Effects of Logging Residue on Composition of Soil Carbon and Activity of Related Enzymes in Soil of a Young Chinese Fir Plantation as Affected by Residue Handling Mode
Author:
Affiliation:

Clc Number:

Fund Project:

Supported by the National Key Research and Development Program of China (No. 2016YFD0600304) and the Program for New Century Excellent Talents in Fujian Province University (No. J1-1253)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】In this study, analysis was done of effects of logging residue on soil carbon composition and activity of related soil enzymes in different soil layers as affected by residue handling mode in the soil of a young Chinese fir plantation in the Castanopsis kawakamii Nature Reserve located in Sanming, Fujian, China.【Method】Logging residue was handled in the following ways, i.e., residue retained (RR), residue removed (R) and residue burnt (RB). Soil organic carbon was divided into 3 fractions: labile C I (LP I-C), labile C II (LP II-C) and recalcitrant C (RP-C). Acidolytic organic carbon and residue of acidolysis was separated using two-step sulfuric acid hydrolysis. Activities of β-1,4-glucosidase (βG) and cellobiohydrolase (CBH) were measured using a spectrophotometer at 410 nm with methylumbelliferone (MUB) as substrate, whereas activity of peroxidase (PER) was at 460 nm with L-dihydroxyphenylalanine (L-DOPA) as substrate.【Result】Results show: (1) RR significantly increased the content of soil organic carbon and those of its fractions. Treatment RR (24.74 g·kg-1) was significantly higher than Treatment R (13.43 g·kg-1) and Treatment RB (20.14 g·kg-1) in soil organic carbon content in the 0~10 cm soil layer. Treatment R (43.5%) was significantly higher than Treatment RR (32.6%) and Treatment RB (36.1%) in labile index of the soil organic carbon (ratio of the fraction of labile organic C to total organic C) (P<0.05). Treatment RR and Treatment RB (67.4% and 64%) was 1.2 and 1.1 times higher than Treatment R (56.52%), respectively, in soil organic carbon recalcitrance index. Obviously, Treatment RR and Treatment RB were quite similar in this aspect (P>0.05); (2) Treatment RR and Treatment RB did not differ much in soil organic carbon content in the 10~20 cm soil layer(P>0.05), but significantly higher than R (10.8 g·kg-1). Treatment RR was the lowest in labile index and the highest in recalcitrance index. Labile index was higher in the 10~20 cm soil layer than in the 0~10 cm soil layer, while recalcitrant index was just contrary; (3) Treatment RR was higher than Treatment RB and R in activities of βG, CBH and PER. In Treatment RR, βG and CBH activities were significantly higher in the 0~10 cm soil layer than in the 10~20 cm soil layer, while in Treatment RB CBH activity was significantly higher in the 0~10 cm soil layer than in the 10~20 cm layer (P<0.05). In contrast, no significant differences were found in activity of the three enzymes between the two soil layers in Treatment R (P>0.05). (4) Correlation analysis shows that βG and CBH activities were significantly and positively related to contents of LP I-C and LP II-C, while PER activity was significantly related to content of RP-C.【Conclusion】Organic carbon content in the surface soil was significantly higher in Treatment RR than in Treatments R and RB. Contribution of RP-C to soil organic carbon was higher in Treatment RR than in Treatments R and RB, and soil enzyme activity was higher in Treatment RR than in the others. Therefore, it can be concluded that Treatment RR has some positive effects on soil organic carbon in content and stability, and hence improve soil nutrient availability and soil quality as well.

    Reference
    Related
    Cited by
Get Citation

WU Chuanjing, GUO Jianfen, XU Enlan, JIA Shuxian, WU Dongmei. Effects of Logging Residue on Composition of Soil Carbon and Activity of Related Enzymes in Soil of a Young Chinese Fir Plantation as Affected by Residue Handling Mode[J]. Acta Pedologica Sinica,2019,56(6):1504-1513.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 05,2018
  • Revised:January 25,2019
  • Adopted:February 19,2019
  • Online: July 03,2019
  • Published: