广西岩溶区表层土壤硒元素分布特征与影响因素探究—以武鸣县为例
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(41462005)、广西科技重大专项(AA17202026)和中国地质调查局国家专项“全国土壤现状调查及污染防治”项目(GZTR20060115)


Selenium Distribution in Surface Soil Layer of Karst Area of Guangxi and Its Affecting Factors: A case study of Wuming County
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (No. 41462005), the Science and Technology Major Project of Guangxi, and the project of “National Soil Survey of Soil Status and Pollution Control” (No. GZTR20060115)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    中国大部分地区土壤不同程度缺Se,约占中国总面积的72%。前期调查在广西发现目前全国最大面积的连片富Se土壤,其中岩溶区土壤Se含量明显高于非岩溶区。假设广西岩溶区土壤连片富Se可能是受成土母岩、土壤组成和独特的富集机理等综合因素共同影响,选取广西武鸣县表层土壤Se元素为研究对象,分别采集表层、深层土壤样品、岩石样品15 480件、452件和200件,并对样品中的CaO、K2O、Na2O、MgO、SiO2、Al2O3、TFe2O3、Se、Mn、SOC、Ti和pH等指标进行分析。通过空间对比法、散点图、多元统计法分析土壤Se的物质来源,讨论成土母岩、风化作用、土壤组成、pH和有机碳(SOC)对土壤Se的影响,理清土壤Se影响因素的主次关系,进而探讨广西重点岩溶区土壤Se元素高度富集的主要成因。结果表明,研究区表层土壤Se元素平均含量为0.07~9.04 mg•kg-1,背景值为0.87 mg•kg-1,是全国土壤背景值的4.36倍;土壤Se与地层具有很好的空间耦合关系,深表层土壤Se具有强烈正相关性,表明土壤Se元素来源于下伏地层;散点图表明土壤Se受风化作用强度(CIA)、Al2O3、TFe2O3、SiO2、SOC、pH、CaO、K2O、Na2O和MgO等因素的影响;多元线性回归方程拟合及方程误差检验表明,风化作用强度、黏土矿物(Al2O3)、含Fe矿物(TFe2O3)和石英矿物等矿物组成对土壤Se的次生富集起到主导作用。SOC、含K矿物、含Na矿物和含Mg矿物为次要影响因素,含Mn矿物、含Ca矿物和pH的影响作用较弱。在岩溶区,风化作用控制土壤Se富集作用,高富集黏土矿物和含Fe矿物主导了土壤Se元素吸附作用,这可能是导致广西岩溶区岩母Se含量低于中国岩石平均值而土壤Se高度富集的主要原因。

    Abstract:

    【Objective】China is a country deficient in selenium (Se), because the soils in most of its provinces and regions or about 72% of its total land are under Se stress to a varying extent. However, during the soil survey completed recently, Guangxi was found to have a large tract or continuous patches of soil rich in Se, or so far the largest tract in the country. In that region, the soils in Karst areas were apparently higher in Se content than those in non-Karst areas. It is hypothesized that the tract of Se-rich soils benefit jointly from their soil forming parent rock, soil composition and unique Se enrichment mechanism. In order to validate this hypothesis, a comprehensive study was conducted. In this study, a total of 15480 topsoil samples, 452 subsoil samples and 200 rock samples were collected in Wuming County, South Guangxi, where exist large tracts of karst landform for analysis of soil physico-chemical properties, and contents of calcium oxide (CaO), potassium oxide (K2O), sodium oxide (Na2O), magnesium oxide (MgO), silicon dioxide (SiO2), aluminum oxide (Al2O3), Total iron (TFe2O3), selenium (Se), manganese (Mn), titanium (Ti), soil organic carbon (SOC) and pH.【Method】Spatial contrast, scattergraph and multivariate statistic methods were adopted to analyze sources of Se containing materials in the soil and impacts of soil forming parent rock, weathering processes, soil composition, pH and soil organic carbon (SOC) on soil Se, collate the affecting factors in sequence of priority. And furthermore, discussions were held on main causes of the formation of the Se highly-enriched soils in the key Karst areas of Guangxi. 【Result】Results show that the concentration of Se in the topsoil of the study area varies in the range of 0.07~9.04 mg•kg-1 and its background value is 0.87 mg•kg-1, which is 4.36 times that of the country. Soil Se demonstrates a good spatial coupled relationship with the stratum and is strongly and positive related to soil Se in the subsoil layer, which suggests that soil Se in the topsoil comes from underlying soil layers; scattergraph indicates that soil Se was affected by weathering intensity (CIA), Al2O3, TFe2O3, SiO2, SOC, pH, CaO, K2O, Na2O and MgO. Multivariate fitting with linear regression equation and equation error testing reveal that CIA, clay minerals (Al2O3), and Fe-bearing minerals played leading roles in secondary enrichment of Se, while SOC, K-bearing minerals, Na-bearing minerals, Mg-bearing minerals followed in the function, and pH, Ca-bearing and Mn-bearing minerals did in the last with very weak effects. 【Conclusion】Based on the findings about sources of Se and relationships between Se enrichment affecting factors, it is concluded that weathering processes dominates Se enrichment in the soils in Karst areas, while the high contents of clay minerals and Fe-bearing minerals in the soil play leading roles in sorption of Se, which may be the main reason why high Se enrichment occurs in the Karst area of Guangxi where limestone is lower in Se content than the average rock in China.

    参考文献
    相似文献
    引证文献
引用本文

覃建勋,邓 宾,付 伟,吴天生,赵辛金,郑国东,卢炳科,覃勇新.广西岩溶区表层土壤硒元素分布特征与影响因素探究—以武鸣县为例[J].土壤学报,2020,57(5):1299-1310. DOI:10.11766/trxb201909120327 QIN Jianxun, DENG Bin, FU Wei, WU Tiansheng, ZHAO Xinjin, ZHENG Guodong, LU Bingke, QIN Yongxin. Selenium Distribution in Surface Soil Layer of Karst Area of Guangxi and Its Affecting Factors: A case study of Wuming County[J]. Acta Pedologica Sinica,2020,57(5):1299-1310.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-07-07
  • 最后修改日期:2018-09-12
  • 录用日期:2020-03-04
  • 在线发布日期: 2020-06-30
  • 出版日期: