检索项 检索词
  土壤学报  2021, Vol. 58 Issue (1): 259-268  DOI: 10.11766/trxb201911040281
0

引用本文  

程思远, 李欢, 梅慧玲, 等. 接种蚯蚓与添加有机物料对茶园土壤结构的影响. 土壤学报, 2021, 58(1): 259-268.
CHENG Siyuan, LI Huan, MEI Huiling, et al. Effects of Earthworms and Organic Materials on Soil Structure in Tea Plantation. Acta Pedologica Sinica, 2021, 58(1): 259-268.

基金项目

国家自然科学基金项目(31800590)、现代农业产业技术体系建设专项资金(CARS-19)和江苏高校优势学科建设工程资助项目资助

通讯作者Corresponding author

黎星辉, E-mail:lxh@njau.edu.cn

作者简介

程思远(1993-), 男, 江西上饶人, 硕士研究生, 主要从事茶树栽培与育种研究。E-mail:1584827029@qq.com
接种蚯蚓与添加有机物料对茶园土壤结构的影响
程思远1 , 李欢2 , 梅慧玲3 , 王炫清3 , 刘馨秋1 , 陈暄1 , 马青平1 , 黎星辉1     
1. 南京农业大学茶叶科学研究所, 南京 210095;
2. 江苏省农业科学院休闲农业研究所, 南京 210095;
3. 南京农业大学国家有机类肥料工程技术研究中心, 南京 210095
摘要:蚯蚓通过取食、排泄、分泌黏液、挖掘洞穴等活动,可显著改善土壤结构,提高土壤肥力。为探究蚯蚓与有机物料不同配施方式对茶园土壤肥力的调控效果与机理,设计5个处理组:不施肥(CK),不施肥+蚯蚓(BE),菜籽饼+蚯蚓(CE),茶树修剪物+蚯蚓(JE),生物质炭+蚯蚓(TE),分别进行室内模拟实验。结果显示,与不施肥(CK)相比,接种蚯蚓(BE)处理使土壤的总碳含量呈升高趋势;添加有机物料(CE、JE、TE)三个处理的土壤的全碳、全氮含量、有机质含量均高于BE组,其中TE处理最高。单独接种蚯蚓处理可提高土壤总有机质含量,接种蚯蚓配施有机物料对提高土壤肥力有明显作用,其中茶生物质炭与蚯蚓共同作用效果最好。经过3个月的培养,5个处理中土壤pH均呈降低趋势,其中BE组pH降低最大(6.81到5.82)。在采用同步辐射红外显微成像技术(SR-FTIR)对土壤微团聚体中矿物-有机复合体进行表征后,结果显示土壤团聚体中多糖、蛋白质、脂肪和黏土矿物均呈高度异质性分布,CE和JE组中黏土矿物与大分子有机物具有较高的分散性;黏土矿物与多糖的分布模式较为相似,而黏土矿物与蛋白质类物质、脂肪的分布模式有较大差异,且这种分布模式不受蚯蚓与有机物料互作的影响。各处理土壤团聚体的黏土矿物和有机官能团的相关性决定系数R2由小到大均依次为:黏土矿物-蛋白质、黏土矿物-多糖、黏土矿物-脂肪,表明黏土矿物与大分子有机物的亲和性有差异,且不受蚯蚓与有机物料互作的影响。
关键词蚯蚓    有机物料    矿物-有机复合体    同步辐射红外显微成像    
Effects of Earthworms and Organic Materials on Soil Structure in Tea Plantation
CHENG Siyuan1 , LI Huan2 , MEI Huiling3 , WANG Xuanqing3 , LIU Xinqiu1 , CHEN Xuan1 , MA Qingping1 , LI Xinghui1     
1. Tea Research Institute, Nanjing Agricultural University, Nanjing 210095, China;
2. Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, China;
3. National Agricultural Fertilizer Engineering Technology Research Center, Nanjing Agricultural University, Nanjing 210095, China
Abstract: 【Objective】 Earthworms in the soil may help improve soil structure and fertility significantly through activities, like feeding, excreting, mucus secreting, excavating, etc. To explore the effects of earthworms as affected by application of organic materials of different kinds on the soil of a tea plantation, a pot experiment, designed to have five treatments, i.e.(ⅰ)no fertilizer input (CK), (ⅱ) earthworms only (BE), (ⅲ) rapeseed cake plus earthworms (CE), (ⅳ) tea tree pruning plus earthworms (JE), and (v) biochar plus earthworms (TE), was conducted with tea trees planted in each of the pots (30-cm in diameter and 35-cm in height).【Method】 Three months after the start of the experiment, soil samples were collected from each of the pots for analysis, after being air dried. Soil pH was measured using a pH meter; concentrations of soil organic carbon (SOC) and total nitrogen (TN) were quantified with a CN analyzer (Vario EL, Elementar GmbH); mineral-organic complex in soil microaggregates were characterized with the synchrotron radiation infrared micro-imaging method; intact particles (100~500 mm), varying in shape, were screened out with a 2-mm-sieve, frozen at -20℃, and then prepared with a cryomicrotome (Cyrotome E, Thermo Shandon Limited, UK) into thin sections (2 μm in thickness), which were eventually transferred into infrared-reflecting MirrIR Low-E microscope Slides (Kevley Technologies, Ohio, USA). Then distribution of SOCs of various forms and clay minerals (OH) was determined with the aid of Synchrotron radiation-based Fourier-transform infrared spectromicroscopy.【Result】 Results show that Treatment BE was higher than CK in content of soil total carbon in, but lower than in Treatment CE, JE and TE in content of total carbon, total nitrogen and organic matter; and Treatment TE group was the highest. Earthworm inoculation alone (Treatment CE) increased total carbon and organic matter content in the soil, and addition of organic materials (Treatment JE and TE) enhanced the effect, and addition of tea biochar (Treatment TE) had the best effect. All the treatments showed a decreasing trend in soil pH, and the trend was especially significant in Treatment BE (from 6.81 to 5.82). Furthermore, the synchrotron radiation microzone infrared spectra demonstrated that polysaccharides, proteins, fats and clay minerals in soil aggregates were highly heterogeneous. Clay minerals and macromolecular organics in Treatment CE and JE were highly dispersed. Minerals and polysaccharides were quite similar while clay minerals, protein and fat were quite different in distribution, and their distributions were had nothing to do with any interactions between earthworms and organic materials. Correlation analysis between clay minerals and organic functional groups shows that the correlation coefficients of clay minerals and organic functional groups in the five fractions of soil aggregates followed an increasing trends:clay minerals-protein < clay minerals-polysaccharide < clay minerals-fat, which indicates that clay minerals varied in affinity with macromolecular organics and their relationships were not affected by any interactions between earthworms and organic materials.【Conclusion】 In summary, soil organic amendments initialize a positive feedback loop by increasing SOC, which promotes interactions between minerals and organic components in the soil, and thereby may possibly serve as a soil management tool for enhancing carbon storage in the soil.
Key words: Earthworm    Organic materials    Mineral-organic complex    Synchrotron radiation infrared micro-imaging    

