检索项 检索词
  土壤学报  2018, Vol. 55 Issue (5): 1243-1253  DOI: 10.11766/trxb201802270062
0

引用本文  

赵政, 陈巍, 王欢, 等. 木霉微生物肥与减量化肥配施对番茄产量、品质及土壤肥力的影响. 土壤学报, 2018, 55(5): 1243-1253.
ZHAO Zheng, CHEN Wei, WANG Huan, et al. Effects of Bio-manure Combined with Chemical Fertilizer Reduced in Application Rate on Soil Fertility and Yield and Quality of Tomato. Acta Pedologica Sinica, 2018, 55(5): 1243-1253.

基金项目

国家重点研发计划项目(2016YFD0800605)资助

通讯作者Corresponding author

陈巍, E-mail: chenwei@njau.edu.cn

作者简介

赵政(1993—),男,山东济宁人,硕士研究生,主要从事功能微生物肥料研究。E-mail: 1145551721@qq.com
木霉微生物肥与减量化肥配施对番茄产量、品质及土壤肥力的影响
赵政 , 陈巍 , 王欢 , 夏可心 , 高仁维 , 姜斯琪 , 庞冠 , 蔡枫     
江苏省固体有机废弃物资源化高技术研究重点实验室,江苏省有机固体废弃物资源化协同创新中心,南京农业大学,南京 210095
摘要:研究利用植物促生菌提高肥料效率以部分替代化肥。采用大田试验结合连续盆栽试验的方法,以100%化肥(CF)为对照,设置如下处理:75%化肥配施普通有机肥(OF)或木霉微生物肥(BF)或木霉孢子悬液(SS)。结果表明,75%化肥配施以一定量(每株50 g)木霉微生物肥可维持田间番茄稳产,与100%化肥处理产量相当; 而与普通有机肥或木霉孢子悬液灌根配施则会显著降低番茄产量,连续栽种4季后,产量下降35%以上。此外,BF处理可显著提高番茄果实的品质,与CF相比,总可溶性糖和维生素C含量分别提高35%~54%和2%~23%,而硝酸盐积累量下降32%~46%。究其原因,BF处理中木霉功能菌的有效定殖促进了番茄根际细菌、真菌、放线菌的增殖,土壤养分的有效性显著提高,表现为根际微生物数量与多项土壤肥力指标呈显著相关关系。综上,木霉微生物肥与减量化肥配施,可有效保证番茄稳产,提高番茄品质,长期施用还可提高土壤微生物数量、改善土壤肥力。
关键词木霉微生物肥    减量化肥    番茄产量    果实品质    土壤养分    土壤微生物区系    

化肥的施用是集约化农业生产不可或缺的部分。然而,长期大量施用化肥会导致诸如土壤肥力下降、养分失衡、作物减产和品质降低等一系列问题[1],且其中大量的化肥未发挥出应有的肥效,以不同形式散失于大气或固定于土壤中[2-3]。另一方面,过量化肥的施用,也是现今食品安全问题的源头之一。例如,一些叶菜类农产品的高硝酸盐积累问题被证明与盲目施用化肥有关[4]。因此,目前,缓解农业—生态矛盾行之有效的方法之一是对养分进行综合管理,如利用一些具有特定功能的生物菌肥提高化肥的利用效率,以部分替代化肥肥效,从而降低化肥的使用量[5]。近年来,以植物促生菌(Plant growth-promoting microbe,PGPM)制成的微生物肥料由于其具有活化养分[6]、促进作物生长[7]、防治土传病害[8-9]、环境友好等特性,而在养分综合管理措施中被广泛使用[1, 10]。众多植物促生菌中,木霉菌的促生作用和生防功效已被大量研究证实,其作用机制多而复杂,可有效促进番茄、黄瓜、小麦、辣椒等多种作物的生长[11-13]

