Erosion-controlling Effects of Revegetation on Slope of Refuse Dump in Mining Area Relative to Vegetation Pattern
Author:
Affiliation:

Clc Number:

Fund Project:

National Key Research and Development Program of China (No. 2016YFC0501604), Basic Science and Technology Project(2014FY21010) and the National Natural Science Foundation of China(Nos.40771127,41761062)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】 In order to study effects of revegetation varying in pattern controlling runoff and sediment yield on slopes of refuse dumps in opencast coal mining fields, a field experiment was conducted on the slope of a refuse dump in the Yongli Coal Mining Area, Inner Mongolia. 【Method】 Five plots different in vegetation pattern were selected on the slope that had been revegetated for four years for the experiment using in-site scouring method. The five plots included Plot C3H7 (Agropyron planted on the upper slope accounting for 30% in area plus Artemisia desertorum on the lower slope accounting for 70% in area), Plot C7H3 (Agropyron planted on the upper slope accounting for 70% in area plus Artemisia desertorum on the lower slope accounting for 30% in area), Plot QC (Agropyron planted on the whole slope), Plot CG (Agropyron mixed with Artemisia desertorum in plantation) and Plot BS (Bare slope) as control, all being 8×1 m in area and 38°in slope gradient. Water flowed down on the top of the slopes or plots at a gradually increasing rate (5-10-15-20 L•min-1). During the flow scouring events, runoff flow velocity was monitored with the dye tracing method. In the first 6 minutes of runoff, samples of runoff were collected once every minute, and afterwards once every 3 minutes for analysis of sediment content, using the oven-drying ied weighing method. 【Result】 (1) At the initial stage of the increase (0~9 min) in flow rate, runoff rate and erosion rate increased sharply, and follow-up-fluctuation decreased. When the flow increased, runoff rate on the slope increased stepwise with the duration of runoff prolonging. Compared to the initial flow at a rate (5 L•min-1), the flow increasing to 10, 15 and 20 L•min-1 made the difference in runoff rate between protected surface and unprotected surface narrower. Meanwhile,the variation of erosion rate with the variation of flow rate was lower in magnitude than that of the variation of runoff rate, and the erosion rate tended to decline in the late phase of the scouring test even when the flow rate was quite high; (2) In Plot C3H7, C7H3, QC and CG, runoff was reduced by 31.99%, 18.72%, 15.29% and 34.36% and sediment was by 81.28%, 87.29%, 84.80% and 58.73%. Plot CG (mixed Agropyron-Hippophae)” and C7H3 (70% Agropyron Hippophae – 30% Artemisia desertorum) was obviously the most effective pattern of vegetation for controlling runoff and sediment yield, respectively; (3) Agropyron Hippophae and Artemisia desertorum are different in root system, i.e. taperoot system and fibrous root system. The vegetation formed of or properly arranged with mixed plants different in root system has better soil and water conserving effects than the one formed of only a type of plant does; (4) In all the slopes, regardless of vegetation pattern, erosion rate and runoff rate formed an extremely significant power function and linear (C7H3) relationship. And (5) Vegetations of all patterns in this experiment had certain functions to resist scouring erosion caused by continuous heavy storms. 【Conclusion】 All the findings in this experiment may serve as scientific a basis for reasonable ecological restoration in the mining area.

    Reference
    Related
    Cited by
Get Citation

YANG Bo, WANG Wenlong, GUO Mingming, KANG Hongliang, LIU Chunchun, CHEN Zhuoxin, WANG Wenxin, ZHAO Man. Erosion-controlling Effects of Revegetation on Slope of Refuse Dump in Mining Area Relative to Vegetation Pattern[J]. Acta Pedologica Sinica,2019,56(6):1347-1358.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 26,2018
  • Revised:September 13,2018
  • Adopted:September 30,2018
  • Online: July 03,2019
  • Published: