2. 山东农业大学, 农业农村部作物水分生理与抗旱种质改良重点实验室, 山东泰安 271018
2. Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, Shandong 271018, China
耕地是粮食生产的命根子,耕地安全是保障粮食安全的基础。近年来,我国粮食连年丰收,连续7年保持在6.5×108吨以上[1],有力保障了我国粮食安全。但是,我国中低产田面积占耕地总面积比例高达70%,耕地地力总体偏低,耕地基础地力对粮食生产的贡献率仅为52%左右,较40年前降低了10~15个百分点。同时,随着我国经济社会高速发展,我国长期单一粗放、高强度的耕地资源集约化利用方式及过量的化肥、农药等高投入,导致我国农业主产区土壤质量普遍下降[2-6],土壤质量退化趋势明显,耕作层变浅、土壤养分失衡、生物群系减少等问题日趋严重[4],严重威胁着我国耕地可持续利用和国家粮食安全[7-10]。
多样化种植(Diversified cropping system)作为现代生态农业的重要内容之一,是解决以上问题的重要途径。多样化种植在世界范围内广泛分布,是实现农业可持续发展的重要技术。我国多样化种植发展历史悠久,早在距今4 650~4 300年间,在甘肃天水就有粟、黍、水稻、小麦、燕麦、青稞、大豆、荞麦和栗等9种作物的多样化生产结构,并逐渐形成不同作物生产空间上的高、中、低搭配及时间上的早、中、晚熟配合,显示了中国最早的多样化种植信息[11]。我国长久以来为了满足多样化的食物需求与自给自足的传统,小农户一直保持着多样化的种植方式,历经了五千多年的发展历程,多样化种植已经从过去为了获取多元食物结构逐渐演变为可实现粮食产能和生态效益共赢的现代农业发展模式[12]。在未来不断增长的粮食需求和耕地资源短缺背景下,多样化种植将会在提高生物多样性、生态服务功能和土地生产力等方面发挥越来越重要的作用[13-15],已成为生态学、土壤学、作物学、耕作学、微生物学等交叉领域的研究热点。目前,人们对多样化种植的理解多集中在提高生物多样性和发挥生态功能等方面,对其在提升耕地质量方面的作用关注较少,特别是多样化种植如何通过土壤物理、化学、微生物等方面的改善提高土壤质量和维持土壤健康的理解还较为局限。因此,本文总结并归纳了多样化种植的内涵,分析了多样化种植促进耕地土壤健康和提高生态服务功能的重要作用和意义,系统梳理了多样化种植对改善土壤物理、化学、生物多样性等方面的研究进展,展望了未来以提升耕地质量为核心发展多样化种植亟需关注的问题和重点研究方向,以期为多样化种植在我国耕地质量提升策略中发挥更大作用提供参考。
1 多样化种植的内涵和意义 1.1 多样化种植的内涵面对长期集约化单一种植下生态环境的风险挑战,构建可持续农业生态系统的新概念新方法已经成为现代农业发展的需求。Gliessman[16]提出传统的多物种系统可以作为设计可持续种植系统的模型。Jackson[17]提出模仿草原生态系统结构构建由若干功能不同物种组成的农业种植系统,以实现对气候变化、水资源短缺等越来越多环境约束的适应能力。近年来,随着绿色可持续农业的快速发展,多样化种植因在提高生态服务功能、可持续生产力、土壤质量等方面优势而日益受到关注[18-19]。
多样化种植的内涵多从“多样性”角度论述,包含了时间和空间维度,蕴含丰富的生态学原理,是生物多样性、植物相互作用、土壤多功能性等原理的实际应用。因此,国内外学者也将多样化种植描述为“作物多样化”、“作物多样性”或“多样化轮作”等[14,19-20],Cong等[20]对作物多样化的定义为“通过间作、作物轮作和覆盖作物,在一个农场系统中同时种植一系列作物物种及在非作物种植区增加植物多样性的农业措施”。Matson等[21]将用作物多样化来优化作物生产的种植系统描述为“有计划的多样性(Planned diversity)”。Malézieux等[22]描述的“多物种系统”是指在同一块土地上同时或混合种植几种植物。Messéan等[19]指出“多样化种植是作物生产多样化的行为或过程,包括用于粮食、油料、饲草、生物能源等一年生和多年生作物,使物种内部有更高的异质性以及在不同时空尺度上的生长方式”。由此可见,目前多样化种植的概念或内涵多聚焦在作物种类、间套作方式等某个具体方面,并未完全体现作物的时空维度多样性、生产过程的合理性及其功能属性的多重性。笔者认为,多样化种植的内涵除包含作物多样化或作物多样性含义外,还应包含种植方式的多样化和其多功能属性,即“多样化种植”为“在时间和空间的尺度上,在同一地块通过合理的轮作、间套作、混作或覆盖等方式增加作物多样性,实现提高生物多样性、系统生产力和生态服务功能的种植模式”。
和单作体系相比,多样化种植系统的标志之一是具有丰富的物种多样性和时空分类特征(图 1),如作物组合、轮作频率、间作强度、覆盖作物比例等[22],这不仅对优化作物生产至关重要,对通过平衡土壤生物多样性、提高养分利用效率和土壤健康也至关重要[23-24]。
|
图 1 多样化种植系统与低多样化种植系统比较[19] Fig. 1 Comparison between diversified cropping systems and low diversity cropping systems |
健康土壤培育是耕地产能提升的先决条件,是保障现代化农业高质量发展的根基。狭义的土壤健康,强调土壤生物能否保证植物的健康生长,尤其关注土壤病原菌。广义的土壤健康,强调在自然或管理的生态系统边界内,土壤所具有的保证持续生产、保持良好的水体和大气环境,促进植物、动物(人类)健康的能力[25],强调土壤的自然资源属性、环境属性和生态属性,其生态服务功能对保持生态系统生产力、生物多样性和环境服务能力至关重要[26]。
多样化种植不管从时间和空间尺度,从其生态属性和环境属性,还是“土壤-作物-环境”共同体层面均体现出对促进耕地土壤健康和提高生态服务功能的重要作用。在多样化种植系统中,通过合理轮/间/套作等方式增加豆科作物、一年生/多年生覆盖作物等优化种间和营养生态位差异,增加农田生物多样性和稳定性,提高资源利用效率和系统生产力,对培肥地力、降低土传病害、提高农田生态系统功能等具有重要意义[19,27]。多样化种植已被广泛证实可通过利用生态位分化和物种互作的正效应来提高粮食产量和养分利用效率,提高土壤质量,维护土壤健康。例如,在间套作种植系统中(图 2),由于地上部多样性的增加从而促进地下部生物多样性的形成,这对土壤肥力具有正的反馈作用,特别是将公认的养地作物-豆科作物纳入种植系统,作物通过根系向地下部输入的有机物质会相应增加,土壤中有机碳存储和生物固氮能力均显著增强[28-30]。同时,多样化种植促进种间互惠和土壤微生物多样性,促进作物对土壤中的各种营养元素进行均衡利用,提高养分利用效率,改良土壤结构,平衡生物种群多样性以降低病虫害发生,促进土壤健康,提高系统生产力[31-32]。
|
图 2 多样化种植较单一种植能够提高的土壤质量、生态系统稳定性和系统生产力(以间作为例) Fig. 2 Diversified cropping systems can improve soil quality, ecosystem stability and system productivity compared with monocultures(using the intercropping system as an example) |
多样化种植可以增强农业生态系统服务功能和抗逆能力,维持农田生态系统稳定性,提高系统生产力[33-34]。Tamburini等[27]比较了41 946项多样化种植和简单化种植的地上和地下生物多样性和生态系统服务的影响,结果表明,多样化种植增强了生物多样性、授粉、虫害控制、养分循环、土壤肥力和水的调节,而不影响作物产量。增强地上生物多样性促进了虫害控制和水的调节,增强地下生物多样性则加强了养分循环、土壤肥力和水的调节,大多数情况下,多样化种植实现了生态服务和作物产量的双赢。同时,多样化种植可以提高作物对不利生长条件的恢复力和适应性,增强系统生产力的长期稳定性。例如,Li等[35]通过在甘肃和宁夏设置的4个长期定位试验,研究了单作和间作模式的作物产量和产量时间稳定性,证明了间作体系的产量较相应单作平均增加22%,且具有更高的时间稳定性。来自11个试验的347处场地年产量数据显示,在假定的干旱情况下,更多样化的轮作系统可以显著增加玉米产量,并保持年生产力的稳定[36]。与单一种植相比,多样化种植可以通过丰富作物多样性来增强农田生态系统的稳定性,强化农田生态服务功能,提高土壤物理、化学、生物功能的相互作用[15,18],从而减少对农艺投入的依赖,在保持高产的同时,降低化肥农药投入,提高耕地可持续生产力,促进农业绿色可持续发展[12,37]。