茶树(Camellia sinensis(L.)O. Kuntze)是重要的农业经济作物,我国茶叶产量和种植面积均为世界第一[1]。有“生态系统工程师”之名的蚯蚓,其作为大型土壤动物,能通过破碎、取食、消化、分泌、排泄(蚯蚓粪)、掘穴等一系列生命活动改善土壤理化性质、促进有机质积累、调节土壤中碳氮磷循环、促进物质循环和能量代谢,利用肠道内的活性酶降解土壤有机物[2-4]。蚯蚓活动促进黏砂粒黏结为团聚体,显著促进土壤微团聚体的形成,将土壤中有机残体与矿物混合,增加团聚体有机碳含量,对提高土壤肥力有重要作用[5]。然而,目前对蚯蚓风化土壤矿物和矿物固持有机碳的机理还不清楚。土壤团聚体的物理保护和矿物的化学保护是影响土壤有机碳稳定的重要因素,但目前通常是将土壤团聚体和矿物-有机复合体隔离开来研究。

同步辐射红外显微成像技术(SR-FTIR)具有快速、直接、精准且光谱宽(10~10 000 cm-1)、亮度高、发散度小以及具备时间结构等优良特性,可原位检测土壤团聚体中矿物和有机官能团,分析微米级局域样品[6-8],能够从生物样品红外光谱中识别振动的分子成分[9]。本文采用SR-FTIR显微光谱技术研究土壤团聚体中矿物-有机复合体的红外成像规律和官能团特征,相比于传统的红外光谱技术,使用SR-FTIR技术可以使衍射限制在几毫米,它具有超声高分辨率,能提供一个准确的信号,为试验结果提供了更高的精准度[10]

