ISSN 0564-3929

Acta Pedologica Sinica 土壤学报

and the second

Turang Xuebao

学 壤 报 +

(Turang Xuebao)

第52卷 第5期 2015年9月

次 E

综述与评论

基于文献计量分析的近30年国内外土壤科学发展过程解析 ……………… 宋长青 谭文峰(957) 土壤生态系统服务的概念、量化及其对城市化的响应…………… 吴绍华 虞燕娜 朱 江等(970) 研究论文 基于土壤系统分类的河南省土壤有机质时空变异…………………………… 李 玲 张少凯 吴克宁等(979) 青海民和官亭盆地喇家遗址古耕作土壤层微形态研究…………… 张玉柱 黄春长 庞奖励等(1002) 基于成像光谱技术预测氮素在土壤剖面中的垂直分布……………… 李 硕 汪善勤 史 舟(1014) 淮河流域地表干湿变化的时空分布特征……………………………………………… 曹永强 徐 丹 曹 阳(1031) pH和三种阴离子对紫色土亚硒酸盐吸附--解吸的影响 ……………………… 周鑫斌 于淑慧 谢德体 (1069) 土壤非交换性钾释放动力学特征及其生物有效性…………………………李 婷 王火焰 陈小琴等(1078) 生物质灰对红壤酸度的改良效果…………………………………………………………………………时仁勇 李九玉 徐仁扣等(1088) 小麦秸秆生物炭对高氯代苯的吸附过程与机制研究………… 李 洋 宋 洋 王 芳等(1096) 不同温度玉米秸秆生物炭对萘的吸附动力学特征与机理………… 张 默 贾明云 下永荣等(1106) 十溴联苯醚对秀丽隐杆线虫毒性研究……………………… 王贏利 陈建松 阳宇翔等(1116) 稻草和三叶草分解对微型土壤动物群落的影响……………… 王 慧 桂 娟 刘满强等(1124) 沿海区土壤线虫对海水入侵土壤盐渍化的响应……………… 王诚楠 张伟东 王雪峰等(1135) 土壤团聚体N₂O释放与反硝化微生物丰度和组成的关系 …………… 周汉昌 张文钊 刘 毅等(1144) 基于产量、氮效率和经济效益的春玉米控释氮肥掺混比例………… 王 寅 冯国忠 张天山等(1153) 问题讨论 中国土壤系统分类基层单元土族建设现状与命名上存在的问题…… 易 晨 马渝欣 杨金玲等(1166) 研究简报 咸水灌溉对沙漠防护林植物根系分布及风沙土演变的影响……… 李从娟 唐俊妍 高 培等(1180) 不同NaNO₃浓度下可变电荷土壤铜离子解吸率的分配及影响因素… 张政勤 罗文贱 陈 勇等(1188) **封面图片**:不同浓度十溴联苯醚对秀丽隐杆线虫的毒性(由王驘利提供)

DOI: 10.11766/trxb 201409030442

基于成像光谱技术预测氮素在土壤剖面中的垂直分布*

李 硕^{1,2} 汪善勤^{1†} 史 舟²

(1华中农业大学资源与环境学院,武汉 430070)(2浙江大学农业遥感与信息技术应用研究所,杭州 310058)

摘 要 可见一近红外(vis-NIR)高光谱成像技术应用于土壤科学是当前数字土壤研究的新 方向。本研究考察了该技术预测土壤剖面氮素垂直分布的可行性。深达1 m的土壤整段剖面(1 000 mm ×170 mm×65 mm)采自湖北崇阳县,成像光谱仪配备了25 μm狭缝,视场角13.1°的35 mm焦距镜头 和1 004×1 002像素的面阵CCD,拍摄得到剖面vis-NIR高光谱影像(400~1 000 nm共753个波段)。 对获取的影像先通过几何校正解决影像形变问题,再采用监督分类方法识别提取有效土壤像素,剔除 阴影裂缝等无效像素。最后利用室内土样vis-NIR反射光谱建立的土壤全氮校正模型,对3个土壤整段 剖面的高光谱影像数据进行全氮(TN)预测制图。结果表明,vis-NIR成像光谱技术对土壤整段剖面 TN含量预测效果达到甚至优于经标准制样处理后所建模型精度。但存在纵向局限性,其良好地还原了 浅层土壤氮素的分布规律,0~600 mm为较佳预测深度。

关键词 土壤近地传感;可见近红外;成像光谱;剖面;氮

中图分类号 TP79; S151.9 文献标识码 A

据联合国粮农组织(FAO)发布的2014年《世 界粮食不安全状况》报告统计,2012-2014年间 我国约有1.5亿人口面临食物不足^[1],这迫切需要 使粮食产量跟上人口的快速增长步伐。现有的农业 生产技术通常采取施用氮肥的手段来获得粮食增产 的目标。我国是全球氮肥的主要消费市场,至2000 年左右,氮肥的消耗量超过美国与欧盟之和;2007 年氮肥的消耗达3.26×10¹⁰ kg,与1981年相比增 长了191%^[2]。然而,只有1/2以下被作物吸收, 其余以气态(NH₃、NO、N₂O和N₂)或淋溶的形式 (NH₄⁺和NO₃N)从土壤中流失^[3-4]。这将对环境 造成负面影响,如生物多样性丧失^[5]、水体富营 养化^[6]、土壤酸化^[7]等。特别是NO₃N,是土壤 氮素转化、迁移过程中最活跃的氮素形态。当降雨 量和灌溉量超过田间饱和持水量时, NO₃N将随水 向下淋溶进入地下水,使地下水NO5N含量超过饮 用标准^[8]。土壤剖面中的NO₃N的积累和水分的垂 直运动是影响土壤NO3N浓度分布的主要因素^[9]。