2 多样化种植对提升耕地质量的重要作用耕地质量的保持和维护是健康土壤培育的核心。多样化种植对提升耕地质量的重要作用主要表现在对土壤物理、化学性质的改善,增加土壤生物多样性等方面。
2.1 多样化种植改善土壤物理性状良好的土壤物理性状是保证作物根系生长、保持高产稳产的必要条件。多样化种植一方面可利用不同作物地下根系形态差异及深浅搭配,通过生物耕作影响土壤结构;另一方面,多样化的作物种类带来的不同秸秆类型可通过直接还田、覆盖等形式影响土壤物理性质(图 3)。杨曾平[38]通过研究我国南方典型红壤性水稻土的双季稻种植农田冬种绿肥对土壤物理性质的影响,结果表明,双季稻冬闲期增加黑麦草、油菜和紫云英轮作显著降低了土壤容重,可以使土壤总孔隙度增加26.0%~33.4%,绿肥填闲后土壤团聚体的平均重量直径和标准平均重量直径也显著高于长期冬闲处理。在常规大田作物中增加根系发达和生物量较大黑麦草等绿肥作物能够改善土壤结构,降低地表径流,减少耕地侵蚀,提高土壤持水保水能力[39-40]。乔伟艳等[41]在我国南方单季稻区的研究结果也表明,与水稻-冬闲地块相比,冬闲轮作黑麦草可以降低水稻种植时耕层土壤容重,降幅可达10.7%,改善土壤物理性状。李楠等[42]在吉林西部的研究发现,在中度苏打盐碱土进行粮-草轮作后,土壤物理性质得到明显改善,土壤容重呈现逐渐下降的趋势,改善了盐碱土孔隙度状况。范倩玉等[43]以山西大同潮土土壤为研究对象,以荞麦连作为对照,探讨了油菜-荞麦、玉米-荞麦、马铃薯-荞麦、燕麦-荞麦4种多样化种植模式下土壤容重、总孔隙度、毛管孔隙度和田间持水量的变化,发现多样化的轮作增加了0~40 cm土层总孔隙度、毛管孔隙度和田间持水量,特别是油菜—荞麦轮作田块耕层土壤毛管孔隙度较对照处理提高了50%左右,说明适宜的多样化轮作模式可以显著改善土壤孔隙状况,增强土壤通气能力。Li等[35]通过在甘肃和宁夏设置的间作模式长期定位试验表明,不同作物间作可以增加土壤大团聚体含量,提高团聚体稳定性。宋丽萍[44]对比了苜蓿-苜蓿、苜蓿-休闲、苜蓿-小麦、苜蓿-玉米、苜蓿-马铃薯和苜蓿-谷子6种多样化轮作对陇中黄土高原雨养农田土壤团聚体稳定性的影响,结果表明,与单作苜蓿相比,苜蓿-玉米轮作模式能显著提高耕层土壤大团聚体数量和团聚体机械稳定性。Hazra等[45]通过在印度小麦-玉米轮作体系中增加鹰嘴豆(Cicer arietinum L.)、木豆(Cajanus cajan L.)等豆科轮作作物,土壤大团聚体数量、稳定性显著提高。
|
图 3 多样化种植系统改善土壤物理特性 Fig. 3 Diversified cropping system improves soil physical properties |
在多样化种植体系中,增加丰根系的豆科/覆盖作物可以通过形成生物孔隙(根通道)改善土壤结构,为根系生长减少阻力,提供氧气和养分[46]。有研究表明,多样化种植增加农田生态系统的生产力与根系的分布和数量显著相关[47]。相对于单作而言,多样化种植特别是轮间作系统中不同科属的作物根系形态差异一方面可通过生物耕作形成不同的生物孔隙,紧密的地下根网可疏松土壤,改善土壤结构,减少根系生长阻力,调节土壤水肥供应,且生物孔隙中可贮存大量的水分和养分,有利于根系对深层土壤资源的吸收和利用[48-49];另一方面,多样化种植系统往往同时拥有较高的地上部生物量,有机物还田量也会显著增加,特别是豆科/覆盖作物加入轮间作系统,较高的地上生物量可有效降低地表径流,拦截泥沙,减少土壤侵蚀[50],这对于我国南方丘陵、西北黄土高原的坡耕地及东北黑土区风蚀耕地的水土保持与耕地保护具有重要作用。
2.2 多样化种植改善土壤化学性质土壤化学性质是衡量土壤肥力状况的重要指标,土壤养分的丰缺程度影响着作物生长、发育和产量水平[51]。Furey和Tilman [52]的研究证明,与单一种植相比,16种多年生植物混作的土壤碳、氮、钾、钙、镁含量和阳离子交换能力显著增加,植株的氮、钾、钙和镁含量也显著增加,这表明植物多样性的增加导致了许多土壤肥力因子的增加,其原因可能是植物的多样性增加了植物养分和生产力,从而对土壤肥力起到正的反馈效应。但也有部分研究结果显示,一些轮作系统较单作也可能会出现土壤全氮、有效磷、速效钾含量的不同程度降低(表 1),这可能与轮间作作物选择、种植年限、土壤类型等因素相关[53-55]。
|
|
表 1 多样化种植对土壤化学性质的影响 Table 1 Effects of diversified cropping system on soil chemical properties |
土壤有机碳是土壤肥力的基础。已有研究表明,多样化种植更有利于土壤有机碳含量的增加[56-57]。从表 1例举的研究结果也可以看出,多样化种植在我国南北方不同的生态气候区、种植年限、作物搭配类型、土壤类型等条件下,较连作或常规轮作均表现出对土壤有机碳增加的正向作用,但增长幅度不一。最新研究表明,多样化种植系统可以增加碳输入的数量、质量和化学性状多样性,增强了生物-非生物相互作用,对土壤有机碳的形成和储存产生了积极影响[58]。向蕊等[56]从间作对团聚体碳库的影响机制方面阐述了增加作物多样性的间作模式可通过增加大团聚体碳对总有机碳的贡献促进土壤有机碳储量的增加。有研究证实,土壤碳贮量与植物多样性之间呈显著的正相关关系,植物多样性丰富的土壤固碳速率更高,更有利于储存更多的碳[59]。同时,豆科、禾本科等不同科属的植物残体联合还田能够显著提高土壤有机碳水平。Zhou等[60]研究结果表明,我国南方稻区普遍种植的豆科绿肥紫云英与水稻秸秆联合还田的土壤有机碳含量相比单独施用化肥处理分别提升15.7%和20.9%,且土壤质量得到显著改善。多样化种植特别是包含豆科植物的地块具有更多的地上和地下生物量。豆科作物秸秆因较低的C/N而分解速率较高,且较高的生物固氮能力、较多的残茬输入等因素改善了土壤结构、养分供应和生物功能,这些因素是有机碳提升的有利条件[61-62]。Yan等[63]最新研究结果表明,多样化种植系统中土壤团聚体稳定性的提高也是土壤有机碳储量提高的重要因素。杨彩红等[64]通过对比西北荒漠绿洲区6种不同作物轮作模式下土壤有机碳变化,结果证明不同的多样化种植系统其有机碳固存水平也存在差异,主要原因是不同的多样化种植导致了土壤有机碳组分差异而影响土壤固碳。相比于一年生作物系统,多样化种植能够显著提高土壤不同有机碳组分的库容和稳定性,降低有机碳矿化速率,促进有机碳的固存效率和稳定性[64-66]。但目前,在我国不同的气候条件、土壤类型、作物和轮作类型等条件下,不同的多样化种植系统其土壤有机碳矿化和固持特征、不同类别有机物料输入下土壤有机碳的周转机制、微生物差异驱动的有机碳固持机制、土壤-作物系统的碳周转机制等关键问题仍需要深入明确[67]。
多样化种植的种间互作能诱导作物的根系构型和矿质营养吸收相关基因的表达发生变化,形成空间上的营养生态位互补,增强根系吸收矿质营养的能力[68]。同时,多样化种植可以通过根系分泌物、真菌网络、功能微生物的种类和数量、土壤生物多样性、酶活性等改善根际环境,提高土壤中矿质营养生物有效性,促进作物对矿质养分的吸收和利用[69-70]。张成君等[71]通过在宁夏固原设置玉米-豌豆、玉米-玉米、两年生苜蓿、高粱-马铃薯、燕麦-玉米、马铃薯-燕麦、豌豆-高粱7种多样化的轮作模式,证实了与玉米-玉米连作相比,两年生苜蓿和豌豆-高粱模式有利于土壤有机碳、全氮、有效磷的累积和pH的降低。在典型的多样化种植系统中,豆科/禾本科间作可以通过改善相邻植物竞争吸收土壤中的氮素,实现氮素高效利用,缓解因大量氮肥施用而抑制豆科作物生物固氮的“氮阻遏”现象[72]。同时,多样化种植中不同作物的时空生态位差异可以更好地利用时间(不同时期)和空间(深层和浅层)分异下土壤和肥料中的氮素,降低土壤中氮的残留,提高土壤和肥料氮的利用率[73-74]。
多样化种植系统土壤养分与微生物群落组成和关键类群之间的关系更显著,从而增强了土壤、微生物和作物之间的生态联系。研究表明,较高的轮作多样性拥有更高的微生物多样性和群落稳定性、细菌-真菌网络的复杂性和稳定性、关键类群的丰富度和丰度,从而对养分循环和植物健康和适应性具有关键影响,如长轮作周期的美洲雀稗-美洲雀稗-花生-棉花轮作模式具有更丰富和丰度更大的关键微生物类群,土壤中总碳、氮、硝态氮、萃取态磷、镁、锌、铁、铜浓度均显著高于常规的花生-棉花-棉花轮作[75]。也有报道显示,小麦大蒜间作种植对小麦根际硝化和氨化细菌的增加起到了促进作用[76],而小麦蚕豆间作提高了土壤中氨氧化细菌(AOB)、氨氧化古菌(AOA)等氮转化相关微生物种群丰度和相关酶活性,促进了土壤氮素的有效保蓄和供应,提高了氮素利用效率[77]。目前,多样化种植如何影响这些土壤养分循环关键微生物类群进而影响土壤中的碳、氮、磷等元素过程及如何从分子、生化、生理和群落水平上认知多样化种植下土壤关键微生物组参与、影响元素循环的机制仍需深入探索。