木霉NJAU 4742菌株是由本实验室筛选并成功实现商品化应用的农用促生菌/生防菌[7, 14],其主要的促生机制包括分泌类植物激素丁烯羟酸内酯(Harzianolide)以刺激作物根系伸长[13]和活化土壤中的难溶养分磷、铁等元素[15]。虽然,有关木霉菌促生作用及其机制的研究已取得一定进展,但相关研究主要集中于其对作物产量的贡献,有关木霉菌对作物品质的影响研究较少,且结论不一:Molla等[10]发现施用木霉微生物肥可显著提升番茄果实的总可溶性固形物、糖分、维生素C及其他品质指标; 而Nzanza等[16]则认为木霉菌对番茄维生素C的影响不显著。此外,蔬菜中硝酸盐的含量与人体健康息息相关,其含量受肥料种类、施肥方式与施肥时间的显著影响[17]。因此,开展有关木霉菌及其微生物肥料产品对经济作物产量和品质影响的研究意义重大。

近年来,微生物有机肥因结合了功能微生物和有机肥两大特性而受到重视,国内外关于微生物有机肥影响土壤性状和作物生长的研究也逐渐深入[1, 9, 10, 14],但这一领域仍有大量工作需要开展,相关作用机制尚未完全明析; 且多数研究仅停留于1~2季的当季肥效,涉及微生物有机肥部分替代化肥长期施用的报道较少[1],其长期肥效值得深入的跟踪研究。本研究拟通过连续盆栽的方式,跟踪分析木霉微生物有机肥长期施用对连作番茄产量、品质及土壤肥力的影响,并结合田间试验探讨木霉微生物有机肥部分替代化肥的可行性,为农业可持续发展提供理论依据和技术支持。

1 材料与方法 1.1 供试材料

供试番茄品种为“苏红2003”(Lycopersicon esculentum cv. Suhong 2003),由上海市长征良种实验场选育。供试有机肥料由氨基酸有机肥和猪粪堆肥按1:1的比例混合而成,称为普通有机肥。供试菌种为木霉NJAU 4742菌株(Trichoderma guizhouense NJAU 4742),由江苏省固体有机废弃物资源化高技术研究重点实验室提供,并用于与普通有机肥进行二次发酵生产木霉微生物有机肥,其木霉有效活菌数达106 cfu·g-1以上。木霉微生物有机肥的发酵工艺及普通有机肥和木霉微生物有机肥的理化性质参见文献[1]。供试化肥为雅冉苗乐复合肥(15-15-15)和硝酸钙肥,由挪威雅冉公司生产。

1.2 田间试验设计

田间试验选在江苏省南京市麒麟镇蔬菜种植基地(118°57′E,32°03′N)分两季进行。试验设计3个处理:(1)CF,100%化肥处理(600 kg·hm-2复合肥+300 kg·hm-2硝酸钙肥); (2)BF,木霉微生物肥(1 800 kg·hm-2)+75%的化肥(含450 kg·hm-2复合肥+225 kg·hm-2硝酸钙肥); (3)OF,普通有机肥(1 800 kg·hm-2)+75%的化肥(含450 kg·hm-2复合肥+225 kg·hm-2硝酸钙肥)。其中,复合肥、普通有机肥及微生物有机肥以条施的形式作基肥,硝酸钙肥分3次追施。小区面积9.6 m2(1.6 m×6.0 m),各小区栽种番茄苗60株。每个处理设置5个重复,共计15个小区,随机区组排列。供试田块有机质含量27.6 g·kg-1,pH 6.1,铵态氮、硝态氮、有效磷、速效钾含量分别为21.9 mg·kg-1、22.7 mg·kg-1、131.3 mg·kg-1、218.7 mg·kg-1

1.3 盆栽试验设计

盆栽分4季于江苏宜兴国家有机类肥料工程技术研究中心温室内重复进行,每季盆栽生育期长100 d。试验设4个处理:(1)CF,100%化肥处理(每盆5.33 g复合肥+2.67 g硝酸钙肥); (2)BF,木霉微生物肥(每株50 g)+75%的化肥(每盆4 g复合肥+2 g硝酸钙肥); (3)OF,普通有机肥(每株50 g)+75%的化肥(每盆4 g复合肥+2 g硝酸钙肥); (4)SS,木霉孢子悬液灌根处理(106 cfu·g-1土)+75%的化肥(每盆4 g复合肥+2 g硝酸钙肥)。其中,复合肥、普通有机肥及微生物有机肥与盆栽土混匀后作基肥,硝酸钙肥于移苗30 d后一次追施。盆钵直径35 cm,每盆装土10 kg,栽种番茄2株。每个处理设置6个重复(盆),每季重复施肥,常规管理。供试土壤为淋溶土,有机质含量19.2 g·kg-1,pH7.3,铵态氮、硝态氮、有效磷、速效钾含量分别为29.3 mg·kg-1、0.8 mg·kg-1、99.2 mg·kg-1、150.5 mg·kg-1