此外,土壤的物理性质对淋溶也有一定的影响,其 随着孔隙增大而增强,土壤微粒对氮素吸附能力越 弱则淋溶作用越显著^[10]。由于不同深度的土壤对 水的贮存能力存在差异,进而对不同深度的土壤氮 素淋溶产生影响^[11]。有效把握中国农田土壤氮素 含量并合理施肥对于农业管理、环境管理和生态管 理至关重要。因此,快速掌握剖面中的氮素含量分 布,可为合理施肥等精准农业提供必要依据。

传统的土壤氮素实验室内化学测定相对准确, 但是费时、成本高且具有污染性,是当前测土配方 施肥中批量土壤样品处理面临的主要困难。而以可 见近红外(vis-NIR)光谱为代表的近地传感技术 为快速、低成本且无污染地监测土壤养分含量提供 了有力工具。目前国内外相关研究大都集中于利 用vis-NIR光纤光谱技术对0~20 cm耕层土壤的理 化属性进行预测^[12-15]。而对于剖面土样,传统的 光纤光谱技术只能采用离散的逐点测量和预测反 演方法,难以连续完整地获取剖面信息^[16-17]。成

^{*}国家自然科学基金项目(40801082, 41471179)、中国博士后基金面上项目(2014M561772)资助

[†]通讯作者, Email: sqwang@mail. hzau. edu. cn

作者简介: 李 硕(1983—), 男, 北京房山人, 博士后, 主要从事土壤高光谱定量遥感研究。E-mail: shuoguoguo@zju.edu.cn 收稿日期: 2014-09-03; 收到修改稿日期: 2015-05-01

像光谱学(Imaging Spectroscopy)是一种将点光 谱扩大至空间维度的新型技术,越来越被各学科学 者广泛关注^[18]。其融合了成像技术和光谱技术, 将视域中观测到的各种地物以高光谱影像立方体记 录下来,既能获得空间维的影像,还能获得光谱 维的信息。近年来成像光谱技术已被用于多个领 域^[19-22],但在土壤科学领域却鲜有报道。Stevens 等^[23]和Steffens等^[24]研究指出,采用高光谱成像 技术,可以实现土壤剖面属性反演的精细制图,为 土壤属性空间变异和物质运移研究、土壤分类及土 壤属性质量评价等提供丰富有效的图谱信息。

本研究以成像光谱仪所获取的点状土样和土壤 整段剖面vis-NIR高光谱影像为基础,提取图谱数 据中的土壤信息,反演原状土壤剖面的氮(TN) 含量并精细化制图,考察成像光谱技术用于快速预 测土壤剖面全氮含量垂直分布的准确性和有效性。

1 材料与方法

1.1 土样采集与制备

土壤整段剖面采集于湖北崇阳县,共采集3个 剖面样本,土壤类型为潮土(XL-1、XL-3)和水 稻土(XL-2)。按照土壤整段剖面采集的常规方 法和保存措施,剖面样本置于木盒中运输和保存。 木盒内径大小(长×宽×厚)为1 000 mm×170 mm ×65 mm。样本置于干燥通风处阴干,留待拍摄高 光谱影像。

此外,在每个剖面采集点,按照土层深度划 分0~100、100~200、200~400、400~600、 600~1 000 mm五层,每层取1个混合样作为光谱 建模和理化分析的土样,3个采样点共采集15个土 样。土样经风干、研磨并过100目筛,通过四分法 平均分成两份,分别用于土壤理化分析和高光谱影 像拍摄。

1.2 仪器设备

在暗室条件下以自行设计的三轴向土壤高光 谱成像实验台进行vis-NIR高光谱影像立方体数据 的获取^[25]。仪器为美国Headwall Photonics公司的 HS-VNIR N系列成像光谱仪,配备视场角为13.1° 的35 mm焦距镜头及25 μ m狭缝;其面阵型电荷 耦合器件(CCD)共1004×1002像素,波段范围 400~1000 nm,光谱采样间隔 0.8 nm,共计753个 波段;外置光源为150 w光纤式卤素灯。

1.3 土壤全氮测定

采用凯氏定氮法(GB/T 5009.5-2010)测得15 个土样的TN含量(表1)。含量按照由高至低排序 且三个一组,其中一个为验证集,其余两个为校正 集,最终将总样本以2:1进行分组。

表1 土壤全氮含量的统计特征

Fable 1	Statistics	of soil	ΤN	content	s

数据集	样本数	含量范围	均值	标准差	变异系数	峰度	偏度
Dataset	Number of samples	$Range\ (\ g\ kg^{1}\)$	$Mean~(~g~kg^{-1}~)$	$SD (gkg^{-1})$	CV (%)	Kurtosis	Skewness
校正集 Calibration dataset	10	0.221 ~ 1.859	1.005	0.633	63	1.46	0.26
验证集 Validation dataset	5	0.493 ~ 1.792	1.068	0.644	60	1.21	0.15
总体 Total dataset	15	0.221 ~ 1.859	1.022	0.613	60	1.41	0.23

