2. 中国科学院大学, 北京 100049
2. University of Chinese Academy of Sciences, Beijing 100049, China
化肥作为一种速效养分可迅速补充和及时满足作物对养分的需求,在保障我国粮食生产安全方面起着至关重要的作用[1-3]。近年来,化肥过量施用现象日益严重,导致一系列问题的产生,如化肥利用率降低,土壤养分失调、土壤物理性状变差,进而制约农业的可持续发展[4-6]。因此,合理的化肥投入配施有机肥是实现环境友好、保持耕地质量、实现农业可持续发展的重要举措[7-9]。
秸秆含有丰富氮磷等营养元素及纤维素、半纤维素、木质素、蛋白质和糖类等有机能源,是农业生产中经济有效的养分资源[10-11]。秸秆还田可以通过有机物的直接输入,有效地替代部分化肥投入,同时维持土壤肥力,改善土壤结构、稳定作物产量[12-13],但替代措施的可行性应以与常规施肥相比的作物产量、土壤肥力、养分投入量来评估,从而确定化肥减量的最佳比率。研究表明,与秸秆不还田相比,小麦秸秆还田可增加土壤磷盈余,对土壤有效磷含量的维持有缓冲作用[14];还田秸秆的腐解进程受纤维素和半纤维素腐解进程的影响较大,配合外源氮素可增加与纤维素等碳水化合物分解相关的水解酶活性,促进秸秆养分释放[15];与单施化肥相比,化肥减量配合秸秆还田通过调控土壤理化性质驱动微生物群落变化[13];在潮土中氮肥减施20%配合秸秆还田可促进土壤中铵态氮的积累,同时降低硝态氮淋洗损失,抑制土壤硝化潜势,从而提高氮肥利用率,保证作物产量[16];因此,秸秆还田可在一定程度上实现养分替代,从而降低化肥施用量。黄淮海平原潮土区是我国重要的粮食产区,通过秸秆还田培肥地力,实现农业的可持续发展,已经成为一项重要的农业措施。随着我国农业部“两减”行动的推行,人民对绿色食品需求量日益增加,因此,基于秸秆养分当季释放率估算化肥实际可替代量,研究该地区秸秆还田配合化肥减施条件下,秸秆养分释放能否替代、替代多少化学氮磷钾的投入,揭示促进秸秆养分高效利用的微生物机制,对于维持潮土区土壤养分平衡、保证作物产量,实现农业、生态协同发展十分重要。本研究于黄淮海平原潮土区设置大田试验,研究秸秆还田配合不同比例氮磷减施对土壤养分、作物产量、秸秆养分释放及土壤微生物的影响,以期明确在保证作物产量与土壤养分不流失的情况下,秸秆还田可以替代的化肥养分量,并揭示促进秸秆养分高效利用的微生物机制,为推行化肥减施行动提供依据。
1 材料与方法 1.1 研究区概况与试验设计试验地位于中国科学院封丘农田生态系统国家试验站内(35°00′N,114°24′E),属半干旱半湿润的暖温带季风气候区,年均气温13.9℃,年均降水量597 mm,57%集中在7—9月,土壤为来源于黄河冲积物的典型华北潮土。供试土壤pH 7.87、有机质10.83 g·kg–1、全氮0.67 g·kg–1、全磷0.90 g·kg–1、全钾13.23 g·kg–1、碱解氮72.00 mg·kg–1、有效磷24.36 mg·kg–1、速效钾78.50 mg·kg–1。
试验开始于2018年6月,种植制度为冬小麦—夏玉米轮作。共设置9个施肥处理,每个处理3个重复,小区面积3.6 m×3.0 m=10.8 m2,随机区组排列,各处理施肥量如表 1所示,其中氮肥为尿素(N 46%),磷肥为重过磷酸钙(P2O5 46%),钾肥为硫酸钾(K2O 50%),氮肥小麦季基追比为6︰4,玉米季基追比为4︰6,磷钾肥作为基肥一次性施入。秸秆为当季作物收获后粉碎全量还田。由于供试潮土为富钾型土壤,不再设置钾肥减施处理。
![]() |
表 1 秸秆还田配合化肥减施各处理化肥施用量 Table 1 The amount of chemical fertilizer applied in each treatment under straw returning instead of chemical fertilizer reduced |
每小区设置网袋试验,将装有秸秆的网袋埋设于作物行间。秸秆40 ℃烘干后截成2~3 cm小段装入网袋(网袋规格为10 cm×10 cm,孔径为300目),每袋装10 g,埋入作物行间20 cm土层内。当季作物收获后,取出网袋用于秸秆降解率及氮磷钾养分释放量的测定,另采集网袋附近紧密接触及网袋上附着的土壤样品于–20℃保存,用于土壤DNA提取及真菌细菌群落的测定。每小区用土钻在耕层(0~20 cm)按照梅花型取5个点,剔除根系和杂物,混匀后风干过2 mm筛用于土壤pH及养分指标的测定。