1.4 产量统计与品质测定

待100 d生育期满,分3次采摘并统计各小区番茄果实产量,并随机选取3~5个番茄作品质分析测定。番茄维生素C和硝酸盐含量采用高效液相色谱(HPLC)法(Agilent 1200,美国)测定,方法参照顾小龙等[1]的研究; 总可溶性糖的测定采用比色法,具体参见文献[18]。

1.5 样品收集与测定方法

根际土壤样品均采自番茄盆栽试验,采集方法如下[19]:将番茄植株整株小心取出,去除大部分土壤,将仍附于根系的土壤抖落,收集于自封袋中,即为当季番茄根际土,每个处理随机取样3份。土壤样品分别采用稀释涂布法测定根际可培养微生物数量和木霉菌数量[1, 20],其中,木霉菌选择性培养基配制方法如下:每升含MgSO4•7H2O 0.2 g,K2HPO4 0.9 g,NH4NO3 1 g,KCl 0.15 g,葡萄糖3 g,1/300孟加拉红10 mL,氯霉素0.25 g,链霉素0.05 g,五氯硝基苯0.15 g,曲拉通1 mL,霜霉威1.2 mL,琼脂20 g。土壤铵态氮、硝态氮采用流动分析仪(BRAN+LUEBBE Auto Analyzer3,德国)测定[21],有效磷、速效钾测定方法参照文献[1]。土壤全碳(有机质)、全氮采用元素分析仪(Vario EL elemental analyzer,德国)测定,全磷和全钾的含量采用等离子体原子发射光谱仪(Agilent 710 ICP-OES,美国)测定[22]

1.6 数据处理

试验数据采用SPSS 13.0进行统计,并进行单因素方差分析(One-way ANOVA,P < 0.05)和皮尔森(Pearson)相关性分析。图表由Excel 2013和SigmaPlot 11.0制作而成。

2 结果 2.1 不同施肥处理对番茄产量的影响

表 1可见,田间试验结果验证了研究假设,即与全量化肥处理(CF)相比,减量化肥与木霉微生物有机肥配施(BF处理)对番茄产量无显著影响,而减量化肥与普通有机肥配施(OF)则显著降低番茄产量(15%)。在盆栽试验中,虽然第一季产量处理间差异不显著,但随着种植季数的增加,处理间产量差异显著。盆栽试验中,与CF处理相比,OF和SS处理使得番茄产量分别下降6%~38%和9%~35%,且差异在第2季后开始显著(P < 0.05)。

表 1 不同施肥处理下番茄产量 Table 1 Effect of different treatments on tomato yield in pot experiments and field trials /(kg·plot-1)
2.2 不同施肥处理对番茄果实品质的影响

图 1可知,盆栽条件下,不同施肥处理对番茄果实品质影响显著。BF、OF、SS处理与CF相比,减少25%化肥的施入,可使果实中硝酸盐的积累量下降32%~46%。减量施用化肥的处理BF、OF及SS,相对于CF处理,果实中总可溶性糖含量增加35%~54%;且上述两个指标的结果在田间试验条件下得到进一步验证。处理间维生素C的含量在田间试验条件下差异不显著,但在盆栽试验条件下,添加有机质的BF和OF处理中维生素C的含量显著高于CF和SS处理。

图 1 不同施肥处理下的番茄品质 Fig. 1 Effects of different treatments on tomato fruit quality in the open field and in the greenhouse 注:左图为田间试验结果,右图为盆栽试验结果Note: The left graph describes results of the field trial and the right one that of the pot experiment
2.3 不同施肥处理对土壤养分的影响