多样化种植系统中不同种属的根系分泌物对养分活化和利用有显著的促进作用。根系分泌的有机酸类物质能够活化根际土壤中的磷、铁、钾等,将其转变为植物可以利用的养分。Fan等[78]研究证实,玉米根系分泌物中的一种黄酮类物质-染料木素对豆科作物的结瘤固氮有很好的促进作用。Li等[79]的研究发现,鹰嘴豆的根际效应可以改善小麦的磷营养,主要原因是由于鹰嘴豆根系分泌更多的酸性磷酸酶使其根际土壤酸性磷酸酶活性较玉米根际酸性磷酸酶活性高出1倍~2倍。这些研究表明,一些豆科作物如蚕豆、豌豆、鹰嘴豆等能够活化利用土壤难溶性磷,当这些豆科作物引入多样化种植系统后,豆科作物的根系能够分泌质子和低分子量有机酸,活化土壤中难溶性磷,促进作物种间的磷吸收,可以促进小麦、玉米等主要粮食作物更高效地吸收磷[80]。
2.3 多样化种植促进土壤生物多样性土壤生物多样性是耕地土壤健康的重要表征[87]。土壤生物多样性和地上部生物多样性紧密相关[88]。合理的农业管理措施与种植制度通过调控有益微生物而服务于农业生产[89],如作物轮作、免耕和覆盖作物等能够调控土壤微生物多样性和生物功能,提高作物生产力(图 4)。单一作物长期连作会使土壤微生物量显著下降、微生物多样性发生改变、群落结构失衡[90],而多样化种植系统可以显著提高土壤生物多功能性和微生物多样性[91-92]。研究表明,作物轮作系统中Shannon和Chao1指数显著高于作物单作系统,在作物单作和轮作系统中,丰富亚群落和稀有亚群落的Shannon和Chao1指数存在显著差异[93]。Li等[94]的研究证实了多样化的轮作制度在影响土壤微生物多样性和多功能关系的重要性:轮作制度而非施肥解释了土壤多功能性(52%)、细菌物种丰富度(69%)和群落组成(61%)大部分变异来源,说明尽管先前研究主要关注农田生态系统中的养分输入,但水稻与油菜轮作结合施肥可以极大改善土壤多功能性。同时,多样化的种植系统通过细菌物种丰富度和群落组成的变化间接控制土壤多功能性,引导了微生物群落的分化[94-95]。有研究对5年的轮作田中土壤细菌和真菌群落的组成和多样性分析发现,在轮作期间,特别是在增加覆盖作物的情况下,真菌中致病功能群的相对丰度降低,而菌根群增加,并显著增加了参与硝化和反硝化作用细菌类群的相对丰度[33],说明多样化种植可以增加宿主多样性而减弱病原菌的攻击能力,降低了农田生态系统病害发生率。
|
图 4 多样化种植系统促进土壤生物多样性,提高土壤生物功能 Fig. 4 Diversified cropping system improves soil biology diversity and biological function |
丛枝菌根真菌(AMF)是土壤微生物群落的关键组成部分,能与大多数陆地植物建立共生关系,在促进养分吸收、维持土壤健康等方面起着至关重要的作用[96-97]。Guzman等[98]对来自美国31个小规模农场的混作和单作土壤和根系样品进行采集,分析了多样化种植系统和土壤性状对AMF丰富度、多样性和群落组成以及菌根侵染率的影响,发现混作农田中AMF在其他作物上的定殖程度更高,其土壤阳离子交换量和碳氮水平也高于单作。此结果进一步说明作物多样性是丰富AMF群落的关键因素[99]。同时有研究指出,多样化种植下土壤有机碳和微生物量碳/氮水平的变化可能是影响土壤微生物群落结构的主要驱动因素[100-101]。
土壤酶活性是表征土壤生物活性的重要指标。植物根系分泌物、土壤微生物和动植物残体是土壤酶的重要来源,多样化种植中不同作物的根系特征、养分消耗、微生物活性等存在时空差异,导致此体系下土壤酶活性与养分、根际环境、微生物等之间相互关系复杂多样[71]。孙倩等[102]在宁夏中部干旱带砂壤土条件下研究多样化种植与单作对土壤酶活性的影响,研究结果表明,多样化的轮作种植其土壤过氧化氢酶、脲酶和碱性磷酸酶活性均高于单一种植模式,籽粒苋和黑豆参与轮作能够改善土壤酶活性状况。丁俊男等[103]在东北黑土区比较了玉米连作、大豆连作、玉米-大豆-玉米和玉米-大豆-大豆4种种植模式的土壤酶活性特征,结果表明,与连作玉米相比,以玉米-大豆-大豆为典型代表的轮作种植体系可有效增强土壤中β-葡糖苷酶、纤维素酶、硝酸还原酶和脲酶活性,提高了土壤微生物群落的多样性。杨曾平等[104]通过我国南方典型水稻土的双季稻种植下长期冬种油菜、紫云英、黑麦草等不同绿肥作物的研究证明,与冬季休闲处理相比,长期冬种绿肥翻压能提高水稻土脲酶、转化酶和脱氢酶等酶活性,说明水稻轮作增加豆科绿肥会促进土壤生物学活性的增强,提高土壤肥力。
土壤动物是土壤生物多样性的重要组成部分,在维持土壤健康和生态系统功能中发挥着至关重要的作用[105]。土壤动物群落组成和多样性与土壤的物理、化学及微生物特性的变化密切相关,并可以通过取食作用和非取食作用调控土壤微生物及其主导的生物化学过程而影响土壤肥力,是土壤健康变化的良好指示生物[106]。多样化种植可以提高土壤动物多样性和密度[107-109],显著提高土壤肥力[106,110]。马胜兰等[111]研究表明,相比于玉米-小麦轮作,玉米-油菜和玉米-红薯-小麦的轮作模式更有利于土壤动物种类和数量提高。Ashworth等[112]发现,连续种植棉花使蚯蚓群落大小降至该地平均水平的50%以下,而棉花-玉米轮作或大豆-棉花的多样化轮作模式可消除种植棉花对蚯蚓群落的不利影响,维持较高的蚯蚓数量。同时,适宜的多样化种植策略可以发挥土壤动物多样性优势[113],一方面,土壤中的原生动物通过自身活动以及分泌的物质可以改变土壤的物理结构及化学性质。例如,蚯蚓和白蚁通过穿梭、掘穴等非取食活动改变土壤结构,产生的生物孔隙可以增加土壤透气性,影响土壤有机质分布及腐殖质的形成[114];另一方面,原生动物通过取食细菌或真菌可以改变土壤微生物的群落结构,控制病原微生物群落,影响土壤有机质分解,从而影响养分周转及植物生长[115]。多样化种植可以改变土壤中病原菌群落和功能,进而控制土传病害的发生,维持土壤健康。
3 展望如何利用生态学原理设计更多样化、更有弹性的多样化种植体系发挥其对土壤质量提升的生态功能,如何强化作物多样化之间正的相互作用促进耕地土壤健康,如何处理好多样化种植下农机农艺结合及如何将多样化种植融入到现代集约化的农业生产体系中提升土地生产力,关系到多样化种植在耕地质量提升中发挥更大作用。但目前以提升耕地质量为核心的多样化种植其理论体系、机艺融合的生产技术及装备、因地制宜的高效多样化种植模式、政策支撑性等方面仍存在一些短板和问题。从现有多样化种植提升耕地质量、发挥生态功能促进耕地土壤健康等方面的发展趋势看,建议未来应加强以下几个方面的研究和探索:
(1)发展多功能型的多样化种植模式。充分利用间/套/混/轮作、覆盖等方式和豆科作物生物固氮和培肥土壤潜力,将豆科作物/绿肥引入主要种植体系,发展新型农作制度,构建耕地用养结合型多样化种植模式;在保障我国主要粮食作物现有产量水平前提下,优化种植结构,发展区域性、高产高效的多功能型多样化种植模式,如大豆玉米带状复合种植模式;利用非生物资源互补和种间互惠机制发展资源低投入、耕地质量提升和增产的绿色低碳型多样化种植模式;利用不同种类植物功能特性探索障碍土壤的生物修复型多样化种植模式。
(2)完善多样化种植提升耕地质量的理论体系。在未来研究中,需要进一步挖掘多样化种植体系中的生物多样性、养分循环与调控、生态服务功能等生态学原理,利用土壤学、作物学、生态学等学科交叉丰富和完善多样化种植模式下土壤、作物和环境之间互作和调控的综合理论体系,如新型农作制下“作物-土壤-根系”共同体综合调控原理、不同尺度的生态多功能性和环境响应机制、生物多样性驱动下土壤质量演变等。因地制宜建立适用于我国不同生态区的多样化种植提升耕地质量的理论支撑体系,支撑区域农业绿色发展。
(3)建立适应现代农业发展的多样化种植技术体系。发展多样化种植必须要与我国绿色农业、可持续农业、集约化农业的发展相结合,需从生态属性、农艺属性、经济属性等方面选育出适宜多样化种植的专用品种或品种组合、研发出最优化的机艺融合关键技术、控制病虫草害的绿色生产技术及全程机械化的配套农机装备来提升多样化种植系统生产效率的同时兼顾耕地的用养结合和可持续生产,实现农机农艺高效融合、资源低投入、环境友好、高产稳产的多样化种植技术体系。