不同有机物料的添加可提升土壤有机质含量。菜籽饼富含高蛋白和氨基酸;茶树修剪物富含多种矿质营养及特殊的生化物质;生物质炭含有60%以上的碳,具有较强的热稳定性和抗分解性[11],是较好的土壤改良剂。近年来,将农林废弃物(如秸秆和果树枝条)制成生物质炭还田被认为是土壤增肥的重要途径[12]。我国每年茶树修剪物数量可观,本研究充分利用茶树修剪物等资源,将茶树修剪物制成的生物质炭,对比茶园常用有机肥菜籽饼肥进行试验,意图探索茶树修剪物对土壤培肥的意义。为探究蚯蚓与不同有机物料互作对土壤结构的影响,本文结合蚯蚓活动和不同有机物料展开培养实验,通过测定土壤理化性质和同步辐射红外光谱(SR-FTIR),原位表征土壤团聚体成像特征和有机碳的存在形式,揭示蚯蚓与有机物料对茶园土壤结构的影响,为茶园土壤管理提供一些科学依据。

1 材料与方法 1.1 供试材料

供试土壤:盆栽土壤取自江苏省南京市玄武区中山陵茶园(118°50' E,32°03' N),2018年茶园年平均气温为15.3 ℃,该茶园为温带季风气候,年均降雨量1 106.5 mm。根据茶园的地形与种植面积情况采用S散点法确定5个取样点,采集茶树行间0~20 cm表层土壤,将各个采样点的土壤混匀,摊开剔除杂物后,自然风干,过2 mm筛待用。

茶树修剪物:茶树修剪物采集于南京雅润茶叶有限公司高淳茶叶基地,将茶园修剪枝条按照粗细大小长短顺序整理后及时摊开晒干,碾磨过20目筛子待用。

生物质炭:将茶树修剪物晒干后剪碎(<5 cm=,装入1 m3的反应炉设备中,密封后,由外部的电加热器将内部的茶树修剪物以每分钟升温8.5 ℃至400 ℃左右,保持8~10 h,至反应炉的通风管中没有明显的浓烟排出为止[13]

蚯蚓和菜籽饼:蚯蚓和菜籽饼购自于江苏省句容市王军蚯蚓专业养殖有限公司,蚯蚓品种为威廉环毛蚓(Pheretima guillelmi),属上食下居型蚯蚓[14]。在实验开始前利用滤纸法排空蚯蚓肠道,清肠方法:将干净的滤纸放置在烧杯的底部,再向烧杯里加少许蒸馏水,以刚好浸没滤纸,然后将蚯蚓放置于滤纸上后用保鲜膜将烧杯封口,并用注射器针头将上方的保鲜膜扎孔,然后将烧杯放入温度为20 ℃,湿度为80%~85%的恒温箱中黑暗中清肠24 h。

供试土壤和有机物料基本理化性质见表 1

表 1 供试土壤和有机物料基本理化性质 Table 1 Basic physical and chemical properties of the soil and organic material tested
1.2 试验方法

于2018年5月18日采集中山陵茶园土壤模拟盆栽培养试验,设置5个处理,分别为:1)不施肥处理(CK);2)不施肥+蚯蚓(BE);3)15 g菜籽饼(盆栽土重量的0.5%)+蚯蚓(CE);4)60 g茶树修剪物(盆栽土重量的2%)+蚯蚓(JE);5)60 g生物质炭(盆栽土重量的2%)+蚯蚓(TE)。每个处理重复5次,每盆装培养土3 kg。原始蚯蚓经过清肠处理后每1 kg土壤接种蚯蚓10 g±0.02 g(2条)。选取一年生长势基本一致的无性系健壮茶苗“龙井长叶”用于试验,每盆栽植6株,并根据茶苗的生长环境温度、湿度和观察茶苗长势不定期用去离子水浇灌茶苗,使试验土壤含水率保持在田间持水量的85%左右。