图 2可知,在盆栽试验中,BF和OF处理的硝态氮、有效磷和速效钾含量显著高于CF和SS处理,且多数情况下,BF处理的有效磷和速效钾含量高于OF处理; 而CF处理的铵态氮含量显著高于其他3个处理(P < 0.05)。BF和OF处理中有机质和全氮含量显著高于未添加有机质的CF和SS处理,且随着种植季数的增加,两组处理(BF、OF与CF、SS)间的差异更加显著(P < 0.05)。此外,各处理土壤全磷和全钾含量均随着种植季数的增加呈逐渐增加的趋势,但处理间差异不显著(P > 0.05)。

图 2 不同施肥处理下的土壤养分 Fig. 2 Effects of different treatments on soil nutrients relative to cropping season in the greenhouse
2.4 不同施肥处理对根际可培养微生物数量的影响

图 3土壤细菌、真菌及放线菌数量变化可知,不同施肥处理对土壤微生物影响不同,且差异显著。BF和OF处理中细菌数量显著高于CF和SS处理,而SS和BF处理中真菌的数量在第3季后显著高于CF和OF处理,但在第4季后差异又不显著。BF处理中放线菌的数量显著高于其他3处理(P < 0.05)。此外,由图 3可知,BF处理根际木霉菌的定殖数量显著高于SS处理,且显著高于不施木霉菌的处理CF和OF。

图 3 不同施肥处理下土壤可培养微生物数量 Fig. 3 Effects of different treatments on population of culturable soil microbes relative to cropping season in the greenhouse
2.5 土壤养分、微生物数量与番茄产量和品质间的相关性

由皮尔森相关性分析结果(表 2)可知,本试验中,根际细菌数量与土壤全氮、有机质、硝态氮、有效磷及速效钾含量呈极显著正相关关系,而与土壤铵态氮含量呈极显著负相关关系(P < 0.01);根际真菌数量也与铵态氮含量显著负相关,而与土壤全氮和有机磷含量正相关(P < 0.05);根际放线菌数量则与土壤全磷、有机质及硝态氮含量显著正相关(P < 0.05)。其中,土壤各理化指标中,土壤全氮、硝态氮、有效磷及速效钾含量均与有机质含量正相关,且番茄果实的维生素C和总可溶性糖含量也与有机质含量正相关,而硝酸盐含量则与之负相关。此外,果实中总可溶性糖含量除与有机质显著相关外,还与土壤中全氮、全磷、全钾、有效磷、速效钾及微生物数量等多项指标呈显著正相关关系。在本实验条件下,未发现番茄产量与所测指标间存在显著相关关系。

表 2 土壤养分、微生物数量与番茄产量和品质指标间的相关性 Table 2 Pearson correlations of soil nutrients and population of soil microbe with yield and quality of tomato
3 讨论

本研究表明,在现有施肥基础上,减施25%的化肥并配施以一定量木霉菌制成的微生物有机肥可维持田间番茄稳产(表 1),与100%化肥处理产量相当,盆栽试验结果也支持这一论点; 而减施化肥配以普通有机肥或木霉菌体则不能有效维持番茄产量,连续施用4季后,产量均下降35%以上。这与先前在黄瓜种植施肥体系中的结果类似[1],也与Adesemoye等[23]在番茄种植上的结果相似,即减施25%化肥并配施由PGPM制成的微生物肥可有效保证番茄植株生长和稳产。

一般情况下,生长期末的养分有效性反映了当季土壤养分的供应能力。在盆栽试验中,高硝态氮、有效磷和速效钾含量更多见于BF处理的土壤中,而低有效养分含量则更多见于SS处理中,OF处理的养分状态处于两者之间,说明SS处理的养分投入不足造成减产,而BF处理中引入的有机质和促生菌木霉可有效缓解化肥减施产生的问题。虽然OF处理的土壤肥力与BF处理的相当甚至高于BF处理(如土壤全磷和全钾),但在养分有效性方面OF不及BF处理(图 2)。究其原因有二:其一,BF中的木霉菌具有溶解一些难溶和微溶养分的能力,如定殖在黄瓜根际的棘孢木霉(T. asperellum)可提高根际磷和铁的有效性[12];供试菌株NJAU 4742可通过分泌植酸酶、嗜铁素、金属还原酶等活化土壤中的磷、铁、锌等养分供植物吸收[15];其二,本研究中,钾有效性的提高非木霉菌NJAU 4742直接作用而成,因为已知NJAU 4742菌株在实验室条件下不具有活化含钾矿物的能力。因此,除木霉菌直接的养分活化作用外,还有其他因素引起了BF处理的土壤养分有效性提高,推测这是由于BF处理中木霉菌的引入引起了土壤土著微生物区系的变化造成的。