(4)多样化种植模式的可应用性和推广策略。我国多样化种植分布广泛,种类多样,需要根据区域特点扩大多样化种植在我国农业绿色发展中的重要作用。从顶层设计、政策引导、思想重视等方面充分认识多样化种植对提升耕地质量、强化生态功能、保障粮食安全等方面的重要性,在区域宏观农业规划、种植结构调整、农业科技创新等方面加大政策和资金支持力度。在有条件地区,加速推进多样化种植技术体系研发和示范推广工作,建立区域性、特色化、多功能性的多样化种植模式样板,形成覆盖生产流程的综合技术方案与应用推广策略。
| [1] |
National Bureau of Statistics. The National Bureau of Statistics on the data of grain production in 2021Republic of China. Bulletin of the national survey on soil pollution status[R/OL]. (2021-12-06)[2022-04-16]. http://www.stats.gov.cn/tjsj/zxfb/202112/t20211206_1825058.html.[国家统计局. 国家统计局关于2021年粮食产量数据的公告[R/OL]. (2021-12-06)[2022-04-16]. http://www.stats.gov.cn/tjsj/zxfb/202112/t20211206_1825058.html.]
( 0) |
| [2] |
Zhou Y, Li X H, Liu Y S. Cultivated land protection and rational use in China[J]. Land Use Policy, 2021, 106: 105454. DOI:10.1016/j.landusepol.2021.105454
( 0) |
| [3] |
Sun T, Feng X M, Lal R, et al. Crop diversification practice faces a tradeoff between increasing productivity and reducing carbon footprints[J]. Agriculture, Ecosystems & Environment, 2021, 321: 107614.
( 0) |
| [4] |
Liu X B, Yang L. Arable land degradation and serious pollution in China[J]. Ecological Economy, 2015(3): 6-9. DOI:10.3969/j.issn.1671-4407.2015.03.002
( 0) |
| [5] |
Ministry of Agriculture and Rural Affairs. Issued notification by the Ministry of Agriculturefor "Cultivated Land Quality Protection and Improvement Action Plan"[R/OL]. (2015-10-28)[2021-04-16]. http://www.moa.gov.cn/nybgb/2015/shiyiqi/201712/t20171219_6103894.htm.[农业农村部. 农业部关于印发《耕地质量保护与提升行动方案》的通知[R/OL]. (2015-10-28)[2021-04-16]. http://www.moa.gov.cn/nybgb/2015/shiyiqi/201712/t20171219_6103894.htm.]
( 0) |
| [6] |
Cui Z L, Chen X P, Zhang F S. Current nitrogen management status and measures to improve the intensive wheat–maize system in China[J]. Ambio, 2010, 39(5): 376-384.
( 0) |
| [7] |
Zhang T L. Protecting soil health of cultivated land to promote high-quality development of agriculture in China (In Chinese)[J]. Soils, 2021, 53(1): 1-4. [张桃林. 守护耕地土壤健康支撑农业高质量发展[J]. 土壤, 2021, 53(1): 1-4.]
( 0) |
| [8] |
Xun G, Song Y K, Cheng X Y. Impacts of the land fallow and crop rotation practice on grain security in China and solutions (In Chinese)[J]. Research of Agricultural Modernization, 2017, 38(4): 681-687. [寻舸, 宋彦科, 程星月. 轮作休耕对我国粮食安全的影响及对策[J]. 农业现代化研究, 2017, 38(4): 681-687.]
( 0) |
| [9] |
Shen R F, Wang C, Sun B. Soil related scientific and technological problems in implementing strategy of "storing grain in land and technology" (In Chinese)[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 135-144. [沈仁芳, 王超, 孙波. "藏粮于地、藏粮于技" 战略实施中的土壤科学与技术问题[J]. 中国科学院院刊, 2018, 33(2): 135-144.]
( 0) |
| [10] |
Shen R F, Yan X Y, Zhang G L, et al. Status quo of and strategic thinking for the development of soil science in China in the new era (In Chinese)[J]. Acta Pedologica Sinica, 2020, 57(5): 1051-1059. [沈仁芳, 颜晓元, 张甘霖, 等. 新时期中国土壤科学发展现状与战略思考[J]. 土壤学报, 2020, 57(5): 1051-1059.]
( 0) |
| [11] |
Su H Y. Geographical background and influence of the earliest agricultural diversification in China (In Chinese)[J]. Agricultural Archaeology, 2015(3): 17-23. [苏海洋. 论中国最早的农业多样化产生的地理背景及影响[J]. 农业考古, 2015(3): 17-23.]
( 0) |
| [12] |
Yang Z Q, Xue L, Xue Y, et al. Research progress on agricultural crop diversification (In Chinese)[J]. Agricultural Outlook, 2019, 15(11): 51—56, 62. [杨志青, 薛领, 雪燕, 等. 农业种植多样化研究进展[J]. 农业展望, 2019, 15(11): 51—56, 62.]
( 0) |
| [13] |
Zeng L L, Li X Y, Ruiz-Menjivar J. The effect of crop diversity on agricultural eco-efficiency in China: A blessing or a curse?[J]. Journal of Cleaner Production, 2020, 276: 124243. DOI:10.1016/j.jclepro.2020.124243
( 0) |
| [14] |
Shah K K, Modi B D, Pandey H P, et al. Diversified crop rotation: An approach for sustainable agriculture production[J]. Advances in Agriculture, 2021, 1-9.