1.3 测定项目与方法

试验培养3个月时采集土壤样品进行分析测试,6个月时采集一次土壤样品测定pH。土壤基本理化性质采用常规方法[15]测定。pH利用ORION 3 STAR(Thermo公司,美国)pH计测定(土壤/水为1/2.5的质量体积比);全碳、全氮采用vario MACRO cube系列元素分析仪(Elementar公司,德国)测定。有机质采用重铬酸钾容量法测定,有机质(OM)含量依据“OM含量=TC含量×1.724”进行换算[16-17]。同步辐射红外显微光谱技术(SR-FTIR)与样品处理:采用国家蛋白质科学研究设施中的BL01B红外线站设备进行同步辐射光源(Synchrotron Radiation Facility,SSRF)显微成像检测土壤微团聚体[18]。选取培养了3个月的土壤颗粒为研究对象,用水包埋土壤样品,并保持其完整性,在全封闭式快速冷冻切片机(徕卡,型号CM1950,德国)内进行-20 ℃低温切片,厚度约为2 µm。切好的样品平铺放置在低辐射的Low-E镜片上,干燥后在国家上海蛋白质科学研究设施五线六站BL01B线站红外显微成像仪进行观察(图 1)。面扫设置参数:光谱范围650~4 000 cm-1;光阑孔径20×20 µm;步长10×10 µm;光谱分辨率4 cm-1;扫描次数64次。

图 1 同步辐射红外显微成像技术研究土壤微团聚体的流程 Fig. 1 Stepwise imaging process of the synchrotron radiation infrared microscopy for studying soil microaggregates
1.4 数据处理

数据处理及分析采用Excel 2010、SPSS19.0完成。

2 结果 2.1 土壤酸碱度(pH)

培养3个月和6个月时,土壤pH均值如图 2所示,CK处理分别为6.57、6.44,BE处理分别为6.59、5.97,CE处理分别为6.15、5.75,JE处理分别为6.43、6.16,TE处理分别为6.69、6.34,5个处理组中第3月pH均值均高于第6月,表明即使在蚯蚓活动下,添加不同有机物料处理的土壤pH均呈下降趋势;但添加茶树修剪物和生物质炭处理有缓解土壤酸化效果,但无显著性差异。

注:1)CK,对照;BE,不施肥+蚯蚓;CE,施菜籽饼+蚯蚓;JE,施茶树修剪物+蚯蚓;TE,施生物质炭+蚯蚓。下同。2)无相同字母表示同一采样时间处理间差异显著(P < 0.05)。  Note: 1) CK, control; BE, earthworms only; CE, rapeseed cake plus earthworms; JE, tea tree pruning plus earthworms; TE, biochar plus earthworms. The same below. 2) Different letters indicate significant differences between treatments at 0.05 level. 图 2 不同施肥处理与接种蚯蚓下土壤pH状况 Fig. 2 Soil pH in the pot relative to fertilization treatment
2.2 土壤全碳、全氮及碳氮比

从各处理(CK、BE、CE、JE、TE)中选取3次重复测定土壤基本养分状况,如表 2所示。相较于CK处理,BE处理的土壤全碳、有机质含量有升高趋势,表明蚯蚓活动可提高土壤肥力;与BE处理相比,蚯蚓配施有机物料的CE、JE、TE处理均提高了土壤全碳、全氮和有机质含量,TE处理提高效果最明显,说明生物质炭与蚯蚓配施对土壤肥力提升效果最好。

表 2 不同施肥处理与接种蚯蚓下盆栽土壤基本养分状况 Table 2 Basic nutrient status of the soil in the pot relative to treatment
2.3 土壤团聚体的显微成像规律

本试验各处理中土壤团聚体的同步辐射红外显微成像如图 3所示,土壤中官能团的指定如下:黏土矿物(Clay-OH,3 620 cm-1),脂肪(-C-H,2 920 cm-1),蛋白质(-NH,1 650 cm-1),多糖(-OH,1 080 cm-1[19]。从同步辐射红外显微成像图可以看出多糖、蛋白质、脂肪和黏土矿物均呈高度异质性分布,且黏土矿物与多糖的分布规律较为相似,蛋白质与脂肪的分布规律相似,而黏土矿物与蛋白质和脂肪的分布规律有较大的差异;其中CK、BE和TE组中的多糖、蛋白质、脂肪和黏土矿物的分布形状为团状,而CE和JE组中的黏土矿物与大分子有机物具有较高的分散性。

图 3 不同施肥处理与接种蚯蚓下盆栽土壤团聚体的同步辐射红外显微成像图 Fig. 3 Synchrotron radiation microscopic imaging of microaggregates of the soil in the pot relative to treatment
2.4 土壤有机碳的存在形式