1.2 样品分析与测定土壤养分指标的测定参照土壤农业化学分析[17]。土壤pH采用电位法(土水比1:2.5)测定;土壤有机碳采用重铬酸钾氧化—外加热法测定;全氮采用浓硫酸消化—凯氏定氮法测定;全磷采用钼锑抗比色法测定;全钾采用火焰光度法测定。植株样品于成熟期采集后烘干至恒重,粉碎过筛,然后用浓H2SO4-H2O2消化,过滤后用于氮、磷和钾养分测定;全氮采用半微量凯氏定氮法测定;全磷采用钼锑抗比色法测定;全钾采用火焰光度计法测定。于当季作物成熟期采集1 m2样方进行测产考种,分别计算地上部分籽粒产量及植株生物量,另全小区单打单收计产。
土壤总DNA采用Fast DNA Spin Kit for Soil(MP Biomedicals,Santa Ana,CA,USA)试剂盒提取,每个样品称取0.5 g鲜土,按照说明书操作提取DNA,然后利用NanoDrop One检测DNA的浓度和纯度,用冰袋保存送至百诺盛信息技术服务有限公司测定土壤真菌细菌群落结构,利用QIIME(Quantitative insight into microbial ecology)软件进行微生物数据处理,相似度为97%的序列合并为同一可操作分类单元(OTU),鉴定微生物群落组成并计算α-多样性指数(OTU数目,Chao 1指数和Shannon指数)。采用荧光定量PCR技术测定土壤细菌真菌丰度。
1.3 数据处理还田秸秆氮磷钾养分释放量及养分总投入量的计算公式如下:
秸秆养分释放量=还田秸秆养分总量-降解后剩余秸秆养分总量=∑{(当季还田秸秆质量×大田秸秆氮磷钾养分含量)-当季还田秸秆质量×(1–当季秸秆降解率)×根袋秸秆氮磷钾养分含量}
养分总投入量=化肥施用量+秸秆养分释放量
采用Microsoft Excel 2010整理数据。土壤基本性质数据统计分析采用SPSS 25.0软件,二元方差分析(Two-way ANOVA)和最小显著差异(LSD)多重比较,微生物数据分析采用R 4.0.2软件,绘图采用Origin 2018。
2 结果 2.1 秸秆还田配合化肥减施对作物产量及生物量的影响由图 1a可知,潮土秸秆还田配合化肥减施各处理间作物产量的差异显著性随着试验年限的增加而增加。2018年各处理间玉米季产量差异不显著,至2019年小麦季,与常规施肥(N-P-K)相比,除减氮100%(P-K)显著减产(减幅为37.65%)外,其余处理仍无显著差异,在2019年玉米季,P-K处理继续降低玉米产量,减幅为37.23%,直至2020年小麦季,经过连续两年的秸秆还田配合化肥减施,P-K处理产量仅为1 874 kg·hm–2,降幅达78.38%。另一方面,由连续四季的产量数据可知,氮肥减施处理随着氮肥减施量的增加产量持续降低,而磷肥减施处理除减磷100%(N-K)产量下降外,其余处理与常规施肥并无显著差异。由图 1b可知,潮土秸秆还田配合化肥减施地上生物量的变化与作物产量变化规律一致。
![]() |
注:各作物生长季无相同字母表示不同处理间存在显著差异(P < 0.05)。2018 MS:2018年玉米季,2019 WS:2019年小麦季,2019 MS:2019年玉米季,2020 WS:2020年小麦季。下同。 Note: Different letters indicated significant differences among different treatments in different crop growing seasons(P < 0.05). 2018 MS: 2018 Maize season, 2019 WS: 2019 Wheat season, 2019 MS: 2019 Maize season, 2020 WS: 2020 Wheat season. The same below. 图 1 不同处理2018—2020年作物产量及生物量 Fig. 1 Crop yield and biomass of different treatments from 2018 to 2020 |
经过两年试验,除减氮100%显著降低SOC含量外,其余各处理均随试验年限增加而增加,至2020年小麦季,与常规施肥相比,减氮30%和减磷50%对SOC含量无显著影响,而减氮100%和减磷100%造成SOC含量显著降低,降幅分别为30.39%和11.06%。整体来看,经过连续两年的化肥减施试验,土壤pH变化幅度较小,可能与潮土具有较强的缓冲能力有关。TN与SOC表现的规律较为一致,氮肥减施对TN的影响大于磷肥减施,TN含量随着氮肥减施比例的增加而降低,且与其余各处理相比,在每个作物生长季,氮肥减施100%均为最低值(表 2)。
![]() |
表 2 各施肥处理下2018—2020年土壤肥力指标 Table 2 Soil fertility index in 2018—2020 under each fertiliz ation treatment |