( 0) |
| [15] |
Viguier L, Cavan N, Bockstaller C, et al. Combining diversification practices to enhance the sustainability of conventional cropping systems[J]. European Journal of Agronomy, 2021, 127: 126279. DOI:10.1016/j.eja.2021.126279
( 0) |
| [16] |
Gliessman S R. Agroecosystem sustainability: Developing practical strategies . Boca Raton, Boca Raton, Florida, USA: CRC Press, 2001.
( 0) |
| [17] |
Jackson W. Natural systems agriculture: A truly radical alternative[J]. Agriculture, Ecosystems & Environment, 2002, 88(2): 111-117.
( 0) |
| [18] |
Yang T, Siddique K H M, Liu K. Cropping systems in agriculture and their impact on soil health-A review[J]. Global Ecology and Conservation, 2020, 23: e01118. DOI:10.1016/j.gecco.2020.e01118
( 0) |
| [19] |
Messéan A, Viguier L, Paresys L, et al. Enabling crop diversification to support transitions toward more sustainable European agrifood systems[J]. Frontiers of Agricultural Science and Engineering, 2021, 8(3): 474-480.
( 0) |
| [20] |
Cong W F, Zhang C, Li C J, et al. Designing diversified cropping systems in China: Theory, approaches and implementation[J]. Frontiers of Agricultural Science and Engineering, 2021, 8(3): 362-372.
( 0) |
| [21] |
Matson P A, Parton W J, Power A G, et al. Agricultural intensification and ecosystem properties[J]. Science, 1997, 277(5325): 504-509. DOI:10.1126/science.277.5325.504
( 0) |
| [22] |
Malézieux E, Crozat Y, Dupraz C, et al. Mixing plant species in cropping systems: Concepts, tools and models. A review[J]. Agronomy for Sustainable Development, 2009, 29(1): 43-62. DOI:10.1051/agro:2007057
( 0) |
| [23] |
Barbieri P, Pellerin S, Seufert V, et al. Changes in crop rotations would impact food production in an organically farmed world[J]. Nature Sustainability, 2019, 2(5): 378-385. DOI:10.1038/s41893-019-0259-5
( 0) |
| [24] |
Gurr G M, Lu Z X, Zheng X S, et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture[J]. Nature Plants, 2016, 2(3): 1-4.
( 0) |
| [25] |
Zhang J L, Zhang J Z, Shen J B, et al. Soil health and agriculture green development: Opportunities and challenges (In Chinese)[J]. Acta Pedologica Sinica, 2020, 57(4): 783-796. [张俊伶, 张江周, 申建波, 等. 土壤健康与农业绿色发展: 机遇与对策[J]. 土壤学报, 2020, 57(4): 783-796.]
( 0) |
| [26] |
Adhikari K, Hartemink A E. Linking soils to ecosystem services—A global review[J]. Geoderma, 2016, 262: 101-111. DOI:10.1016/j.geoderma.2015.08.009
( 0) |
| [27] |
Tamburini G, Bommarco R, Wanger T C, et al. Agricultural diversification promotes multiple ecosystem services without compromising yield[J]. Science Advances, 2020, 6(45): eaba1715. DOI:10.1126/sciadv.aba1715
( 0) |
| [28] |
Li L. Intercropping enhances agroecosystem services and functioning: Current knowledge and perspectives (In Chinese)[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403-415. [李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望[J]. 中国生态农业学报, 2016, 24(4): 403-415.]
( 0) |
| [29] |
Zeng Z H. Progress and perspective of legume-Gramineae rotations (In Chinese)[J]. Chinese Journal of Eco-Agriculture, 2018, 26(1): 57-61. [曾昭海. 豆科作物与禾本科作物轮作研究进展及前景[J]. 中国生态农业学报, 2018, 26(1): 57-61.]
( 0) |
| [30] |
He H M, Liu L N, Munir S, et al. Crop diversity and pest management in sustainable agriculture[J]. Journal of Integrative Agriculture, 2019, 18(9): 1945-1952. DOI:10.1016/S2095-3119(19)62689-4
( 0) |
| [31] |
Gooding M J, Kasyanova E, Ruske R, et al. Intercropping with pulses to concentrate nitrogen and sulphur in wheat[J]. Journal of Agricultural Science, 2007, 145(5): 469-479. DOI:10.1017/S0021859607007241
( 0) |
| [32] |
Brussaard L, de Ruiter P C, Brown G G. Soil biodiversity for agricultural sustainability[J]. Agriculture, Ecosystems & Environment, 2007, 121(3): 233-244.
( 0) |
| [33] |
Yang L N, Pan Z C, Zhu W, et al. Enhanced agricultural sustainability through within-species diversification[J]. Nature Sustainability, 2019, 2(1): 46-52. DOI:10.1038/s41893-018-0201-2
( 0) |
| [34] |
Liu C, Plaza-Bonilla D, Coulter J A, et al. Diversifying crop rotations enhances agroecosystem services and resilience[J]. Advances in Agronomy, 2022, 173: 299-335.
( 0) |
| [35] |
Li X F, Wang Z G, Bao X G, et al. Long-term increased grain yield and soil fertility from intercropping[J]. Nature Sustainability, 2021, 4(11): 943-950. DOI:10.1038/s41893-021-00767-7
( 0) |
| [36] |
Bowles T M, Mooshammer M, Socolar Y, et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America[J]. One Earth, 2020, 2(3): 284-293. DOI:10.1016/j.oneear.2020.02.007
( 0) |
| [37] |
Yang L. Study on productive capacity and environmental effects of different grain rotation patterns in North China[D]. Baoding, Hebei: Hebei Agricultural University, 2018.[杨羚. 华北地区不同粮饲轮作模式生产能力与环境效应研究[D]. 河北保定: 河北农业大学, 2018.]
( 0) |
| [38] |
Yang Z P. Study on the effect of long-term winter planting green manure on the quality of reddish paddy soil and the sustainability of productivity[D]. Changsha: Hunan Agricultural University, 2011.[杨曾平. 长期冬种绿肥对红壤性水稻土质量和生产力可持续性影响的研究[D]. 长沙: 湖南农业大学, 2011.]
( 0) |
| [39] |
He H B, Zhang Y W, Cheng J K, et al. Effects of planting Italian ryegrass(Lolium multiflorum L.) during winterleisure on soil properties in paddy fields (In Chinese)[J]. Ecological Science, 2019, 38(2): 155-161. [何宏斌, 张钰薇, 程俊康, 等. 冬闲期种植多花黑麦草对稻田土壤性状的影响[J]. 生态科学, 2019, 38(2): 155-161.]
( 0) |
| [40] |
Li H K, Zhang G J, Zhao Z Y, et al. Effects of grass planting on soil physical properties in dryland orchards of Weibei Loess Plateau (In Chinese)[J]. Scientia Agricultura Sinica, 2008, 41(7): 2070-2076. DOI:10.3864/j.issn.0578-1752.2008.07.026 [李会科, 张广军, 赵政阳, 等. 渭北黄土高原旱地果园生草对土壤物理性质的影响[J]. 中国农业科学, 2008, 41(7): 2070-2076.]
( 0) |
| [41] |
Qiao W Y, Gu H R, Shen Y X. Effects of planting Italian ryegrass in winter fallow fields on soil fertility and microorganisms (In Chinese)[J]. Pratacultural Science, 2017, 34(2): 240-245. [乔伟艳, 顾洪如, 沈益新. 稻茬种植多花黑麦草对土壤肥力和微生物组成的影响[J]. 草业科学, 2017, 34(2): 240-245.]
( 0) |
| [42] |
Li N, Li Q, Liu C G, et al. Effect of grain-grass rotation on saline soil in western Jilin Province (In Chinese)[J]. Journal of Northeast Agricultural Sciences, 2019, 44(5): 38-42. [李楠, 李强, 刘春光, 等. 粮-草轮作对吉林省西部盐渍化土壤的改良效果[J]. 东北农业科学, 2019, 44(5): 38-42.]
( 0) |
| [43] |
Fan Q Y, Li J, Liu Z H, et al. Effects of different rotation patterns on soil physical properties of fluvosoil (In Chinese)[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(8): 1267-1270. DOI:10.3969/j.issn.1002-2481.2020.08.23 [范倩玉, 李晋, 刘振华, 等. 不同轮作模式对潮土土壤物理性状的影响[J]. 山西农业科学, 2020, 48(8): 1267-1270.]