利用红外显微光谱技术(SR-FTIR)定性研究不同施肥处理中土壤有机碳的存在形式,图 4为各处理土壤团聚体的红外吸收光谱。从图中可以看到当样品在3 620 cm-1左右会出现强烈的醇羟基-OH伸缩震动,波数在2 880 cm-1左右处会出现不对称脂肪族-C-H伸展震动,波数在1 732 cm-1左右处会出现不饱和键C=C震动、不饱和键C=O震动以及蛋白质-NH伸缩震动,波数在1 150 cm-1左右处会出现C-O拉伸弯曲、多糖-OH伸缩震动。相比CK处理,其他处理的伸缩震动整体更强烈,说明蚯蚓配施有机物料可使大分子有机官能团与矿物结合能力增强,提高土壤固存能力,从而增加土壤中有机质含量,其中CE和TE组更强烈,表明蚯蚓配施菜籽饼肥和生物质炭提高土壤肥力效果更好,有利于茶树生长。

图 4 不同施肥处理与接种蚯蚓下土壤微团聚体的红外吸收光谱 Fig. 4 Infrared absorption spectroscopy of soil microaggregates of the soil in the pot relative to treatment
2.5 黏土矿物和大分子有机物的官能团相关性

黏土矿物和大分子有机物的官能团相关性越强,矿物固碳越多,土壤肥力越高。土壤团聚体中黏土矿物和大分子有机官能团的相关性分析如图 5所示,5个处理中黏土矿物和有机官能团的决定系数(R2)由小到大均依次为:黏土矿物-蛋白质、黏土矿物-多糖、黏土矿物-脂肪。该结果表明,土壤团聚体中的黏土矿物和大分子有机物亲和性有所差异,其中黏土矿物-脂肪的亲和性最高,黏土矿物-蛋白质亲和性最低,黏土矿物-多糖亲和性次之,且这种亲和性差异不受有机物料与蚯蚓互作的影响。

图 5 不同施肥处理与接种蚯蚓下土壤微团聚体中官能团的相关性分析 Fig. 5 Correlation analysis of functional groups in soil microaggregates of the soil in the pot relative to treatment
3 讨论

在土壤生态系统中蚯蚓是最典型的大型动物之一,蚯蚓活动对改善土壤理化性质、促进物质循环和能量代谢有重大贡献[20-22]。井大炜等[23]研究表明,有机肥与蚯蚓粪的施用能显著改善土壤物理性状,提高土壤有机质含量,增强植物根系活力。这与本试验红外显微光谱技术(SR-FTIR)定性分析土壤有机质的结果一致,相较于CK,其他四组处理的碳官能团伸缩震动更强烈,表明接种蚯蚓处理可提高黏土矿物对大分子有机官能团结合能力,从而提高土壤肥力。本研究采用的样品水包埋法结合低温冷冻切片技术,与传统有机包埋法相比,可防止有机包埋试剂如树脂、石蜡,OCT包埋液的影响,同时保证了土壤团聚体样品的完整性。

李萍萍等[24]研究表明,与不施肥处理相比,配施不同有机化肥可有效提高土壤养分含量,均不同程度提高了土壤有机质含量。这与本试验结果一致,试验中蚯蚓配施有机物料的土壤处理中有机质和全碳含量均有所提高。茶树生长的土壤pH应控制在4.5~6.0,最适宜种植茶树的pH在4.5~5.5,但就pH值降低这一现象,Abe等[25]发现大量种植茶树可以加速土壤酸化,K. OH[26]和Wang[27]等研究表明种植茶树时限越长土壤酸化越明显。这说明本试验中土壤pH下降的原因是蚯蚓活动和茶苗长时间种植的综合作用。

生物质炭因含有以可溶性状态在土壤中存在的Ca、K、Mg等元素,可提高土壤固碳能力,目前被认为是土壤较好的改良剂,相比其他有机物料能更明显改善土壤理化性质。蚯蚓能促进土壤微生物的活动和养分循环,蚯蚓粪与分泌物可以提高土壤有机质和养分状况[28-29]。单武雄等[30]研究发现连续施用菜籽饼肥可以有效提供更多的碳和氮源,使土壤微生物数量增加,提高土壤养分有效性。本试验不同施肥处理土壤红外吸收光谱在CE和TE组中碳官能团信号最强,表明蚯蚓配施菜籽饼肥和生物质炭更有利于提高土壤肥力。蚯蚓活动可促进土壤团聚体的形成,改善土壤质地,Lehmann等[31]采用同步辐射红外显微成像方法研究土壤团聚体时发现,土壤团聚体的碳官能团分布具有异质性,Riedel等[32]研究发现泥炭地中活性铁可以优先保护芳香族化合物,Mayer和Xing[33]指出土壤团聚体中矿物-有机复合体相互作用有利于保护有机质及有机质内部聚合物,Tisdall和Oades[34]发现黏土矿物和大分子有机物均有分散性,且微土壤团聚体更稳定。