土壤微生物是土壤中最活跃和最易变化的部分,也是土壤有效养分的活性中心[24]。如图 3所示,4个处理中,BF处理的总细菌、总真菌和总放线菌数量均显著高于其他3个处理,而CF处理的各微生物数量均较低,这可能与化肥在连作体系中会导致微生物区系多样性和丰富度下降的原因有关[9, 25]。因此,结合前人研究成果[13, 23, 26],上述结果可有如下解释:已知木霉菌NJAU 4742具有产生类植物激素丁烯羟酸内酯(Harzianolide)的功能,其可有效促进根系伸长和根尖分化[13],而更大的根系生物量产生更丰富的根系分泌物,吸引更多的微生物在根际定殖(图 3),致使根际微生物活动更加活跃而养分得到活化(图 2)。上述论点,在皮尔森相关性分析中得到论证,即土壤养分有效性与土壤微生物丰度显著相关(表 2),如:土壤铵态氮、硝态氮、有效磷、速效钾的含量与细菌数量均显著相关,土壤铵态氮和有效磷与真菌相关,硝态氮与放线菌数量相关; 且表中木霉菌的数量与土壤总真菌和放线菌的数量密切相关,相关系数分别为0.660和0.568(P < 0.05)。说明微生物肥中的功能菌木霉可通过改变植物根系生长,间接或直接引起土壤微生物区系的变化,以调节根际养分有效性,使之向更有利于作物生长的方向发展,并最终反映在作物产量上。类似地,有研究[27]报道,微生物肥在不同土壤和种植体系中,可替代23%~52%的化肥施用量,而不致使作物减产,这被证明与PGPM具有活化土壤养分和调节根际微生物区系的能力有关。

我国化肥平均用量达460 kg·hm-2,而目前化肥的利用率仅30%~35%[4, 24]。大量的化肥施用后未被作物吸收,造成土壤总体养分过剩而养分利用率偏低等问题。但同时,农户并未停止增加化肥施用量,而为追求高产更加盲目地投入化肥,使得施肥成为影响蔬菜中硝酸盐积累最严重的原因之一[1, 28]。本研究中,在田间和盆栽试验条件下,减施25%化肥的BF、OF及SS处理番茄果实中硝酸盐含量均显著低于100%化肥处理的CF,且随着施用次数的增加硝酸盐积累差异越明显(图 1)。而且,BF和OF处理的番茄果实中维生素C和可溶性糖的含量较CF分别高2%~23%和35%~54%,说明施用一定量的有机物料可有效提高果实品质。皮尔森相关性分析结果(表 2)进一步证实了上述论点,因为,本研究中果实维生素C的含量与土壤有机质呈显著正相关关系(r=0.525),而硝酸盐含量则与之呈显著负相关关系(r=-0.543)。Oliveria等[29]的研究认为,在有机种植体系中,番茄植株由于在有效性相对较低的养分环境中生长,生长速度相对较慢,有利于其可溶性固形物如糖分、维生素C及酚酸类等物质的积累; 而在非有机种植体系中,高硝酸盐积累常与低维生素C含量相伴[30],与本试验结果一致。因此,减量化肥与微生物有机肥配施,通过向土壤中输入养分、有机物和功能微生物,可有效活化土壤中的养分和增加微生物群落多样性,提高养分利用效率,降低化肥用量,应作为重要的农业生产措施推广实施。

4 结论

减施部分化肥而配施以功能菌(如木霉菌)制成的微生物有机肥,不仅能保证番茄稳产,还能显著提升番茄果实品质,说明微生物肥料中的功能菌可显著活化土壤养分,改变土壤微生物结构,从而直接或间接地调节根际养分的有效性和供应能力,改善土壤肥力状况。