( 0) |
| [44] |
Song L P. Study on field water evapotranspiration characteristics and soil water recovery effect of grass-field rotation system in Loess Plateau[D]. Lanzhou: Gansu Agricultural University, 2016.[宋丽萍. 黄土高原草田轮作系统田间水分蒸散特性及土壤水分恢复效应研究[D]. 兰州: 甘肃农业大学, 2016.]
( 0) |
| [45] |
Hazra K K, Nath C P, Singh U, et al. Diversification of maize-wheat cropping system with legumes and integrated nutrient management increases soil aggregation and carbon sequestration[J]. Geoderma, 2019, 353: 308-319. DOI:10.1016/j.geoderma.2019.06.039
( 0) |
| [46] |
Li S X, Zheng X Q, Yuan D W, et al. Effects of biological tillage on physicochemical properties and soil enzyme activity and growth and quality of Brassica oleracea var. italica (In Chinese)[J]. Chinese Journal of Eco-Agriculture, 2012, 20(8): 1018-1023. [李双喜, 郑宪清, 袁大伟, 等. 生物耕作对土壤理化特性、酶活性及青花菜生长和品质的影响[J]. 中国生态农业学报, 2012, 20(8): 1018-1023.]
( 0) |
| [47] |
Streit J, Meinen C, Rauber R. Intercropping effects on root distribution of eight novel winter faba bean genotypes mixed with winter wheat[J]. Field Crops Research, 2019, 235: 1-10. DOI:10.1016/j.fcr.2019.02.014
( 0) |
| [48] |
Zhang F B, Hou Y X, Ao Y Y, et al. Root-soil interaction under soil compaction (In Chinese)[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(3): 531-543. [张方博, 侯玉雪, 敖园园, 等. 土壤紧实胁迫下根系–土壤的相互作用[J]. 植物营养与肥料学报, 2021, 27(3): 531-543.]
( 0) |
| [49] |
Zhang J Q, Zheng X Q, Li S X, et al. Dynamic response of soil microecological environment to earthworm tillage in watermelon continuous cropping (In Chinese)[J]. Acta Agriculturae Shanghai, 2021, 37(2): 81-87. [张娟琴, 郑宪清, 李双喜, 等. 西瓜连作土壤微生态环境对生物耕作的动态响应[J]. 上海农业学报, 2021, 37(2): 81-87.]
( 0) |
| [50] |
Liang Y T, Xu T H, Jin L F, et al. Research advances of application of legumes in ecological restoration (In Chinese)[J]. Journal of Anhui Agricultural Sciences, 2014, 42(20): 6637—6638, 6655. DOI:10.3969/j.issn.0517-6611.2014.20.043 [梁彦涛, 徐太海, 金连丰, 等. 豆科植物在生态恢复方面的应用研究进展[J]. 安徽农业科学, 2014, 42(20): 6637—6638, 6655.]
( 0) |
| [51] |
Qi X, Chen L D, Li Q, et al. Effect of land use on seasonal dynamics of soil nitrogen in traditional agricultural area of China: A case study in Yanqing Basin (In Chinese)[J]. Ecology and Environment, 2007, 16(2): 564-568. DOI:10.3969/j.issn.1674-5906.2007.02.059 [齐鑫, 陈利顶, 李琪, 等. 传统农业区土地利用对土壤氮素季节动态变化的影响——以官厅水库上游延庆盆地为例[J]. 生态环境, 2007, 16(2): 564-568.]
( 0) |
| [52] |
Furey G N, Tilman D. Plant biodiversity and the regeneration of soil fertility[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(49): e2111321118.
( 0) |
| [53] |
Wu Y H, Wang L, Cui Y Z, et al. Rice yield, quality, and soil fertility in response to straw incorporation and rotation pattern (In Chinese)[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(11): 1926-1937. DOI:10.11674/zwyf.2021150 [吴玉红, 王吕, 崔月贞, 等. 轮作模式及秸秆还田对水稻产量、稻米品质及土壤肥力的影响[J]. 植物营养与肥料学报, 2021, 27(11): 1926-1937.]
( 0) |
| [54] |
Jing Y Z, Guo X H, Wang X L, et al. Effects of intercropping with ginger on yield and quality of flue-cured tobacco and quantity of soil bacteria and physicochemical properties (In Chinese)[J]. Shandong Agricultural Sciences, 2022, 54(1): 86-94. [景艺卓, 郭笑恒, 王晓丽, 等. 间作生姜对烤烟产质量、土壤细菌数量及理化性质的影响[J]. 山东农业科学, 2022, 54(1): 86-94.]
( 0) |
| [55] |
Yan C B, Hu F C, Zhao Y, et al. Effects of intercropping Pinto peanut in litchi orchard on soil physicochemical properties, enzyme activities, bacterial community structure and diversity (In Chinese)[J]. Soil and Fertilizer Sciences in China, 2022(5): 203-210. [颜彩缤, 胡福初, 赵亚, 等. 荔枝园间作平托花生对土壤理化性质、酶活性和细菌群落结构及多样性的影响[J]. 中国土壤与肥料, 2022(5): 203-210.]
( 0) |
| [56] |
Xiang R, Yi W B, Zhao W, et al. Effects of intercropping on soil aggregate-associated organic carbon storage and nitrogen regulation (In Chinese)[J]. Journal of Soil and Water Conservation, 2019, 33(5): 303-308. [向蕊, 伊文博, 赵薇, 等. 间作对土壤团聚体有机碳储量的影响及其氮调控效应[J]. 水土保持学报, 2019, 33(5): 303-308.]
( 0) |
| [57] |
Cong W F, Hoffland E, Li L, et al. Intercropping enhances soil carbon and nitrogen[J]. Global Change Biology, 2015, 21(4): 1715-1726. DOI:10.1111/gcb.12738
( 0) |
| [58] |
Zhang K L, Maltais-Landry G, Liao H L. How soil biota regulate C cycling and soil C pools in diversified crop rotations[J]. Soil Biology and Biochemistry, 2021, 156: 108219. DOI:10.1016/j.soilbio.2021.108219
( 0) |
| [59] |
Yang Y, Tilman D, Furey G, et al. Soil carbon sequestration accelerated by restoration of grassland biodiversity[J]. Nature Communications, 2019, 10(1): 1-7. DOI:10.1038/s41467-018-07882-8
( 0) |
| [60] |
Zhou G P, Chang D N, Gao S J, et al. Co-incorporating leguminous green manure and rice straw drives the synergistic release of carbon and nitrogen, increases hydrolase activities, and changes the composition of main microbial groups[J]. Biology and Fertility of Soils, 2021, 57(4): 547-561. DOI:10.1007/s00374-021-01547-3
( 0) |
| [61] |
Wang J X, Lu X N, Zhang J E, et al. Intercropping perennial aquatic plants with rice improved paddy field soil microbial biomass, biomass carbon and biomass nitrogen to facilitate soil sustainability[J]. Soil and Tillage Research, 2021, 208: 104908. DOI:10.1016/j.still.2020.104908
( 0) |
| [62] |
Virk A L, Lin B J, Kan Z R, et al. Simultaneous effects of legume cultivation on carbon and nitrogen accumulation in soil[J]. Advances in Agronomy, 2022, 171: 75-110.
( 0) |
| [63] |
Yan Z J, Zhou J, Yang L, et al. Diversified cropping systems benefit soil carbon and nitrogen stocks by increasing aggregate stability: Results of three fractionation methods[J]. Science of the Total Environment, 2022, 824: 153878. DOI:10.1016/j.scitotenv.2022.153878
( 0) |
| [64] |
Yang C H, Geng Y X, Fu X Z, et al. Effects of No tillage with wheat stubble on soil organic carbon in wheat-maize rotation system (In Chinese)[J]. Journal of Triticeae Crops, 2022, 42(3): 380-388. [杨彩红, 耿艳香, 伏星舟, 等. 麦茬免耕对不同麦玉轮作方式土壤有机碳含量的影响[J]. 麦类作物学报, 2022, 42(3): 380-388.]
( 0) |
| [65] |
Rui Y C, Jackson R D, Cotrufo M F, et al. Reply to Lajtha and Silva: Agriculture and soil carbon persistence of grassland-derived Mollisols[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(30): e2204142119.
( 0) |
| [66] |
Zhou R R, Liu Y, Dungait J A J, et al. Microbial necromass in cropland soils: A global meta-analysis of management effects[J]. Global Change Biology, 2023, 29(7): 1998-2014. DOI:10.1111/gcb.16613
( 0) |
| [67] |
Zhang W L, Kolbe H, Zhang R L. Research progress of SOC functions and transformation mechanisms (In Chinese)[J]. Scientia Agricultura Sinica, 2020, 53(2): 317-331. [张维理, Kolbe H, 张认连. 土壤有机碳作用及转化机制研究进展[J]. 中国农业科学, 2020, 53(2): 317-331.]