大量研究表明因土施肥、化肥与有机肥配施可以缓急相济,短长互补,充分发挥各自的增产潜力,可改善土壤团粒结构,延缓土壤酸化,提高土壤保肥能力,在改土培肥方面有显著作用。近年来,针对我国土壤有机质含量严重下降的状况,农业部实施土壤有机质提升行动,提高耕地土壤有机质水平已经成为国家层面的战略决策。茶叶是我国重要经济作物,农业部印发了茶园有机肥代替化肥技术方案,以求大力提升茶园土壤有机质水平。提升土壤肥力的核心是增加土壤有机质含量,提升土壤有机质稳定性。为防止有机质的流失,有必要关注有机质的稳定化过程。本文研究了5个处理的盆栽土壤团聚体的同步辐射红外显微成像特征和规律,为研究蚯蚓活动配施有机物料对茶园土壤结构的影响提供科学依据。

4 结论

与不施肥处理相比,接种蚯蚓与有机物料配施处理提高了土壤全碳含量,提升黏土矿物对大分子有机官能团的结合能力,其中蚯蚓配施菜籽饼肥和生物炭对提高土壤肥力效果明显。即使在蚯蚓活动下,添加不同有机物料的各个处理中土壤pH值均呈下降趋势,但添加茶树修剪物和生物炭可延缓土壤酸化速率。同步辐射红外显微成像结果表明土壤团聚体中多糖、蛋白质、脂肪和黏土矿物均呈高度异质性分布,其中黏土矿物与多糖的分布规律相似,蛋白质与脂肪的分布规律相似,而黏土矿物与蛋白质和脂肪的分布规律有较大的差异。土壤团聚体中的黏土矿物和有机官能团的决定系数(R2)由小到大均依次为:黏土矿物-蛋白质、黏土矿物-多糖、黏土矿物-脂肪,亲和性有差异且不受蚯蚓活动和施肥处理的影响,土壤团聚体通过矿物-有机复合体将有机质留存于土壤中,提高土壤有机质含量。