由图 2可知,秸秆降解速率在第一季达到最高,2018年玉米季降解率达43.33%~53.11%,但各处理间无显著差异,之后秸秆降解速率降低,但玉米季显著高于小麦季。各处理间秸秆降解率随着试验时间的延长差异逐渐显现,与常规施肥相比,氮减100%、磷减30%和磷减100%处理秸秆降解率下降,降幅最大达5.75%,而减氮30%和减磷50%则使秸秆降解率增加,增幅最大达12.40%。至2020年小麦季秸秆降解率达63.41%~75.62%。
![]() |
图 2 各施肥处理下2018—2020年根袋秸秆降解率 Fig. 2 Degradation rate of root bag straw in 2018—2020 under different fertilization treatments |
通过计算连续三季作物收获后秸秆养分投入量(表 3)可知,与常规施肥相比,秸秆还田可不同程度补偿因氮、磷减施引起的氮磷钾养分投入量的不足,减氮10%、30%及减磷50%可促进还田秸秆氮钾养分的释放,而其余处理则有削弱作用;除减氮100%和减磷100%处理显著降低磷的释放外,其余处理间均无显著差异。对比各处理养分总投入量可知,与常规施肥相比,减磷50%可增加氮的总投入量,而其余各处理磷的总投入量均有所降低,钾的总投入量无显著差异。整体来看,与常规施肥相比,减氮100%和减磷100%不利于氮磷钾养分的投入,而减氮30%和减磷50%则对土壤养分的总投入量无显著影响。
![]() |
表 3 秸秆还田替代化肥减施氮磷钾养分投入量(三季作物收获后) Table 3 Nitrogen phosphorus and potassium nutrient input of straw returning instead of chemical fertilizer reduction(after three crops harvest) |
不同处理间细菌丰度范围在2.50×107~3.60×107 copies·g–1干土,真菌丰度范围在6.72×106~9.19×106 copies·g–1干土(图 3)。与常规施肥相比,减氮50%以上和减磷100%显著降低土壤细菌丰度,降幅为12.30%~30.43%,且在各减施处理中,减氮100%土壤细菌丰度值最低,而土壤真菌只在氮、磷完全减施的情况下丰度显著降低,降幅分别为26.83%、13.47%;除减氮100%处理土壤细菌、真菌丰度比值显著降低外,其余处理间无显著差异。
![]() |
注:不同字母表示不同处理间存在显著差异(P < 0.05)。 Note: Different letters indicate significant differences between different treatments(P < 0.05). 图 3 不同施肥处理土壤细菌、真菌丰度及比值 Fig. 3 Soil bacteria, fungi abundance and ratio under different fertilization treatments |
由表 4可知,除减氮100%导致细菌和真菌物种丰富度显著降低外,其余各处理间均无显著差异。与常规施肥相比,减氮100%可显著降低土壤细菌群落的丰富度和多样性,其余处理无显著变化。减氮50%导致土壤真菌群落多样性的显著降低。
![]() |
表 4 不同施肥处理土壤细菌、真菌物种丰富度及多样性指数 Table 4 Species richness and diversity index of soil bacteria and fungi under different fertilization treatments |
在门分类水平,六个处理土壤微生物群落组成相似(图 4a),其中变形菌门、酸杆菌门、拟杆菌门和浮霉菌门是土壤中最为优势的细菌种群。与常规施肥相比,减氮30%和减磷50%主要增加芽单胞菌门Longimicrobiaceae科和变形菌门亚硝化单胞菌科相对丰度(图 4a)。
![]() |
图 4 不同施肥处理相对丰度>1%土壤细菌科水平(a)和真菌纲水平(b)群落组成 Fig. 4 Community composition at relatively abundance > 1% soil bacterial family level(a)and fungal class level(b)under different fertilization treatments |