参考文献
[1]
顾小龙, 陈巍, 蔡枫, 等. 配施木霉微生物肥对连作黄瓜的影响. 土壤学报, 2016, 53(5): 1296-1305.
Gu X L, Chen W, Cai F, et al. Effect of Trichoderma biofertilizer on continuous cropping cucumber cultivation with reduced rates of chemical fertilizer application (In Chinese). Acta Pedologica Sinica, 2016, 53(5): 1296-1305. (0)
[2]
Simpson R J, Oberson A, Culvenor R A, et al. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems . Plant and Soil, 2011, 349(1): 89-120. (0)
[3]
da Costa P B, Beneduzi A, de Souza R, et al. The effects of different fertilization conditions on bacterial plant growth promoting traits:Guidelines for directed bacterial prospection and testing . Plant and Soil, 2013, 368(1/2): 267-280. (0)
[4]
黄立华.施肥对大白菜产量和品质的影响及硝酸盐累积的研究.长春: 吉林农业大学, 2004
Huang L H. Effect of fertilization on the yield and qualities of Chinese cabbage and study of nitrate accumulation(In Chinese). Changchun: Jilin Agricultural University, 2004 (0)
[5]
Adesemoye A O, Kloepper J W. Plant-microbes interactions in enhanced fertilizer-use efficiency . Applied Microbiology and Biotechnology, 2009, 85(1): 1-12. DOI:10.1007/s00253-009-2196-0 (0)
[6]
乔策策, 王甜甜, 王若斐, 等. 高效溶磷菌的筛选及其促生效应研究. 南京农业大学学报, 2017, 40(4): 664-670.
Qiao C C, Wang T T, Wang R F, et al. Screening phosphate solubilizing bacterial strains from maize rhizosphere and research on their plant growth promotion effect (In Chinese). Journal of Nanjing Agricultural University, 2017, 40(4): 664-670. (0)
[7]
Cai F, Chen W, Wei Z, et al. Colonization of Trichoderma harzianum strain SQR-T037 on tomato roots and its relationship to plant growth, nutrient availability and soil microflora . Plant and Soil, 2015, 388(1/2): 337-350. (0)
[8]
丁传雨, 乔焕英, 沈其荣, 等. 生物有机肥对茄子青枯病的防治及其机理探讨. 中国农业科学, 2012, 45(2): 239-245.
Ding C Y, Qiao H Y, Shen Q R, et al. Control effect and action mechanism research of bio-organic fertilizer on eggplant bacterial wilt (In Chinese). Scientia Agricultura Sinica, 2012, 45(2): 239-245. DOI:10.3864/j.issn.0578-1752.2012.02.005 (0)
[9]
付琳, 阮云泽, 沈宗专, 等. 生物有机肥对连作香蕉根际土壤可培养细菌区系的影响. 南京农业大学学报, 2012, 35(6): 82-88.
Fu L, Ruan Y Z, Shen Z Z, et al. Effects of bio-organic fertilizer on the community structure of culturable bacteria in the rhizosphere soil of a continuous-cropping banana filed (In Chinese). Journal of Nanjing Agricultural University, 2012, 35(6): 82-88. (0)
[10]
Molla A H, Haque M M, Haque M A, et al. Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato(Lycopersicon esculentum Mill.)and minimizes NPK fertilizer use . Agricultural Research, 2012, 1(3): 265-272. DOI:10.1007/s40003-012-0025-7 (0)
[11]
杨春林, 席亚东, 刘波微, 等. 哈茨木霉T-h-30对几种蔬菜的促生作用及病害防治初探. 西南农业学报, 2008, 21(6): 1603-1607.
Yang C L, Xi Y D, Liu B W, et al. Primary study on growth-promoting and biological control effects of Trichoderma harzianum T-h-30 on vegetables (In Chinese). Southwest China Journal of Agricultural Sciences, 2008, 21(6): 1603-1607. DOI:10.3969/j.issn.1001-4829.2008.06.026 (0)
[12]
Yedidia I, Srivastva A K, Kapulnik Y, et al. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants . Plant and Soil, 2001, 235(2): 235-242. DOI:10.1023/A:1011990013955 (0)
[13]
Cai F, Yu G, Wang P, et al. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum . Plant Physiology and Biochemistry, 2013, 73(6): 106-113. (0)
[14]
Huang X, Chen L, Ran W, et al. Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism . Applied Microbiology and Biotechnology, 2011, 91(3): 741-755. DOI:10.1007/s00253-011-3259-6 (0)
[15]
Li R X, Cai F, Pang G, et al. Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth . PLoS One, 2015, 10(6): e0130081. DOI:10.1371/journal.pone.0130081 (0)