参考文献
[1]
Xie J. China's fruit, tea planting area, yield are ranked first in the world (In Chinese)[J]. Modern Food, 2016(21): 69. [谢佼. 中国水果、茶叶种植面积、产量均居世界第一[J]. 现代食品, 2016(21): 69.] (0)
[2]
Chen P, Zhao B, Yang L, et al. Effects of earthworm and litter application on soil nutrients and soil microbial biomass and activities in Pinus tabuliformis plantation (In Chinese)[J]. Journal of Beijing Forestry University, 2018, 40(6): 63-71. [陈平, 赵博, 杨璐, 等. 接种蚯蚓和添加凋落物对油松人工林土壤养分和微生物量及活性的影响[J]. 北京林业大学学报, 2018, 40(6): 63-71.] (0)
[3]
Shan J, Liu J, Wang Y F, et al. Digestion and residue stabilization of bacterial and fungal cells, protein, peptidoglycan, and chitin by the geophagous earthworm Metaphire guillelmi[J]. Soil Biology & Biochemistry, 2013, 64: 9-17. (0)
[4]
Cunha L, Brown G G, Stanton D W G, et al. Soil animals and pedogenesis[J]. Soil Science, 2016, 181(3/4): 110-125. DOI:10.1097/SS.0000000000000144 (0)
[5]
Yuan X T, Jiao J G, Zhu L, et al. Effects of earthworm activity on soil aggregates' stability and organic carbon distribution under different manipulations of corn straw (In Chinese)[J]. Soils, 2011, 43(6): 968-974. [袁新田, 焦加国, 朱玲, 等. 不同秸秆施用方式下接种蚯蚓对土壤团聚体及其中碳分布的影响[J]. 土壤, 2011, 43(6): 968-974.] (0)
[6]
Sun F S, Polizzotto M L, Guan D X, et al. Exploring the interactions and binding sites between Cd and functional groups in soil using two-dimensional correlation spectroscopy and synchrotron radiation based spectromicroscopies[J]. Journal of Hazardous Materials, 2017, 326: 18-25. DOI:10.1016/j.jhazmat.2016.12.019 (0)
[7]
Yu P. Application of advanced synchrotron radiation-based Fourier transform infrared(SR-FTIR)microspectroscopy to animal nutrition and feed science:A novel approach[J]. British Journal of Nutrition, 2004, 92(6): 869-885. DOI:10.1079/BJN20041298 (0)
[8]
Ling S J, Shao Z Z, Chen X. Application of synchrotron FTIR imaging for cells (In Chinese)[J]. Progress in Chemistry, 2014, 26(1): 178-192. [凌盛杰, 邵正中, 陈新. 同步辐射红外光谱成像技术对细胞的研究[J]. 化学进展, 2014, 26(1): 178-192.] (0)
[9]
Marinkovic N S, Huang R, Bromberg P, et al. Center for Synchrotron Biosciences' U2B beamline:An international resource for biological infrared spectroscopy[J]. Journal of Synchrotron Radiation, 2002, 9(4): 189-197. DOI:10.1107/S0909049502008543 (0)
[10]
Holman H Y N, Bjornstad K A, McNamara M P, et al. Synchrotron infrared spectromicroscopy as a novel bioanalytical microprobe for individual living cells:Cytotoxicity considerations[J]. Journal of Biomedical Optics, 2002, 7(3): 417. DOI:10.1117/1.1485299 (0)
[11]
Ke Y J, Hu X Y, Yi Q, et al. Impacts of rice straw biochar on organic carbon and CO2 release in arable soil (In Chinese)[J]. Environmental Science, 2014, 35(1): 93-99. [柯跃进, 胡学玉, 易卿, 等. 水稻秸秆生物炭对耕地土壤有机碳及其CO2释放的影响[J]. 环境科学, 2014, 35(1): 93-99.] (0)
[12]
Demirbas A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues[J]. Journal of Analytical and Applied Pyrolysis, 2004, 72(2): 243-248. DOI:10.1016/j.jaap.2004.07.003 (0)
[13]
Liu Q, Liu B J, Ambus P, et al. Carbon footprint of rice production under biochar amendment-a case study in a Chinese rice cropping system[J]. GCB Bioenergy, 2016, 8(1): 148-159. (0)
[14]
Zhang B G, Li G T, Sun Z, et al. Comparative study of digestive enzyme activities in earthworms belonging to two distinct ecological categories (In Chinese)[J]. Acta Ecologica Sinica, 2001, 21(6): 978-981. [张宝贵, 李贵桐, 孙钊, 等. 两种生态类型蚯蚓几种消化酶活性比较研究[J]. 生态学报, 2001, 21(6): 978-981.] (0)
[15]
Bao S D. Soil and agricultural chemistry analysis (In Chinese). Beijing: China Agriculture Press, 2000. [鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.] (0)
[16]
Kaune A, Brüggemann R, Sharma M, et al. Soil adsorption coefficients of s-triazines estimated with a new gradient HPLC method[J]. Journal of Agricultural and Food Chemistry, 1998, 46(1): 335-343. DOI:10.1021/jf9704930 (0)
[17]
Qiu L J, Huang G L, Shuai Q, et al. Reconstruction of the conversion relationship between organic matter and total organic carbon in calcination method and its application in shale analysis (In Chinese)[J]. Rock and Mineral Analysis, 2015, 34(2): 218-223. [邱灵佳, 黄国林, 帅琴, 等. 灼烧法中有机质与总有机碳换算关系的重建及其在页岩分析中的应用[J]. 岩矿测试, 2015, 34(2): 218-223.] (0)