1.4 光谱测定及预处理

供试土样装入直径56 mm深9 mm的铝制盛样 器中,用玻璃板将表面推平制成盒样。盒样及整段 剖面水平放置于拍摄平台上,保持拍摄面同一高 度。在光谱测定前分别采用遮盖镜头和采集标准参 考白板图像的方法获取黑、白影像以减弱仪器暗电 流和光源对数据的影响。拍摄时镜头保持垂直于 土样和整段剖面的表面,距离0.8 m,光源距样品 0.23 m。待仪器预热30 min后在暗室条件下以自带 软件Hyperspec-N进行数据采集。

以盒样中心为圆心逐一对各样品选取感兴趣 区(region of interest, ROI)来提取土壤光谱。15 个ROI的最大值(max)、平均值(mean)、最小 值(min)像素个数分别为4 078,3 861,3 647。 以各波段的平均值作为该土样的反射光谱。对所 有样本的光谱去除噪声较大的首端(图1),保留 470~1 000 nm波段数据用于后续研究。

1.5 几何校正及影像裁剪

成像光谱仪拍摄的图像存在几何变形,主要是 像素的实际边长不相等,其比例无法用扫描速度和 构想方程快速计算,因此采用数码相机拍摄有固定 格网背景的剖面数码照片,以此为参照对土壤剖面 高光谱影像进行校正和图像配准得到1 mm精度的 1:1影像。再对影像进行空间维的裁剪和光谱维 的波段去除,去掉背景、木质边框及剖面与边框间 的缝隙。最后得到的影像数据大小为160×980个 像素,每个像素包含664个光谱波段,波段范围为 470~1000 nm。

1.6 监督分类及无效值剔除

原状剖面阴干失水后出现结块、崩裂现象。结 合前期多种监督分类方法对比预实验的分析,最终 确定用最小距离法对剖面影像进行处理,以达到阴 影、裂缝等无效数据与土壤影像的区分(图2)。 经监督分类后,阴影、裂缝等无效数据与要保留的 土壤数据被划分开。然后将其各波段的反射率全部 归零,完成无效数据的"剔除"。

1.7 采样模板

为保证提取的剖面光谱与ROI的像素尺度一 致,设计一种条形(Strip) "采样模板"通过对 剖面进行条状采样来提取光谱曲线。由于无效数据 (0值)的空间存在,要保证模板大小符合设定值 (平均值)就需要适时扩大采样模板的大小。模板 初始大小为m×n(160×24),m由影像的列数决 定,n由"平均值/影像列数"而得。模板从影像顶端向下纵向移动,自行适应调整。在影像的底端将出现临界区,即模板像素个数不足又无法加入新的行,此时通过先前提供的最大值和最小值来判断临界区的取舍。于是,模板从影像顶端开始采样,在行方向上移动,至影像底端结束。此时的土壤剖面高光谱影像被采样模板分成q条。最终以每条样

1017

区所有像素的平均光谱作为该模板采样区的光谱 数据。

1.8 建模方法及评价参数

偏最小二乘回归(Partial Least Squares Regression, PLSR)是一种光谱建模及定量预测的 常用方法。该法的优势在于其集成了典型相关分 析、主成分分析和线性回归分析的优点,实现了数 据结构的简化,良好地解决了自变量间多重共线性 问题,特别适用于在变量间高度相关及变量数超过 样本数的情况^[26]。

本研究使用决定系数(coefficients of determination, R^2),预测均方根误差(root mean square error for prediction, RMSEP),预测偏差 比(ratio of prediction to deviation, RPD)作为 模型精度的评价指标。在土壤科学研究中通常认 为当RPD>2时,模型具有非常好的预测能力;当 1.4<RPD<2时,模型可以接受,且能对样品进行粗 略地定量估计;当RPD<1.4时,模型很差且认为其 不能对样品进行定量预测^[27]。

2 结果与讨论

2.1 图谱曲线

将盒样与剖面的光谱反射率曲线进行对比分 析(图3)。光谱曲线的变化在总体上具有一定的 起伏,随着波长增加反射率呈现逐渐增大趋势。于 蓝光波段开始陡增,但从绿光波段之后增长开始放 缓。特别在三阶倍频区域的900 nm处由于水分吸 收的缘故,曲线反射率在此范围明显下降。无论

注: ROI代表盒样, Strip代表剖面模板, max和min分别代表像 素的最大值和最小值 Note: ROI refers to case soil sample, Strip to profile panel, max and min to maximum and minimum values

of pixels respectively 图3 盒样和剖面光谱反射率曲线

Fig.3 Spectral reflectance curves of case soil samples and profiles

是盒样还是原状土,TN含量越高其反射率越低。 盒样反射率均高于对应的原状土样反射率(470~ 1000 nm),表明土样经研磨、过筛等标准制样处 理后,削弱了粒径、表面粗糙度等的影响;而原状 土复杂的表面状况导致其反射率较低。