( 0) |
| [68] |
Fu X P, Wu F Z, Wu X, et al. Advances in the mechanism of improving crop mineral nutrients in intercropping and relay intercropping systems (In Chinese)[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 525-535. [付学鹏, 吴凤芝, 吴瑕, 等. 间套作改善作物矿质营养的机理研究进展[J]. 植物营养与肥料学报, 2016, 22(2): 525-535.]
( 0) |
| [69] |
Wang X Y, Gao Y Z. Advances in the mechanism of cereal/legume intercropping promotion of symbiotic nitrogen fixation (In Chinese)[J]. Chinese Science Bulletin, 2020, 65(2): 142-149. [王新宇, 高英志. 禾本科/豆科间作促进豆科共生固氮机理研究进展[J]. 科学通报, 2020, 65(2): 142-149.]
( 0) |
| [70] |
Shan G L, Chu X H, Chen G, et al. The response of soil nutrients and enzyme activities to grazing and fencing in sub-alpine meadow of northwest Yunnan (In Chinese)[J]. Chinese Journal of Grassland, 2018, 40(4): 82-87. [单贵莲, 初晓辉, 陈功, 等. 滇西北亚高山草甸土壤养分及酶活性对放牧和封育的响应[J]. 中国草地学报, 2018, 40(4): 82-87.]
( 0) |
| [71] |
Zhang C J, Shi S L, Kang W J, et al. Characteristics of soil enzyme activity and its relationship with chemical properties under different rotation patterns (In Chinese)[J]. Chinese Journal of Grassland, 2020, 42(5): 92-102. [张成君, 师尚礼, 康文娟, 等. 不同轮作模式土壤酶活性特征及与化学性质的关系[J]. 中国草地学报, 2020, 42(5): 92-102.]
( 0) |
| [72] |
Salvagiotti F, Cassman K G, Specht J E, et al. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review[J]. Field Crops Research, 2008, 108(1): 1-13. DOI:10.1016/j.fcr.2008.03.001
( 0) |
| [73] |
Liang K, Jiang Y F, Nyiraneza J, et al. Nitrogen dynamics and leaching potential under conventional and alternative potato rotations in Atlantic Canada[J]. Field Crops Research, 2019, 242: 107603. DOI:10.1016/j.fcr.2019.107603
( 0) |
| [74] |
Linton N F, Ferrari Machado P V, Deen B, et al. Long-term diverse rotation alters nitrogen cycling bacterial groups and nitrous oxide emissions after nitrogen fertilization[J]. Soil Biology and Biochemistry, 2020, 149: 107917. DOI:10.1016/j.soilbio.2020.107917
( 0) |
| [75] |
Zhang K L, Maltais-Landry G, James M, et al. Absolute microbiome profiling highlights the links among microbial stability, soil health, and crop productivity under long-term sod-based rotation[J]. Biology and Fertility of Soils, 2022, 58(8): 883-901. DOI:10.1007/s00374-022-01675-4
( 0) |
| [76] |
Meng Z L, Ye M J, Yan Y M, et al. Soil microorganism quantity and soil enzyme activity in the wheat-garlic intercropping system (In Chinese)[J]. Journal of Agricultural Resources and Environment, 2018, 35(5): 430-438. [孟自力, 叶美金, 闫延梅, 等. 间作大蒜对小麦根际土壤微生物数量及土壤酶活性的影响[J]. 农业资源与环境学报, 2018, 35(5): 430-438.]
( 0) |
| [77] |
Tang Y F, Xu Y B, Zheng Y, et al. Effects of wheat and faba bean intercropping on microorganism involved in nitrogen transformation in the rhizosphere soils (In Chinese)[J]. Journal of Agricultural Resources and Environment, 2016, 33(5): 482-490. [唐艳芬, 续勇波, 郑毅, 等. 小麦蚕豆间作对根际土壤氮转化微生物的影响[J]. 农业资源与环境学报, 2016, 33(5): 482-490.]
( 0) |
| [78] |
Fan F L, Zhang F S, Song Y N, et al. Nitrogen fixation of faba bean(Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems[J]. Plant and Soil, 2006, 283(1/2): 275-286.
( 0) |
| [79] |
Li L, Tang C X, Rengel Z, et al. Chickpea facilitates phosphorus uptake by intercropped wheat from an organic phosphorus source[J]. Plant and Soil, 2003, 248(1/2): 297-303. DOI:10.1023/A:1022389707051
( 0) |
| [80] |
Li S M, Li L, Zhang F S, et al. Acid phosphatase role in chickpea/maize intercropping[J]. Annals of Botany, 2004, 94(2): 297-303. DOI:10.1093/aob/mch140
( 0) |
| [81] |
Wang S Q, Han X Z, Qiao Y F, et al. Variation of soil enzymes activity and relevant nutrients at different years of soybean(Glycine max L.) rotation, alternate and continuous cropping (In Chinese)[J]. Soybean Science, 2009, 28(4): 611-615. [王树起, 韩晓增, 乔云发, 等. 寒地黑土大豆轮作与连作不同年限土壤酶活性及相关肥力因子的变化[J]. 大豆科学, 2009, 28(4): 611-615.]
( 0) |
| [82] |
Qin S H, Cao L, Zhang J L, et al. Effect of rotation of leguminous plants on soil available nutrients and physical and chemical properties in continuous cropping potato field (In Chinese)[J]. Acta Agronomica Sinica, 2014, 40(8): 1452-1458. [秦舒浩, 曹莉, 张俊莲, 等. 轮作豆科植物对马铃薯连作田土壤速效养分及理化性质的影响[J]. 作物学报, 2014, 40(8): 1452-1458.]
( 0) |
| [83] |
Hao X F, Wang G Q, Guo E H, et al. Effects of continuous cropping and rotation on rhizosphere bacterial community structure of millet (In Chinese)[J]. Journal of Agro-Environment Science, 2022, 41(3): 585-596. [郝晓芬, 王根全, 郭二虎, 等. 连作、轮作对谷子根际细菌群落结构的影响[J]. 农业环境科学学报, 2022, 41(3): 585-596.]
( 0) |
| [84] |
Song T. Distribution and leaching of soil nutrient in different rotation cropping patterns in the North China Plain[D]. Beijing: China Agricultural University, 2020.[宋彤. 华北平原不同轮作种植模式土壤养分分布与淋洗研究[D]. 北京: 中国农业大学, 2020.]
( 0) |
| [85] |
Zhang W. Eco-economical analysis on cereal-legume intercropping system in the North China Plain[D]. Beijing: China Agricultural University, 2009.[张伟. 华北平原禾豆间作复合种植模式农田生态经济评价[D]. 北京: 中国农业大学, 2009.]
( 0) |
| [86] |
Meng Q X, Xing H J, Bai G J, et al. Intercropping of different vegetables and melons affects sapling growth, soil properties and soil microbial population in cherry orchard (In Chinese)[J]. Northern Horticulture, 2021(3): 91-98. [蒙秋霞, 邢虹娟, 白光洁, 等. 瓜菜间作对大樱桃生长和土壤理化性质、微生物区系的影响[J]. 北方园艺, 2021(3): 91-98.]
( 0) |
| [87] |
Tang H Z, Cheng F, Zhang L N. Exploration and prospect of soil biodiversity conservation in cultivated land (In Chinese)[J]. China Land, 2022(2): 11-13. [汤怀志, 程锋, 张蕾娜. 耕地土壤生物多样性保护的探索与展望[J]. 中国土地, 2022(2): 11-13.]
( 0) |
| [88] |
de Deyn G B, van der Putten W H. Linking aboveground and belowground diversity[J]. Trends in Ecology & Evolution, 2005, 20(11): 625-633.
( 0) |
| [89] |
Zhu Y G, Peng J J, Wei Z, et al. Soil microflora and soil health (In Chinese)[J]. Scientia Sinica: Vitae, 2021, 51(1): 1-11. [朱永官, 彭静静, 韦中, 等. 土壤微生物组与土壤健康[J]. 中国科学: 生命科学, 2021, 51(1): 1-11.]