[18]
Zhou X J, Zhong J J, Dong J M, et al. Applications of NFPS/SSRF BL01B1 synchrotron infrared beamline station (In Chinese)[J]. Spectroscopy and Spectral Analysis, 2018, 38(S1): 29-30. [周晓洁, 钟佳佳, 董家蒙, 等. NFPS/上海光源BL01B同步辐射红外谱学线站的应用综述[J]. 光谱学与光谱分析, 2018, 38(S1): 29-30.] (0)
[19]
Chu B J, Yu G H, Liu F F, et al. Characterization of mineral-organic complex in soil microaggregates with synchrotron radiation infrared micro-imaging method (In Chinese)[J]. Acta Pedologica Sinica, 2017, 54(6): 1451-1458. [褚冰杰, 余光辉, 刘飞飞, 等. 土壤微团聚体中矿物-有机复合体特征[J]. 土壤学报, 2017, 54(6): 1451-1458.] (0)
[20]
Lubbers I M, Pulleman M M, van Groenigen J W. Can earthworms simultaneously enhance decomposition and stabilization of plant residue carbon?[J]. Soil Biology & Biochemistry, 2017, 105: 12-24. (0)
[21]
Ernst G, Henseler I, Felten D, et al. Decomposition and mineralization of energy crop residues governed by earthworms[J]. Soil Biology & Biochemistry, 2009, 41(7): 1548-1554. (0)
[22]
Tian G, Olimah J A, Adeoye G O, et al. Regeneration of earthworm populations in a degraded soil by natural and planted fallows under humid tropical conditions[J]. Soil Science Society of America Journal, 2000, 64(1): 222-228. DOI:10.2136/sssaj2000.641222x (0)
[23]
Jing D W, Wang M Y, Zhang H, et al. Effects of vermicompost Co-applied with urea on root characteristics and humus in rhizosphere soil of cowpea (In Chinese)[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 212-219. [井大炜, 王明友, 张红, 等. 蚯蚓粪配施尿素对豇豆根系特征与根际土腐殖质的影响[J]. 农业机械学报, 2017, 48(1): 212-219.] (0)
[24]
Li P P, Lin Y F, Hu Y G. Effects of compound application of organic and chemical fertilizers on growth, quality of tea plants and soil nutrient (In Chinese)[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 64-69. [李萍萍, 林永锋, 胡永光. 有机肥与化肥配施对茶叶生长和土壤养分的影响[J]. 农业机械学报, 2015, 46(2): 64-69.] (0)
[25]
Abe S S, Hashi I, Masunaga T, et al. Soil profile alteration in a brown forest soil under high-input tea cultivation[J]. Plant Production Science, 2006, 9(4): 457-461. DOI:10.1626/pps.9.457 (0)
[26]
Oh K, Kato T, Li Z P, et al. Environmental problems from tea cultivation in Japan and a control measure using calcium cyanamide[J]. Pedosphere, 2006, 16(6): 770-777. DOI:10.1016/S1002-0160(06)60113-6 (0)
[27]
Wang H, Xu R K, Wang N, et al. Soil acidification of alfisols as influenced by tea cultivation in Eastern China[J]. Pedosphere, 2010, 20(6): 799-806. DOI:10.1016/S1002-0160(10)60070-7 (0)
[28]
杨鼎俊.茶树生物质炭、茶树修剪物与肥料配施对茶园土壤的影响[D].南京: 南京农业大学, 2017.
Yang D J. Effects of tea tree biomass charcoal, tea tree pruning and fertilizer on tea garden soil[D]. Nanjing: Nanjing Agricultural University, 2017. (0)
[29]
Tang Z, Li J G, Li H, et al. Earthworm and soil fertility under water and fertilizer managements in a greenhouse vegetable field (In Chinese)[J]. Chinese Journal of Ecology, 2015, 34(8): 2210-2214. [唐政, 李继光, 李慧, 等. 设施菜田水肥管理模式下蚯蚓和土壤肥力状况的变化[J]. 生态学杂志, 2015, 34(8): 2210-2214.] (0)
[30]
Shan W X, Luo W, Xiao R L, et al. Effect of 5-year rapeseed cake fertilization and straw mulching on tea plantation soil ecosystem (In Chinese)[J]. Chinese Journal of Eco-Agriculture, 2010, 18(3): 472-476. [单武雄, 罗文, 肖润林, 等. 连续5年施菜籽饼肥和稻草覆盖对茶园土壤生态系统的影响[J]. 中国生态农业学报, 2010, 18(3): 472-476.] (0)
[31]
Lehmann J, Kinyangi J, Solomon D. Organic matter stabilization in soil microaggregates:Implications from spatial heterogeneity of organic carbon contents and carbon forms[J]. Biogeochemistry, 2007, 85(1): 45-57. DOI:10.1007/s10533-007-9105-3 (0)
[32]
Riedel T, Zak D, Biester H, et al. Iron traps terrestrially derived dissolved organic matter at redox interfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(25): 10101-10105. DOI:10.1073/pnas.1221487110 (0)
[33]
Mayer L M, Xing B S. Organic matter-surface area relationships in acid soils[J]. Soil Science Society of America Journal, 2001, 65(1): 250-258. DOI:10.2136/sssaj2001.651250x (0)
[34]
Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2): 141-163. DOI:10.1111/j.1365-2389.1982.tb01755.x (0)