2.2 图像处理结果

原始土壤剖面高光谱影像先后经几何校正和 影像裁剪处理后,再通过最小距离法分为两类(土 壤,阴影与裂缝)。分类结果清晰地勾勒出裂缝的 轮廓,且对阴影及周边土壤的区分非常明显(图 4)。用混淆矩阵(confusion matrix)进行评价,

http://pedologica.issas.ac.cn

总体精度为99.32%, kappa系数为0.98, 达到了优 异的分类效果。

2.3 模型预测结果

15个盒样的原始光谱先后经一阶微分变换和 Savizky-Golay 平滑(2阶7窗口)处理。通过PLSR 法基于10个校正集数据建立模型,以百叶窗法 (Venetian Blinds)进行交叉验证来避免过度拟合 并确定引入合适的潜变量(Latent Variable, LV) 数^[28]。以5个验证集数据代入建好的模型进行检 验(见表2)。本研究通过基于MATLAB的工具包 PLS_Toolbox 7.3完成以上处理。

表2 土壤全氮含量的PLSR模型预测精度

Table 2 Prediction precision of soil TN contents using PLSR model

445 mil		校正集		验证集		
快型	Cali	bration d	ataset	Validation dataset		
Model	LV	R^2	RMSEC	R^2	RMSEP	RPD
PLSR	3	0.86	0.225	0.81	0.336	1.92

由表2可知,校正集建模精度和验证集预测精 度均较高, *R*²分别达到了0.86和0.81。此外,预测 模型的RPD值为1.92,表明模型具有较好的预测能 力。因此,本研究将采用基于盒样建立的校正模 型,预测土壤整段剖面高光谱影像的TN含量。

2.4 剖面预测结果

模板提取的光谱曲线经PLSR校正模型预测, 得到剖面TN含量制图结果(图5)。图5较好地 展现了TN含量在三个剖面中分布的总体趋势,即 随着深度的增加,TN含量逐渐减少。此外,剖面 XL-1中的TN含量在600~1000 mm深度范围呈上 升趋势(图5a)。

将条状模板预测值与5个层的实测值进行对比 (图6),结果显示三个剖面在0~600 mm深度范 围的预测值与实测值趋势基本一致。但三个剖面 存在上层(0~200 mm)的预测值略低于实测值, 而底层(800~1 000 mm)的预测值则稍高于实测 值。特别是剖面XL-1在600~1 000 mm深度范围

图5 XL-1(a)、XL-2(b)、XL-3(c)条状采样TN含量预测结果 Fig.5 Prediction of TN content stripe sampled of XL-1(a), XL-2(b), and XL-3(c)

TN的含量开始明显增加,与实测值逐渐减小的态势相异。这是由于PLSR模型的拟合结果普遍存在高值低估和低值高估现象所致^[29-30]。

此外,水稻土XL-2的实测图在300~400 mm 处有一明显拐点,这可能是由于水稻土所特有的犁 底层所致;相应的XL-2的预测图在300 mm附近也 出现一拐点,两者在深度上的少许差异是由于预测 图的点更多(来自于模板采样的条带),而实测图 来自于5个不同深度的采样点所致。两个潮土XL-1 和XL-3,在600 mm之上的预测图总体趋势几乎一

http://pedologica.issas.ac.cn

Fig.6 Comparison between predicted and measured values in TN content in stripe-sampled XL-1 (a), XL-2 (b), and XL-3 (c)

致,均在200~300 mm区间有较XL-2相对平滑的 "凸起",但由于没有犁底层,两者在300~400 mm也没有类似于XL-2的明显拐点。综上,在 0~600 mm深度区间同为潮土的XL-1和XL-3分布 规律是相似的;而水稻土XL-2的分布规律由于犁 底层300~400 mm的存在使其分布规律不同于潮土 XL-1和XL-3,这也说明vis-NIR成像光谱技术良 好地还原了浅层土壤氮素分布规律。

2.5 结果检验与精度评价

为了检验土壤剖面高光谱影像预测TN含量结 果的精确度,根据实际土壤层次,将这三个剖面对 应五个层次深度的TN含量预测值进行平均,制图 结果如图7所示。

Fig.7 Prediction of TN content soil profiles of XL-1 (a), XL-2 (b), and XL-3 (c) by layers

按照0~100 mm、100~200 mm、200~400 mm、400~600 mm及600~1 000 mm深度对预测 得到的TN含量进行平均后,从图7可以明显看出,随着深度的增加TN含量逐渐降低,但剖面XL-1 例外,其变化趋势是0~400 mm深度逐渐减小, 400~600 mm开始逐渐增大,600~1 000 mm明显增 大。因此,本研究针对0~400 mm、0~600 mm、 0~1 000 mm三个深度范围,即前三层、前四层、 全部五层为区间,与三个剖面相应层的TN实测 值进行精度检验,从计量的角度分析实际差异 (表3)。

表3 土壤剖面全氮含量的总体预测精度

 Table 3
 Overall prediction precision of soil TN contents in the all soil profiles studied

深度 Depth(mm)	R^2	RMSEP	RPD					
0 ~ 400	0.83	0.273	1.83					
0 ~ 600	0.87	0.336	1.76					
0 ~ 1 000	0.56	0.443	1.41					