[16]
Nzanza B, Marais D, Soundy P. Yield and nutrient content of tomato(Solanum lycopersicum L.)as influenced by Trichoderma harzianum and Glomus mosseae inoculation . Scientia Horticulturae, 2012, 144(3): 55-59. (0)
[17]
Simion V, Câmpeanu G H, Vasile G, et al. Nitrate and nitrite accumulation in tomatoes and derived products . Romanian Biotechnological Letters, 2008, 13(4): 3785-3790. (0)
[18]
Allen S E. Chemical analysis of ecological materials. Oxford: Blackwell, 1974 (0)
[19]
Hervás A, Landa B, Datnoff L E. Effects of commercial and indigenous microorganisms on Fusarium wilt development in chickpea . Biological Control, 1998, 13(3): 166-176. DOI:10.1006/bcon.1998.0659 (0)
[20]
Atkins S D, Clark I M, Sosnowska D, et al. Detection and quantification of Plectosphaerella cucumerina, a potential biological control agent of potato cyst nematodes, by using conventional PCR, real-time PCR, selective media, and baiting . Applied and Environmental Microbiology, 2003, 69(8): 4788-4793. DOI:10.1128/AEM.69.8.4788-4793.2003 (0)
[21]
Raigon M D, Garcia M P, Maquieira A, et al. Determination of available nitrogen(nitic and ammoniacal)in soils by flow-injection analysis . Analysis, 1992, 20(8): 483-487. (0)
[22]
Shen W, Lin X, Gao N, et al. Land use intensification affects soil microbial populations, functional diversity and related suppressiveness of cucumber Fusarium wilt in China's Yangtze River Delta . Plant and Soil, 2008, 306(1/2): 117-127. (0)
[23]
Adesemoye A O, Torbert H A, Kloepper J W. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers . Microbial Ecology, 2009, 58(4): 921-929. DOI:10.1007/s00248-009-9531-y (0)
[24]
赵军, 李勇, 冉炜, 等. 有机肥替代部分化肥对稻麦轮作系统产量及土壤微生物区系的影响. 南京农业大学学报, 2016, 39(4): 594-602.
Zhao J, Li Y, Ran W, et al. Effects of organic manure partial substitution for chemical fertilizer on crop yield and soil microbiome in a rice-wheat cropping system (In Chinese). Journal of Nanjing Agricultural University, 2016, 39(4): 594-602. (0)
[25]
张瑞福, 沈其荣. 抑病型土壤的微生物区系特征及调控. 南京农业大学学报, 2012, 35(5): 125-132.
Zhang R F, Shen Q R. Characterization of the microbial flora and management to induce the disease suppressive soil (In Chinese). Journal of Nanjing Agricultural University, 2012, 35(5): 125-132. (0)
[26]
Huang L F, Song L X, Xia X J, et al. Plant-soil feedbacks and soil sickness:From mechanisms to application in agriculture . Journal of Chemical Ecology, 2013, 39(2): 232-242. DOI:10.1007/s10886-013-0244-9 (0)
[27]
Rose M T, Phuong T L, Nhan D K, et al. Up to 52% N fertilizer replaced by biofertilizer in lowland rice via farmer participatory research . Agronomy for Sustainable Development, 2014, 34(4): 857-868. DOI:10.1007/s13593-014-0210-0 (0)
[28]
李瑞霞, 陈巍, 蔡枫, 等. 贵州木霉NJAU4742生物有机肥对番茄种植的影响. 南京农业大学学报, 2017, 40(3): 464-472.
Li R X, Chen W, Cai F, et al. Effects of Trichoderma-enriched biofertilizer on tomato plant growth and fruit quality (In Chinese). Journal of Nanjing Agricultural University, 2017, 40(3): 464-472. (0)
[29]
Oliveira A B, Moura C F H, Gomes-Filho E, et al. The impact of organic farming on quality of tomatoes is associated to increased oxidative stress during fruit development . PLoS One, 2013, 8(2): e56354. DOI:10.1371/journal.pone.0056354 (0)
[30]
康亚龙, 景峰, 孙文庆, 等. 加工番茄连作对土壤理化性状及微生物量的影响. 土壤学报, 2016, 53(2): 533-542.
Kang Y L, Jing F, Sun W Q, et al. Effects of continuous cropping of processing tomato on physical-chemical properties of and microbial biomass in the soil (In Chinese). Acta Pedologica Sinica, 2016, 53(2): 533-542. (0)
Effects of Bio-manure Combined with Chemical Fertilizer Reduced in Application Rate on Soil Fertility and Yield and Quality of Tomato