( 0) |
| [90] |
Wang K, Wang C, Feng X M, et al. Research progress on the relationship between biodiversity and ecosystem multifunctionality (In Chinese)[J]. Acta Ecologica Sinica, 2022, 42(1): 11-23. [王凯, 王聪, 冯晓明, 等. 生物多样性与生态系统多功能性的关系研究进展[J]. 生态学报, 2022, 42(1): 11-23.]
( 0) |
| [91] |
Cai Z C. Discussion on the strategies for development of the subdiscipline of soil fertility and soil nutrient cycling for the 14th Five-Year Plan (In Chinese)[J]. Acta Pedologica Sinica, 2020, 57(5): 1128-1136. [蔡祖聪. 浅谈"十四五" 土壤肥力与土壤养分循环分支学科发展战略[J]. 土壤学报, 2020, 57(5): 1128-1136.]
( 0) |
| [92] |
King A E, Hofmockel K S. Diversified cropping systems support greater microbial cycling and retention of carbon and nitrogen[J]. Agriculture, Ecosystems & Environment, 2017, 240: 66-76.
( 0) |
| [93] |
Zhou Z B, Zhang Y J, Zhang F G. Abundant and rare bacteria possess different diversity and function in crop monoculture and rotation systems across regional farmland[J]. Soil Biology and Biochemistry, 2022, 171: 108742. DOI:10.1016/j.soilbio.2022.108742
( 0) |
| [94] |
Li M H, Guo J J, Ren T, et al. Crop rotation history constrains soil biodiversity and multifunctionality relationships[J]. Agriculture, Ecosystems & Environment, 2021, 319: 107550.
( 0) |
| [95] |
Mooshammer M, Grandy A S, Calderón F, et al. Microbial feedbacks on soil organic matter dynamics underlying the legacy effect of diversified cropping systems[J]. Soil Biology and Biochemistry, 2022, 167: 108584. DOI:10.1016/j.soilbio.2022.108584
( 0) |
| [96] |
Bender S F, Wagg C, van der Heijden M G A. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability[J]. Trends in Ecology & Evolution, 2016, 31(6): 440-452.
( 0) |
| [97] |
Qiao X, Bei S K, Li C J, et al. Enhancement of faba bean competitive ability by arbuscular mycorrhizal fungi is highly correlated with dynamic nutrient acquisition by competing wheat[J]. Scientific Reports, 2015, 5(1): 1-10. DOI:10.9734/JSRR/2015/14076
( 0) |
| [98] |
Guzman A, Montes M, Hutchins L, et al. Crop diversity enriches arbuscular mycorrhizal fungal communities in an intensive agricultural landscape[J]. New Phytologist, 2021, 231(1): 447-459. DOI:10.1111/nph.17306
( 0) |
| [99] |
Thirkell T J, Charters M D, Elliott A J, et al. Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security[J]. Journal of Ecology, 2017, 105(4): 921-929. DOI:10.1111/1365-2745.12788
( 0) |
| [100] |
Nan L L, Tan J H, Guo Q E. Effects of fallow rotation modes on soil fungal communities in semi-arid area of the Loess Plateau, northwest China (In Chinese)[J]. Acta Ecologica Sinica, 2020, 40(23): 8582-8592. [南丽丽, 谭杰辉, 郭全恩. 黄土高原半干旱区轮作休耕模式对土壤真菌的影响[J]. 生态学报, 2020, 40(23): 8582-8592.]
( 0) |
| [101] |
Esmaeilzadeh-Salestani K, Bahram M, Ghanbari Moheb Seraj R, et al. Cropping systems with higher organic carbon promote soil microbial diversity[J]. Agriculture, Ecosystems & Environment, 2021, 319: 107521.
( 0) |
| [102] |
Sun Q, Wu H L, Chen F, et al. Effects of soil enzyme activity and bacterial community under different crop rotations (In Chinese)[J]. Ecology and Environment Sciences, 2020, 29(12): 2385-2393. [孙倩, 吴宏亮, 陈阜, 等. 不同作物轮作对谷田土壤酶活性和土壤细菌群落的影响[J]. 生态环境学报, 2020, 29(12): 2385-2393.]
( 0) |
| [103] |
Ding J N, Wang H, Yu S P, et al. Effects of maize soybean rotation on soil enzyme and root microbial community diversity (In Chinese)[J]. Heilongjiang Agricultural Sciences, 2021(4): 11-16. [丁俊男, 王慧, 于少鹏, 等. 玉米-大豆轮作对土壤酶和根系微生物群落多样性的影响[J]. 黑龙江农业科学, 2021(4): 11-16.]
( 0) |
| [104] |
Yang Z P, Gao J S, Zheng S X, et al. Effects of long-term winter planting-green manure on microbial properties and enzyme activities in reddish paddy soil (In Chinese)[J]. Soils, 2011, 43(4): 576-583. [杨曾平, 高菊生, 郑圣先, 等. 长期冬种绿肥对红壤性水稻土微生物特性及酶活性的影响[J]. 土壤, 2011, 43(4): 576-583.]
( 0) |
| [105] |
Shao Y H, Zhang W X, Liu S J, et al. Diversity and function of soil fauna (In Chinese)[J]. Acta Ecologica Sinica, 2015, 35(20): 6614-6625. [邵元虎, 张卫信, 刘胜杰, 等. 土壤动物多样性及其生态功能[J]. 生态学报, 2015, 35(20): 6614-6625.]
( 0) |
| [106] |
Sun X, Li Q, Yao H F, et al. Soil fauna and soil health (In Chinese)[J]. Acta Pedologica Sinica, 2021, 58(5): 1073-1083. [孙新, 李琪, 姚海凤, 等. 土壤动物与土壤健康[J]. 土壤学报, 2021, 58(5): 1073-1083.]
( 0) |
| [107] |
Khasawneh A R, Othman Y A. Organic farming and conservation tillage influenced soil health component[J]. Fresenius Environmental Bulletin, 2020, 29(2): 895-902.
( 0) |
| [108] |
Coulibaly S F M, Coudrain V, Hedde M, et al. Effect of different crop management practices on soil Collembola assemblages: A 4-year follow-up[J]. Applied Soil Ecology, 2017, 119: 354-366. DOI:10.1016/j.apsoil.2017.06.013
( 0) |
| [109] |
Melman D A, Kelly C, Schneekloth J, et al. Tillage and residue management drive rapid changes in soil macrofauna communities and soil properties in a semiarid cropping system of Eastern Colorado[J]. Applied Soil Ecology, 2019, 143: 98-106. DOI:10.1016/j.apsoil.2019.05.022
( 0) |
| [110] |
Wanjiku Kamau J, Biber-Freudenberger L, Lamers J P A, et al. Soil fertility and biodiversity on organic and conventional smallholder farms in Kenya[J]. Applied Soil Ecology, 2019, 134: 85-97. DOI:10.1016/j.apsoil.2018.10.020
( 0) |
| [111] |
Ma S L, Kuang F H, Tang J L, et al. Effects of planting patterns on soil structure and fertility of calcareous purple soil in hilly areas of central Sichuan Basin (In Chinese)[J]. Acta Pedologica Sinica, 2021, 58(4): 935-947. [马胜兰, 况福虹, 唐家良, 等. 种植模式对川中丘陵石灰性紫色土结构和地力的影响[J]. 土壤学报, 2021, 58(4): 935-947.]
( 0) |
| [112] |
Ashworth A J, Allen F L, Tyler D D, et al. Earthworm populations are affected from long-term crop sequences and bio-covers under no-tillage[J]. Pedobiologia, 2017, 60: 27-33. DOI:10.1016/j.pedobi.2017.01.001
( 0) |
| [113] |
Zhang W X, Shen Z F, Shao Y H, et al. Soil biota and sustainable agriculture: A review (In Chinese)[J]. Acta Ecologica Sinica, 2020, 40(10): 3183-3206. [张卫信, 申智锋, 邵元虎, 等. 土壤生物与可持续农业研究进展[J]. 生态学报, 2020, 40(10): 3183-3206.]
( 0) |
| [114] |
Oliverio A M, Geisen S, Delgado-Baquerizo M, et al. The global-scale distributions of soil protists and their contributions to belowground systems[J]. Science Advances, 2020, 6(4): eaax8787. DOI:10.1126/sciadv.aax8787
( 0) |
| [115] |
Friberg H, Lagerlöf J, Rämert B. Influence of soil fauna on fungal plant pathogens in agricultural and horticultural systems[J]. Biocontrol Science and Technology, 2005, 15(7): 641-658. DOI:10.1080/09583150500086979
( 0) |
2024, Vol. 61



0)