结果显示,三个剖面全部五层(0~1000 mm)的总体预测模型精度可以接受,能对样品进行粗略的定量估计,其中R²为0.56,RPD达到1.41;去掉第五层(600~1000 mm)后,模型总体预测效果明显好转,R²升至0.87,RPD达到1.76;去掉第四(400~600 mm)和第五层后,R²变化不大,模型预测误差减小,RPD增大至1.83,稍好于前者(0~600 mm),但差异不明显。表3结果同盒样预测精度相比(表2),某些指标甚至优于后者。由于剖面XL-1第五层深度(600~1000 mm)的预测偏差,降低了3个剖面在0~1000 mm的总体预测效果,使总体验证结果呈现出0~600 mm为较好的预测深度范围。

Krishnan等^[31]通过对土壤有机质的光谱定量 研究指出,随着含量的减少,光谱的定量能力趋于 弱化。由于土壤碳氮间的高度相关性,可能光谱技 术在纵向上存在一定的局限性,对于氮含量的光谱 定量研究是否存在检出限同样值得考虑。此外,建 模的点状样本是经敲碎、剔除侵入体、磨样和过筛 等标准制样处理后表面均匀的混合样;而完整土壤 剖面为表面复杂的原状样,良好地保留了这些特 征。研究表明,实验室内土样的制备处理可以消除 水分、颜色、质地、表面粗糙度等环境因素的影响,提高光谱对土壤属性的定量预测精度^[32]。而 剖面未经表面处理,此环境因素将对土壤产生复杂 的非线性关系,并最终影响TN的预测结果^[33]。

尽管本研究成功地实现了利用vis-NIR成像 光谱技术对土壤整段剖面TN含量的预测,Huang 等^[34]指出增加样本数量及其代表性是提高预测精 度的唯一条件。在今后的研究中,将在丰富原状剖 面样本数的基础上进一步分析成像光谱技术在纵向 上的定量预测能力,并建立一个更加严格统一的处 理方案,包括高光谱影像立方体的获取及预处理, 诊断层特征光谱响应,更稳健的模型,及不确定性 分析等。

3 结 论

本研究通过对土壤剖面影像进行几何校正、 空间维及光谱维裁剪、监督分类剔除无效值、采样 模板提取剖面vis-NIR反射率曲线等预处理,以10 个盒样建立的PLSR校正模型来预测土壤整段剖面 的TN含量分布并制图。通过剖面各层TN实测值对 预测结果进行检验,研究表明vis-NIR成像光谱技 术用于土壤TN含量预测是可行的,对于整段剖面 的TN含量预测可以达到甚至优于经标准制样处理 后所建模型的预测精度;同时该技术存在纵向局限 性,TN含量的最佳预测深度为0~600 mm。

参考文献

- [1] Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/publications/card/en/ c/56efd1a2-0f6e-4185-8005-62170e9b27bb/
- Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands. Science, 2010, 327 (5968): 1008-1010
- [3] Zhu Z L, Chen D L. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies. Nutrient Cycling in Agroecosystems, 2002, 63 (2/3): 117-127
- [4] Ju X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences, 2009, 106 (9): 3041-3046
- [5] Stevens C J, Dise N B, Mountford J O, et al. Impact of nitrogen deposition on the species richness of grasslands.

Science, 2004, 303 (5665) : 1876-1879

- [6] Aber J, McDowell W, Nadelhoffer K, et al. Nitrogen saturation in temperate forest ecosystems. BioScience, 1998, 48 (11): 921-934
- [7] Richter Jr D, Markewitz D. Understanding soil change: Soil sustainability over millennia, centuries, and decades. Cambridge: Cambridge University Press, 2001
- [8] Kevin W F, Kevin M O, Crum J R. The fate of nitrogen applied to a mature Kentucky bluegrass turf. Crop Science, 2006, 46: 209-215
- [9] 串丽敏,赵同科,安志装,等.土壤硝态氮淋溶及氮 素利用研究进展.中国农学通报,2010,26(11): 200-205. Chuan L M, Zhao T K, An Z Z, et al. Research advancement in nitrate leaching and nitrogen use in soils (In Chinese). Chinese Agricultural Science Bulletin, 2010, 26(11): 200-205
- [10] Ishii S, Ikeda S, Minamisawa K, et al. Nitrogen cycling in rice paddy environments: Past achievements and future challenges. Microbes and Environments, 2011, 26 (4): 282-292
- [11] 李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失.应用生态学报,2000,11(2):240-242.
 Li S Q, Li S X. Leaching loss of nitrate from semiarid area agroecosystem (In Chinese). Chinese Journal of Applied Ecology, 2000, 11(2):240-242
- [12] Shi T, Cui L, Wang J, et al. Comparison of multivariate methods for estimating soil total nitrogen with visible/near-infrared spectroscopy. Plant and Soil, 2013, 366 (1/2): 363-375
- [13] Viscarra Rossel R A, Walvoort D J J, McBratney A B, et al. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 2006, 131 (1): 59-75
- [14] 王乾龙,李硕,卢艳丽,等.基于大样本土壤光谱数据 库的氮含量反演.光学学报,2014,34(9):300— 306. Wang Q L, Li S, Lu Y L, et al. Nitrogen content inversion based on large sample soil spectral library (In Chinese). Acta Optica Sinica, 2014,34(9): 300—306
- [15] 陈颂超, 冯来磊, 李硕, 等. 基于局部加权回归的土壤 全氮含量可见一近红外光谱反演. 土壤学报, 2015, 52(2): 312—320. Chen S C, Feng L L, Li S, et al. Vis-NIR spectral inversion for prediction of soil total nitrogen content in laboratory based on locally weighted regression (In Chinese). Acta Pedologica Sinica, 2015, 52(2): 312—320
- [16] Fabrizzi K P, Moron A, Garcí a F O. Soil carbon and