被孢霉门是土壤中最为优势的真菌种群,相对丰度占37%左右,其次是子囊菌门,约占33%,这两大优势类群共占真菌群落的70%以上。与常规施肥相比,减氮30%和减磷50%主要增加壶菌门GS13纲相对丰度,降低子囊菌门Sordariomycetes纲和被孢霉门Mortierellomycetes纲相对丰度(图 4b)。
用RDA分析评估土壤养分指标和细菌(图 5a)、真菌(图 5b)群落之间的关系,发现SOC和TN对细菌、真菌群落结构均有显著的影响,RDA1和RDA2共解释了细菌群落68.23%的变异、真菌群落73.36%的变异,其中N-P-K、0.7N-P-K和0.5P-N-K微生物群落组成相似,而0.5N-P-K、P-K和N-K群落组成相似。
![]() |
图 5 不同施肥处理环境因子与土壤细菌(a)和真菌(b)群落组成冗余分析 Fig. 5 Redundancy analysis of environmental factors and soil bacterial(a)and fungal(b)community composition under different fertilization treatments |
已有研究表明,2/3左右秸秆还田同时减少10%~20%化肥用量[18],可以有效改善土壤质量,提高作物产量及肥料利用率[19-20]。本研究中,减氮30%或减磷50%配合秸秆全量还田可保证作物稳产,保持土壤肥力,相比于前人研究的减施量更大,这可能与试验地基础肥力较高有关[21]。此外,各处理间的差异随着试验年限的增加逐步增大,且氮肥减施对作物产量的影响大于磷肥,对小麦产量的影响大于玉米,产生这些现象的原因可能有:一,粮食作物秸秆的C/N为50~70,含碳量较高,配施适量的氮肥可以有效降低碳氮比,从而促进秸秆的快速腐解和养分释放,补充土壤养分库容[22-23];二,秸秆中所含矿质养分释放过程较为缓慢,植物生长初期主要依赖化肥所提供的速效养分,因此,较低的化肥配施量会影响作物的正常生长。此外,玉米季水热条件更充足,有利于秸秆降解和微生物的生长,从而更有利于作物的生长[24]。随着秸秆逐年归还进入土壤,土壤汇碳功能增强从而提升了土壤基础地力,化肥减量对作物产量的影响作用减小[25]。
本研究中化肥减施对土壤养分的影响主要表现在SOC、TN和TP上,与常规施肥相比,氮减30%或磷减50%不会造成土壤养分含量的降低,土壤pH和TK含量在各处理间无较大差异,原因可能有:一,供试土壤类型为弱碱性富钾型土壤,具有较强的酸碱缓冲性,因此,不同处理对pH和TK含量影响较小;二,秸秆中养分释放速率的大小顺序为K>P>N,腐解0.5年钾素平均释放速率达89.5%[26],因此秸秆还田可快速补充土壤钾素含量;三,秸秆具有较强吸附能力,能够显著提高氮素的保留率,同时还能促进土壤中有机氮的矿化,增大土壤通透性,从而提高氮肥的利用率[27],秸秆分解产生的有机酸可以向土壤提供大量阴离子,从而减少无机磷的固定,提高磷元素的有效性[28]。作物秸秆养分元素的释放能够发挥部分肥料作用,从而可以减少化肥的施用量[29]。
3.2 秸秆还田配合化肥减施对秸秆降解及氮磷钾养分释放的影响秸秆还田后大概在100~150 d腐解达到稳定停滞状态[22],我国小麦和玉米秸秆还田氮、磷、钾元素当季平均释放率分别为56.65%、74.15%、92.8%[12]。本研究中,秸秆还田约120 d后降解率达48.22%,两年后达69.52%,呈现前期快、后期慢,玉米季快、小麦季慢的特征,这可能是由于一方面,秸秆降解前期易分解的有机物质占比较高,易被微生物分解,后期难降解的物质残留下来,分解速率逐渐变缓;另一方面,玉米季气温高、降雨量大,水热条件有利于秸秆降解[30],而小麦季积温及降雨量均处于较低水平。此外,由于秸秆中氮、磷含量较低,释放速度相对较慢[31],因此秸秆还田配施一定量的氮、磷肥是有必要的。
本研究表明,与常规施肥相比,单一的氮磷减施不会影响秸秆还田后其余养分的释放,减氮30%或减磷50%对氮磷钾养分的总投入量无显著差异,不会对作物产量及土壤养分含量变化产生负影响,因此潮土区在秸秆全量还田的条件下,基础肥力较高的农田氮肥可减施30%,磷肥可减施50%。
![]() |
表 5 蒙特卡洛检验分析微生物群落结构与土壤养分指标之间的相关关系 Table 5 Correlation between microbial community structure and soil nutrient indices by Monte Carlo test |
土壤微生物参与有机质降解、养分循环等生物化学过程,并可促进作物秸秆的降解以及后期的转化利用[31-32],化肥减施在降低施肥对根际土壤菌群影响的同时仍可满足细菌生存所需要的养分[33]。与常规施肥相比,减氮30%或减磷50%处理细菌的响应更敏感,这可能是由于弱碱性环境不利于真菌的生长,减氮100%则对土壤微生物影响显著,这可能是由于秸秆还田为土壤微生物提供了大量的营养物质,而氮肥的缺失加剧植物与微生物之间的竞争,从而导致土壤微生物丰度及多样性的降低[34]。
