç K. Paraquat adsorption onto clays and organoclays from aqueous solution. Journal of Colloid and Interface Science , 2005 , 287 (1) :1 ~ 5
- [18] Chen J P, Wu S, Chong K H. Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption. Carbon, 2003, 41(10):1 979 ~ 1 986
- [19] Pernyeszi T, Patzk ÓÁ, Berkesi O, et al. Asphaltene adsorption on clays and crude oil reservoir rocks. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 1998, 137:373 ~ 384
- [20] Jada A, Debih H, Khodja M. Montmorillonite surface properties modifications by asphaltenes adsorption. Journal of Petroleum Science and Engineering, 2006, 52:305 ~ 316
- [21] 马毅杰. 测定土壤比表面的乙二醇乙醚吸附法. 土壤, 1981,13(3):105~107
- [22] Xu S H, Boyd S A. Cation exchange chemistry of hexadecyltrimethylammonium in a subsoil containing vermiculite. Soil Sci. Soc. Am. J., 1994, 58: 1 382 ~1 391