nitrogen organic fractions in degraded vs. non-degraded Mollisols in Argentina. Soil Science Society of America Journal, 2003, 67 (6): 1831-1841

- [17] 徐彬彬. 土壤剖面的反射光谱研究. 土壤, 2000, 32(6): 281-287. Xu B B. Research of spectral reflectance on soil profile (In Chinese). Soils, 2000, 32(6): 281-287
- [18] Ben-Dor E, Taylor R G, Hill J, et al. Imaging spectrometry for soil applications. Advances in Agronomy, 2008, 97: 321-392
- [19] Lyon R C, Lester D S, Lewis E N, et al. Near-infrared spectral imaging for quality assurance of pharmaceutical products: Analysis of tablets to assess powder blend homogeneity. MedSci entry for aaps pharmscitech, 2002, 3 (3): 1-15
- [20] Farkas D L, Becker D. Applications of spectral imaging: Detection and analysis of human melanoma and its precursors. Pigment Cell Research, 2001, 14 (1): 2-8
- [21] 李颖,张立福,严薇,等.地面成像光谱数据的田间 杂草识别.遥感学报,2013,17(4):855—871.
 Li Y, Zhang L F, Yan W, et al. Weed identification using imaging spectrometer data (In Chinese). Journal of Remote Sensing, 2013, 17(4):855—871
- [22] 赵杰文,王开亮,欧阳琴,等.高光谱技术分析茶树叶片中叶绿素含量及分布.光谱学与光谱分析,2011,31(2):512-515. Zhao J W, Wang K L, Ouyang Q, et al. Measurement of chlorophyll content and distribution in tea plant's leaf using hyperspectral imaging technique (In Chinese). Spectroscopy and Spectral Analysis, 2011, 31(2):512-515
- [23] Stevens A, Udelhoven T, Denis A, et al. Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy. Geoderma, 2010, 158 (1): 32-45
- [24] Steffens M, Buddenbaum H. Laboratory imaging spectroscopy of a stagnic Luvisol profile—High resolution soil characterisation, classification and mapping of elemental concentrations. Geoderma, 2013, 195: 122—132
- [25] 李硕,汪善勤,张美琴.基于可见-近红外光谱比较 主成分回归,偏最小二乘回归和反向传播神经网络 对土壤氮的预测研究.光学学报,2012,32(8): 289—293.LiS, WangSQ, Zhang MQ. Comparison among principal component regression, partial least squares regression and back propagation neural network for prediction of soil nitrogen with visible-near infrared spectroscopy (In Chinese).Acta Optica Sinica, 2012,32(8): 289—293

- [26] Vasques G M, Grunwald S, Sickman J O. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma, 2008, 146 (1): 14-25
- [27] Chang C W, Laird D A. Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Science, 2002, 167 (2): 110-116
- [28] 李硕.基于可见近红外成像光谱技术土壤剖面氮的预测研究.武汉:华中农业大学,2013.LiS.
 Prediction of soil nitrogen along soil profile using Vis-NIR spectroscopy imaging technique (In Chinese).
 Wuhan: Huazhong Agricultural University, 2013
- Brown D J. Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed. Geoderma, 2007, 140
 (4): 444-453
- [30] Vasques G M, Grunwald S, Harris W G. Spectroscopic models of soil organic carbon in Florida, USA. Journal

of Environmental Quality, 2010, 39 (3): 923-934

- [31] Krishnan P, Alexander J D, Butler B J, et al. Reflectance technique for predicting soil organic matter. Soil Science Society of America Journal, 1980, 44 (6): 1282-1285
- [32] Li S, Shi Z, Chen S, et al. In situ measurements of organic carbon in soil profiles using vis-NIR spectroscopy on the Qinghai-Tibet Plateau. Environmental Science & Technology, 2015, 49 (8): 4980-4987
- [33] Kuang B, Mouazen A M. Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three European farms. European Journal of Soil Science, 2011, 62 (4): 629-636
- [34] Huang X, Senthilkumar S, Kravchenko A, et al. Total carbon mapping in glacial till soils using near-infrared spectroscopy, Landsat imagery and topographical information. Geoderma, 2007, 141 (1): 34-42

PREDICTION OF VERTICAL DISTRIBUTION OF SOIL NITROGEN CONTENT IN SOIL PROFILE USING SPECTRAL IMAGING TECHNIQUE

Li Shuo^{1, 2} Wang Shanqin^{1†} Shi Zhou²

(1 College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China) (2 Institute of Remote Sensing and Information Technology, Zhejiang University, Hangzhou 310058, China)