长期施肥会改变土壤性质,影响土壤微环境,进而使得土壤微生物的群落组成发生改变[35]。本研究中减氮30%与常规施肥相比,细菌群落组成未发生明显变化,而减氮50%~100%则导致变形菌、拟杆菌等富营养型细菌物种丰度的降低,酸杆菌等贫营养型细菌物种丰度的增加,减磷对细菌无显著影响,表明细菌对氮肥减施的响应更加敏感,这可能是因为高量的氮肥减施导致外源养分投入量显著降低,不利的生长环境刺激了贫营养型微生物的生长繁殖,而减磷对养分投入和作物生长影响较小[36];与常规施肥相比,减氮30%和减磷50%对真菌群落组成无显著影响,大幅减氮主要降低子囊菌门的相对丰度,这可能是子囊菌是腐烂有机底物的主要分解者,而大幅减氮抑制秸秆的降解[13]。SOC、TN和TP是影响潮土区土壤微生物群落结构的主要驱动因子,减氮30%和减磷50%处理与常规施肥土壤微生物群落结构相似,这可能与其土壤性质未发生较大变化有关。
4 结论秸秆还田配合化肥减施措施主要通过驱动SOC、TN和TP的变化改变土壤细菌真菌丰度及群落结构,进而影响秸秆养分的释放。在土壤有机质含量不低于10 g·kg–1,年平均产量不低于15 t·hm–2的黄淮海平原潮土区,秸秆全量还田可以配合单一的减氮或减磷措施,当氮肥减施比例不高于30%(即每年N施用量不低于441 kg·hm–2),磷肥减施比例不高于50%(即每年P2O5施用量不低于236 kg·hm–2)时,氮磷钾的总投入量基本可以满足当前土壤肥力条件下作物生长所需,且与常规施肥相比,土壤肥力指标稳定,微生物群落未发生显著改变,因此具有保持土壤肥力、稳定作物产量的潜力。
[1] |
Fu H R, Li T Y, Cao H B, et al. Research on the driving factors of fertilizer reduction in China (In Chinese)[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 561-580. [付浩然, 李婷玉, 曹寒冰, 等. 我国化肥减量增效的驱动因素探究[J]. 植物营养与肥料学报, 2020, 26(3): 561-580.]
( ![]() |
[2] |
Tian S Y, Wang M W, Cheng Y H, et al. Long-term effects of chemical and organic amendments on red soil enzyme activities (In Chinese)[J]. Acta Ecologica Sinica, 2017, 37(15): 4963-4972. [田善义, 王明伟, 成艳红, 等. 化肥和有机肥长期施用对红壤酶活性的影响[J]. 生态学报, 2017, 37(15): 4963-4972.]
( ![]() |
[3] |
Wu Y H, Hao X S, Tian X H, et al. Effect of straw returning combined with NPK fertilization on soil carbon sequestration and economic benefits under rice-wheat rotation in Hanzhong basin (In Chinese)[J]. Acta Agronomica Sinica, 2020, 46(2): 259-268. [吴玉红, 郝兴顺, 田霄鸿, 等. 秸秆还田与化肥配施对汉中盆地稻麦轮作农田土壤固碳及经济效益的影响[J]. 作物学报, 2020, 46(2): 259-268.]
( ![]() |
[4] |
Guo Q K, Liang G Q, Zhou W, et al. Microbiological mechanism of long-term organic fertilization on improving soil biological properties and double rice yields in red paddy soil (In Chinese)[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 492-501. [郭乾坤, 梁国庆, 周卫, 等. 长期有机培肥提高红壤性水稻土生物学特性及水稻产量的微生物学机制[J]. 植物营养与肥料学报, 2020, 26(3): 492-501.]