ZHAO Zheng , CHEN Wei , WANG Huan , XIA Kexin , GAO Renwei , JIANG Siqi , PANG Guan , CAI Feng     
Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
Abstract: 【Objective】 The use of plant growth-promoting microbes to improve plant nutrition and hence reduce the rate of chemical fertilizer is becoming a popular strategy for sustainable agriculture.【Method】 In this work, a field-pot experiment, designed to have four treatments, i.e. CF (control, 100% of chemical fertilizer at a conventional rate), Treatment OF (Chemical fertilizer, 75% of the conventional application rate plus organic manure, 50 g·plant-1), Treatment BF (Chemical fertilizer, 75% of the conventional application rate plus Trichoderma-enriched bio-manure), and Treatment SS (Chemical fertilizer, 75% of the conventional application rate plus Trichoderma spore suspension), was conducted on the crop of tomato.【Result】 Results of the field experiment demonstrated that Treatment BF was almost the same in yield as CF, while Treatment OF and Treatment SS was significantly lower than CF. The field experiment and the pot experiment displayed the same trend. In the pot experiment of four successive cropping of tomato, Treatment OF and Treatment SS decreased by 6%~38% and 9%~35%, respectively, in tomato yield as compared with CF. Besides, the treatments significantly affected quality of the tomato fruit (P < 0.05), by reducing NO3- accumulation by 32%~46% in the fruit under greenhouse, while Treatments BF and OF increased the content of Vitamin C and the content of total soluble sugar in the fruit by 2%~23% and 35%~54%, respectively. The field experiment also showed that Treatments BF and OF increased the content of total soluble sugar in the fruit by approximately 40% while decreasing NO3- accumulation by 42%~57%. In the pot experiment, Treatments BF and OF were significantly higher than CF and Treatment SS in content of available P and K (P < 0.05), while CK was always the highest in content of ammonia-N among the 4 treatments throughout the 4 growing seasons. The soil nitrate-N gradually increased with the cropping going on in all the treatments, particularly Treatments BF and OF, which were significantly higher than CF. Moreover, Treatment BF was much higher than the other two and CF in population of soil microbes and in most cases, it sustained relatively big populations of bacteria, fungi and actinomycetes. Pearson correlation analysis shows that soil nutrients were closely related to population of soil microbes, and that the population of Trichoderma in the soil was positively and significantly related to that of soil fungi and actinomycetes, which may be attributed to the effect of Trichoderma, once colonized in Treatment BF, stimulating propagation of bacteria, fungi and actinomycetes in the rhizosphere of tomato and hence enhancing availability of soil nutrients. The population of soil microbes in the rhizosphere of the crop was also found positively and significantly related to numerous soil fertility indices.【Conclusion】 To sum up, all the findings in the experiment suggests that the application of chemical fertilizer, 75% of the conventional application rate, plus Trichoderma-enriched bio-manure can effectively guarantee a stable yield of tomato higher in quality, and in the long run, increase the population of soil microbes and improve soil fertility.
Key words: Trichoderma-enriched bio-organic manure    Chemical fertilizer of a reduced rate    Tomato yield    Fruit quality    Soil nutrient    Soil microflora