Abstract The study on soil profiles and the various soil horizons they consist of are of great significance to the studies on soil genesis and development, soil classification, and some other disciplines of soil science. Traditional soil information acquisition methods are both time-and labor-consuming, however, the proximal soil sensing technology can be used to provide soil information of various scales rapidly and periodically, and has been widely applied to researches such as soil resource survey, land quality evaluation, soil classification, soil mapping, etc. Traditional methods for measuring soil physical and chemical properties are complicated, time-consuming and costly, and can hardly meet the demands for rapid monitoring of changes in soil property. In recent years, the spectrometric technology has extensively been used to quantitatively analyze samples in a fast, simple and non-destructive way in various fields with results. The data acquired with using the imaging technology combined with the spectroscopic technology are high in both spatial resolution and spectral resolution, and contain very rich soil remote sensing information and hence can provide a solid foundation for quantitative monitoring and mapping of soils properties in the horizontal dimension. However, in the light of the researches done by scholars both at home and abroad, it appears that the study of soil science still lacks an imaging technique high in spatial and spectral resolution, specifically for measuring soil total nitrogen (TN) contents in entire soil profiles. At present, quantitative analyses of soil properties mostly use soil samples collected in the topsoil, $0 \sim 150$ mm or $0 \sim 200$ mm in depth; studies on soil point samples in the profile 0 ~ 1 000 mm in depth are rarely reported, and little has been found in literature on dot samples in

the 0 ~ 1 000 mm soil profile, let alone reports on mapping of vertical distribution of soil TN contents in entire

soil profiles. In view of this situation, this study is oriented to explore the feasibility of using the technology of vis-NIR imaging spectroscopy in instant prediction of vertical distribution of TN contents in soil profiles.

A total of 3 soil profiles (0~1 000 mm) were collected from Chongyang, Hubei Province, China. Vis-NIR hyperspectral images (753 spectral bands in 400 ~ 1 000 nm) of the profiles were taken with an imaging spectroscoper quipped with a 25 μ m slit, a 35mm focus lens 13.1° in angle of field and an area array CCD of 1 004 pixels \times 1 002 pixels. First, the digital photos with fixed scenical grid scale taken by a digital camera were put to undergo geometric correction with reference to the hyperspectral images of the profiles to solve the problem of image deformation caused by technological limitations of the spectrometer and the shooting platform, and then modified to 1mm in image precision. Through spatial and spectral dimensional clipping, pixels of the wooden frame and platform background were removed leaving only soil image data (160 pixels × 980 pixels) and valid spectral bands (470 ~ 1 000 nm). After geometric correction and clipping, the images were processed with a variety of supervised classification methods. Results show that the minimum distance method is the best at distinguishing invalid data (e.g., shadows and cracks) from soil data. A "sampling panel" method was proposed for strip-sampling with the panel in line with the specified, averaging the samples similarly to ROI and finally solving the problem of scale inconsistency between point samples and profile spectra. Furthermore, a PLSR calibration model was built up based on the spectral data of 10 spot soil samples, and used to predict TN contents in three complete soil profiles based on their spectral images. Results show that the technology of vis-NIR imaging spectroscopy could be used to inverse and map soil TN vertically in profiles with good prediction results. Verification with measured data demonstrates that R^2 and RPD was 0.56 and 1.41, respectively, for the 0 ~ 1 000 mm soil layer, which indicates that the prediction method reached the range of rough estimation. And for the $0 \sim 600$ mm soil layer, the effects were better with R^2 and RPD being 0.87 and 1.76, respectively, which indicates that the technology of vis-NIR imaging spectroscopy might have some limitation in the vertical direction, though it can well restore the soil TN distribution patterns in the topsoil layer, especially in the 0 ~ 600mm soil layer. The above findings demonstrate that this study has preliminarily established a set of procedures for soil TN inversion and mapping using the technology of vis-NIR spectroscopy, and the method is applicable to rough estimation of soil TN contents in whole soil profiles.

Key words Proximal soil sensing; Vis-NIR; Imaging spectroscopy; Profile; Nitrogen

(责任编辑: 檀满枝)