( ![]() |
[5] |
Liu Y Y, Bu R Y, Tang S, et al. Effect of continuous straw-Chinese milk vetch synergistic return to the field on yield, nutrient accumulation and soil fertility of double cropping rice (In Chinese)[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 1008-1016. [刘颖颖, 卜容燕, 唐杉, 等. 连续秸秆-紫云英协同还田对双季稻产量、养分积累及土壤肥力的影响[J]. 植物营养与肥料学报, 2020, 26(6): 1008-1016.]
( ![]() |
[6] |
Gao Y X, Li R C, Zhang M, et al. Effects of straw returning combined with application of mixture of controlled-release urea and common urea on maize yield and soil fertility (In Chinese)[J]. Acta Pedologica Sinica, 2021, 58(6): 1507-1519. [高永祥, 李若尘, 张民, 等. 秸秆还田配施控释掺混尿素对玉米产量和土壤肥力的影响[J]. 土壤学报, 2021, 58(6): 1507-1519.]
( ![]() |
[7] |
Wang X M, Liu X, Hao L Y, et al. Effects of straw returning in conjunction with different nitrogen fertilizer dosages on corn yield and soil properties (In Chinese)[J]. Chinese Journal of Ecology, 2020, 39(2): 507-516. [王学敏, 刘兴, 郝丽英, 等. 秸秆还田结合氮肥减施对玉米产量和土壤性质的影响[J]. 生态学杂志, 2020, 39(2): 507-516.]
( ![]() |
[8] |
Yang X, Lin Q H, Shi D M, et al. Application effect of organic-inorganic compound fertilizer on the reduction of fertilizer application on double cropping rice in tropical regions (In Chinese)[J]. Chinese Journal of Tropical Crops, 2021, 42(1): 85-91. [杨旭, 林清火, 史东梅, 等. 有机无机复混肥在热带地区双季稻上化肥减施的应用效果[J]. 热带作物学报, 2021, 42(1): 85-91.]
( ![]() |
[9] |
Ji J P, Zhao X Y, Wu J G, et al. Replacing 20% of chemical nitrogen with manures to increase soil nutrient availability and maize yield in a chernozem soil (In Chinese)[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(3): 491-499. [季佳鹏, 赵欣宇, 吴景贵, 等. 有机肥替代20%化肥提高黑钙土养分有效性及玉米产量[J]. 植物营养与肥料学报, 2021, 27(3): 491-499.]
( ![]() |
[10] |
Wang Y L, Wu P N, Mei F J, et al. Does continuous straw returning keep China farmland soil organic carbon continued increase? A meta-analysis[J]. Journal of Environmental Management, 2021, 288: 112391. DOI:10.1016/j.jenvman.2021.112391
( ![]() |
[11] |
Zhang Y Y, Wu F, Han J, et al. Research progress on the native soil carbon priming after straw addition (In Chinese)[J]. Acta Pedologica Sinica, 2021, 58(6): 1381-1392. [张叶叶, 莫非, 韩娟, 等. 秸秆还田下土壤有机质激发效应研究进展[J]. 土壤学报, 2021, 58(6): 1381-1392.]
( ![]() |
[12] |
Li T L, Wang Y F, Wang J H, et al. Nutrient resource quantity from main grain crop straw incorporation and its enlightenment on chemical fertilizer reduction in wheat production in China (In Chinese)[J]. Scientia Agricultura Sinica, 2020, 53(23): 4835-4854. DOI:10.3864/j.issn.0578-1752.2020.23.010 [李廷亮, 王宇峰, 王嘉豪, 等. 我国主要粮食作物秸秆还田养分资源量及其对小麦化肥减施的启示[J]. 中国农业科学, 2020, 53(23): 4835-4854.]
( ![]() |
[13] |
Guo L J, Zhang L, Liu L, et al. Effects of long-term no tillage and straw return on greenhouse gas emissions and crop yields from a rice-wheat system in central China[J]. Agriculture, Ecosystems and Environment, 2021, 322: 107650. DOI:10.1016/j.agee.2021.107650
( ![]() |
[14] |
Chai R S, Wang Q Y, Ye X X, et al. Nitrogen resource quantity of main grain crop straw in China and the potential of synthetic nitrogen substitution under straw returning (In Chinese)[J]. Journal of Agro-Environment Science, 2019, 38(11): 2583-2593. DOI:10.11654/jaes.2019-0751 [柴如山, 王擎运, 叶新新, 等. 我国主要粮食作物秸秆还田替代化学氮肥潜力[J]. 农业环境科学学报, 2019, 38(11): 2583-2593.]
( ![]() |
[15] |
Huang W, Wu J F, Pan X H, et al. Effects of long-term straw return on soil organic carbon fractions and enzyme activities in a double-cropped rice paddy in South China[J]. Journal of Integrative Agriculture, 2021, 20(1): 236-247.
( ![]() |
[16] |
Zhu H Y, Gao M, Long Y, et al. Effects of fertilizer reduction and application of organic fertilizer on soil nitrogen and phosphorus nutrients and crop yield in a purple soil sloping field (In Chinese)[J]. Environmental Science, 2020, 41(4): 1921-1929. [朱浩宇, 高明, 龙翼, 等. 化肥减量有机替代对紫色土旱坡地土壤氮磷养分及作物产量的影响[J]. 环境科学, 2020, 41(4): 1921-1929.]
( ![]() |
[17] |
Lu R K. Analytical methods for soil and agro-chemistry (In Chinese). Beijing: China Agriculture Scientech Press, 2000. [鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.]
( ![]() |
[18] |
Song D L, Hou S P, Wang X B, et al. Nutrient resource quantity of crop straw and its potential of substituting (In Chinese)[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 1-21. [宋大利, 侯胜鹏, 王秀斌, 等. 中国秸秆养分资源数量及替代化肥潜力[J]. 植物营养与肥料学报, 2018, 24(1): 1-21.]
( ![]() |
[19] |
Li P, Li Y B, Xu L Y, et al. Crop yield-soil quality balance in double cropping in China's upland by organic amendments: A meta-analysis[J]. Geoderma, 2021, 403: 115197.
( ![]() |
[20] |
Pei X X, Dang J Y, Zhang D Y, et al. Effects of organic substitution on the yield and nutrient absorption and utilization of wheat under chemical fertilizer reduction (In Chinese)[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(10): 1768-1781. [裴雪霞, 党建友, 张定一, 等. 化肥减施下有机替代对小麦产量和养分吸收利用的影响[J]. 植物营养与肥料学报, 2020, 26(10): 1768-1781.]
( ![]() |
[21] |
Kong D N, Kang G D, Li P, et al. Effects of combined application of organic fertilizer on the active components of organic carbon in upland purple soil under reducing chemical fertilizer application (In Chinese)[J]. Chinese Journal of Ecology, 2021, 40(4): 1073-1080. [孔德宁, 康国栋, 李鹏, 等. 化肥减施条件下配施有机肥对旱地紫色土有机碳活性组分的影响[J]. 生态学杂志, 2021, 40(4): 1073-1080.]
( ![]() |
[22] |
Li F, Zhou F L, Huang Y N, et al. Effects of Chinese milk vetch and straw returning on soil nutrient and active organic carbon under reduced application of chemical fertilizer (In Chinese)[J]. Journal of Huazhong Agricultural University, 2020, 39(1): 67-75. [李峰, 周方亮, 黄雅楠, 等. 减施化肥下紫云英和秸秆还田对土壤养分及活性有机碳的影响[J]. 华中农业大学学报, 2020, 39(1): 67-75.]
( ![]() |
[23] |
Li Z Q, Zhang X, Wang J H, et al. Effect of chemical fertilizer reduction with return of Chinese milk vetch (Astragalus sinicus L.) on soil labile organic carbon and carbon conversion enzyme activities (In Chinese)[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 525-534. [李增强, 张贤, 王建红, 等. 化肥减施对紫云英还田土壤活性有机碳和碳转化酶活性的影响[J]. 植物营养与肥料学报, 2019, 25(4): 525-534.]
( ![]() |
[24] |
Chen J R, Qin W J, Wang S X, et al. Effects of reduced chemical fertilizer combined with Chinese milk vetch (Astragalus sinicus L.) incorporation on rice yield and nitrogen use efficiency in double-rice cropping system (In Chinese)[J]. Journal of Soil and Water Conservation, 2019, 33(6): 280-287. [陈静蕊, 秦文婧, 王少先, 等. 化肥减量配合紫云英还田对双季稻产量及氮肥利用率的影响[J]. 水土保持学报, 2019, 33(6): 280-287.]
( ![]() |
[25] |
Shan A Q, Pan J Q, Kang K J, et al. Effects of straw return with N fertilizer reduction on crop yield, plantdiseases and pests and potential heavy metal risk in a Chinese rice paddy : A field study of 2 consecutive wheat-rice cycles[J]. Environmental Pollution, 2021, 288: 117741.