ACTA PEDOLOGICA SINICA Vol. 52 No. 5 Sep., 2015

CONTENTS

Reviews and Comments

The historical venation of soil science in the past 30 years—Based on the bibliometric analysis
Soil ecosystem services: Concept, quantification and response to urbanization
Wu Shaohua, Yu Yanna, Zhu Jiang, et al. (977)
Research Articles
Analysis on spatial-temporal variability of soil organic matter in Henan Province based on Soil Taxonomy
Relationship between illite crystallinity (IC) value and weathering degree of Ouaternary Red Clay in southern
Anhui Province, Southeast China Liu Lihong, Hu Xuefeng, Ye Wei, et al. (1000)
Micromorphology of ancient plow layer of paleosol in the Lajia Ruins in the Guanting Basin, Minhe County,
Qinghai Province
Prediction of vertical distribution of soil nitrogen content in soil profile using spectral imaging technique
Estimation of thickness of soil layer on typical karst hillslopes using a ground penetrating radar
Wang Sheng, Chen Hongsong, Fu Zhiyong, et al. (1030)
Spatio-temporal distribution of dry-wet alteration in surface soil layer of the Huaihe River Basin
Cao Yongqiang, Xu Dan, Cao Yang (1042)
Erosion on dunes of overburden and waste slag in Shenfu coalfield and prediction
Guo Mingming, Wang Wenlong, Li Jianming, et al. (1056)
Dynamics of soil water evaporation from soil mulched with sand-gravels in stripe
Effect of pH and three kinds of anions on selenium absorption and desorption in purple soil
Zhou Xinbin, Yu Shuhui, Xie Deti (1076)
Release kinetics and bioavailability of nonexchangeable potassium in soil
Li Ting, Wang Huoyan, Chen Xiaoqin, et al. (1086)
Effects of bio-ash ameliorating red soil in acidity
Sorption kinetics and mechanism of naphthalene on corn-stalk-derived biochar with different pyrolysis temperature
Toxicity of deca-brominated diphenyl ether to Caenorhabditis elegans
Wang Yingli, Chen Jiansong, Yang Yuxiang, et al. (1122)
Effects of clover and straw decomposition on soil microfaunal community
Wang Hui, Gui Juan, Liu Manqiang, et al. (1133)
Relationships of N ₂ O emission with abundance and composition of denitrifying microorganisms in soil aggregates
Zhou Hanchang, Zhang Wenzhao, Liu Yi, et al. (1151)
Optimizing blending ratio of controlled release N fertilizer for spring maize based on grain yield, N efficiency, and economic benefit Wang Yin, Feng Guozhong, Zhang Tianshan, et al. (1164)
Communications and Comments
Status quo and problems in setting-up and naming of basic taxon-Soil family in Chinese Soil Taxonomy
Research Notes
Effects of drought and rehydration on photosynthetic characteristics of artificial algal crusts
Wu Li, Yang Hong, Lan Shubin, et al. (1179)
Effect of irrigation with saline water on plant root distribution and evolution of aeolian sandy soil in shelterbelts
along desert highways Li Congjuan, Tang Junyan, Gao Pei, et al. (1186)
Distribution of Cu (11) desorption rate in variable charge soils relative to concentrations of NaNO ₃ and its affecting factors many the factors $\frac{1000}{1000}$ (1104)
Cover Picture: Toxicity of deca-brominated diphenyl ether (BDE-209) to <i>Caenorhabditis elegans</i>
(by Wang Yingli)

《土壤学报》编辑委员会

主 编:史学正

执行编 委:	(按姓氏争	(三)					
	丁维新	巨晓棠	王敬国	王朝辉	史舟	宇万太	朱永官
	李永涛	李芳柏	李保国	李航	吴金水	沈其荣	张玉龙
	张甘霖	张福锁	陈德明	邵明安	杨劲松	杨明义	杨林章
	林先贵	依艳丽	周东美	周健民	金继运	逄焕成	胡锋
	施卫明	骆永明	赵小敏	贾仲君	徐国华	徐明岗	徐建明
	崔中利	常志州	黄巧云	章明奎	蒋 新	彭新华	雷 梅
	窦 森	廖宗文	蔡祖聪	蔡崇法	潘根兴	魏朝富	
编辑部主任:	陈德明						
责任编辑:	汪枞生	卢萍	檀满枝				

土壤学 报

Turang Xuebao

(双月刊, 1948年创刊) 第52卷 第5期 2015年9月

编	辑	《土 壤 学 报》编 辑 委 员 会	Edited by	Editorial Board of Acta Pedologica Sinica			
		地址:南京市北京东路71号 邮政编码:210008		Add: 71 East Beijing Road, Nanjing 210008, China			
		电话:025-86881237		Tel: 025 - 86881237			
		E-mail:actapedo@ issas. ac. cn		E-mail:actapedo@ issas. ac. cn			
主	编	史 学 正	Editor-in-Chief	Shi Xuezheng			
主	管	中 国 科 学 院	Superintended by Chinese Academy of Sciences				
主	办	中 国 土 壤 学 会	Sponsored by	Soil Science Society of China			
承	办	中国科学院南京土壤研究所	Undertaken by	Institute of Soil Science,			
				Chinese Academy of Sciences			
出	版	科学出版社	Published by	Science Press			
		地址:北京东黄城根北街16号邮政编码:100717		Add: 16 Donghuangchenggen North Street, Beijing 100717.China			
印刷装	订	北京中科印刷有限公司	Printed by	Beijing Zhongke Printing Limited Company			
总 发	行	科学出版社	Distributed by	Science Press			
		地址:北京东黄城根北街16号邮政编码:100717		Add: 16 Donghuangchenggen North Street, Beijing 100717, China			
		电话:010-64017032		Tel: 010 – 64017032			
		E-mail:journal@ mail.sciencep.com		E-mail:journal@mail.sciencep.com			
国外发	行	中国国际图书贸易总公司	Foreign	China International Book Trading Corporation			
		地址:北京 399 信箱 邮政编码:100044	_	Add:P. O. Box 399, Beijing 100044, China			

国内统一刊号:CN 32-1119/P

国内邮发代号: 2-560 国外发行代号: BM45 定价: 60.00 元 国内外公开发行

ACTA PEDOLOGICA SINICA

(Bimonthly, Started in 1948) Vol. 52 No. 5 Sep., 2015

9 70564

ISSN 0564-3929