( ![]() |
[26] |
Li C M, Wang X Y, Sun B. Characteristics of nutrient release and its affecting factors during plant residue decomposition under different climate and soil conditions (In Chinese)[J]. Acta Pedologica Sinica, 2017, 54(5): 1206-1217. [李昌明, 王晓玥, 孙波. 不同气候和土壤条件下秸秆腐解过程中养分的释放特征及其影响因素[J]. 土壤学报, 2017, 54(5): 1206-1217.]
( ![]() |
[27] |
Chen A L, Zhang W Z, Sheng R, et al. Long-term partial replacement of mineral fertilizer with in situ crop residues ensures continued rice yields and soil fertility: A case study of a 27-year field experiment in subtropical China[J]. Science of the Total Environment, 2021, 787: 147523.
( ![]() |
[28] |
Duan Y, Chen L, Li Y M, et al. N, P and straw return influence the accural of organic carbon fractions and microbial traits in a Mollisol[J]. Geoderma, 2021, 403: 115373.
( ![]() |
[29] |
Wang Q L, Zhu P F, Ding F. Effects of plastic film mulching and organic manure application on C, N, P stoichiometry of soil and crop (In Chinese)[J]. Chinese Journal of Ecology, 2020, 39(4): 1191-1197. [王庆鲁, 祝鹏飞, 丁凡. 地膜覆盖和有机肥施用对农田土壤和作物C、N、P化学计量学的影响[J]. 生态学杂志, 2020, 39(4): 1191-1197.]
( ![]() |
[30] |
Wu X, Zhang T, Wang R, et al. Effects of chemical fertilizer reduction combined with application of organic fertilizer and straw on fluvo-aquic soil aggregate distribution and stability in North China (In Chinese)[J]. Ecology and Environmental Sciences, 2020, 29(5): 933-941. [吴宪, 张婷, 王蕊, 等. 化肥减量配施有机肥和秸秆对华北潮土团聚体分布及稳定性的影响[J]. 生态环境学报, 2020, 29(5): 933-941.]
( ![]() |
[31] |
Li H M, Tian S Y, Li D D, et al. Effect of application of organic materials on content of labile organic carbon and composition of microbial community in fluvio-aquatic soil (In Chinese)[J]. Acta Pedologica Sinica, 2021, 58(3): 777-787. [李慧敏, 田胜营, 李丹丹, 等. 有机物料施用对潮土活性有机碳及微生物群落组成的影响[J]. 土壤学报, 2021, 58(3): 777-787.]
( ![]() |
[32] |
Nan L L, Tan J H, Guo Q E. Effects of fallow rotation modes on soil fungal communities in semi-arid area of the Loess Plateau, northwest China (In Chinese)[J]. Acta Ecologica Sinica, 2020, 40(23): 8582-8592. [南丽丽, 谭杰辉, 郭全恩. 黄土高原半干旱区轮作休耕模式对土壤真菌的影响[J]. 生态学报, 2020, 40(23): 8582-8592.]
( ![]() |
[33] |
Huang Z P, Wu H N, Tang X M, et al. Effects of reduced chemical fertilizer application on bacterial community structure and diversity in peanut rhizosphere soil (In Chinese)[J]. Journal of Peanut Science, 2020, 49(3): 8-13. [黄志鹏, 吴海宁, 唐秀梅, 等. 化肥减施对花生根际土壤细菌群落结构和多样性的影响[J]. 花生学报, 2020, 49(3): 8-13.]
( ![]() |
[34] |
Wang F, Chen Y Z, Wu Z D, et al. Effect of reduced chemical fertilizer application on bacterial community in soil at tea plantations (In Chinese)[J]. Acta Tea Sinica, 2020, 61(4): 160-167. [王峰, 陈玉真, 吴志丹, 等. 化肥减施对茶园土壤细菌群落结构及多样性的影响[J]. 茶叶学报, 2020, 61(4): 160-167.]
( ![]() |
[35] |
Wang J, Ma L J, Long Z H, et al. Effects of straw biochar on soil microbial metabolism and bacterial community composition in drip-irrigated cotton field (In Chinese)[J]. Environmental Science, 2020, 41(1): 420-429. [王晶, 马丽娟, 龙泽华, 等. 秸秆炭化还田对滴灌棉田土壤微生物代谢功能及细菌群落组成的影响[J]. 环境科学, 2020, 41(1): 420-429.]
( ![]() |
[36] |
Han J Q, Dong Y Y, Zhang M. Chemical fertilizer reduction with organic fertilizer effectively improve soil fertility and microbial community from newly cultivated land in the Loess Plateau of China[J]. Applied Soil Ecology, 2021, 165: 103966.
( ![]() |