基于双线性理论的黏质土介电谱与含水量频域测量研究
作者:
中图分类号:

S152.7;TP183

基金项目:

陕西水利科技计划项目(2014slkj-18)和国家重点研发计划项目(2017YFC0403203)资助


Measurement of Dielectric Spectra and Water Content Frequency Domain of Clay Soil Based on Bilinear Theory
Author:
Fund Project:

Shaanxi Water Conservancy Science and Technology Plan Project (2014slkj-18) and National Key R & D Project (2017YFC0403203)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    黏粒含量较多的黏质土(黏土类、黏壤土类)介电极化复杂,含水量测量混合介电模型研究较少。通过双线性介电测量理论对黏质土4种不同质地土壤分别配置0、5%、10%、15%、20%、25%、30%体积含水量,在0.001~3 GHz频段进行介电谱测量。分析发现,介电值(复介电常数实部、视在介电常数)在300.4~2 952 MHz内较为稳定;不同体积含水量下对应的介电值显著不同;1 050~1 503 MHz为黏质土含水量频域测量理想频段,1503 MHz为最佳频率点。在最佳频率点上,构建了2个黏质土含水量频域测量经验模型。对黏质土土样和验证样本进行分析,复介电实部模型计算值与含水量实测值对比,其R2均大于0.9600,RMSE均小于0.0190,RPD均大于5.000。对黏质土土样分析,视在介电模型计算值与含水量实测值对比,两者R2=0.9669,RMSE=0.0176,RPD=5.515,与Topp模型、Roth模型和Malicki模型相比,视在介电模型计算值与含水量实测值相关性更优。验证样本视在介电模型计算值与含水量实测值对比,两者R2=0.9537,RMSE=0.0208,RPD=4.602。研究表明,双线性理论对黏质土含水量介电法测量有较好适应性,本文构建的2个经验模型对黏质土特性土壤含水量有较高测量精度。

    Abstract:

    [Objective] As clayey soil contains much clay and clay loam, it is rather complex in dielectric polarization. However, not much study has been done on mixed dielectric models for measurement of water content.[Method] In this study, based on the theory for bilinear dielectric measurement, dielectric spectra were determined, separately of soil samples, 0, 5%, 10%, 15%, 20%, 25%, and 30% in volumetric water content, prepared out of each of the 4 clay soils different in texture were determined, separately, within the frequency band of 0.001~3 GHz.[Result] Dielectric value (the real part of complex dielectric constant and apparent dielectric constant) is relatively stable within 300.4~2 952 MHz, but varies sharply with volumetric water content. The band of 1 050~1 503 MHz is the ideal frequency band in the frequency domain for predicting clay water content, and 1503 MHz is the optimal frequency point. At this point, two empirical models for predicting water contents in clayey soils in the frequency domain were constructed. In analyzing clay samples and validation samples, comparisons of the values predicted with the real part of the complex dielectric model with the measured values of water content show that the predictions are all higher than 0.9600 in R2, lower than 0.0190 in RMSE, and higher than 5.000 inn RPD. In analyzing clay soil samples, comparisons between the values predicted with the apparent dielectric model formula and the measured values show that R2=0.9669, RMSE=0.0176, and RPD=5.515. Compared with the Topp model, Roth model and Malicki model, the apparent dielectric model yields values much closer to the measured value. In analyzing verification samples, comparison between the values predicted with the apparent dielectric model and the measured values show that R2=0.9537, RMSE=0.0208, and RPD=4.602.[Conclusion] The bilinear theory is quite high in applicability to the measurement of clay soil moisture content with the dielectric method. The two empirical models constructed in this paper are fairly high in accuracy in predicting water content in soils clayey in texture.

    参考文献
    [1] Zhou L Y,Chen Z X,Li W M. Calibration on measurement of soil water content using time domain reflectrometry(TDR)[J]. Acta Pedologica Sinica,2003,40(1):59-64.[周凌云,陈志雄,李卫民. TDR法测定土壤含水量的标定研究[J]. 土壤学报,2003,40(1):59-64.]
    [2] Zhou L G,Yu D S,Wang X Y,et al. Determination of top soil water content based on high-frequency ground penetrating radar[J]. Acta Pedologica Sinica,2016,53(3):621-626.[周立刚,于东升,王玺洋,等. 基于高频探地雷达的土壤表层含水量测定[J]. 土壤学报,2016,53(3):621-626.]
    [3] Zhao C,Yuan G F,Liu X,et al. Application of cosmic-ray method to soil moisture measurement of grassland in the loess plateau[J]. Acta Pedologica Sinica,2015,52(6):1438-1444.[赵纯,袁国富,刘晓,等. 宇宙射线土壤水分观测方法在黄土高原草地植被的应用[J]. 土壤学报,2015,52(6):1438-1444.]
    [4] Ahmed M A,Holz M,Woche S K,et al. Effect of soil drying on mucilage exudation and its water repellency:A new method to collect mucilage[J]. Journal of Plant Nutrition and Soil Science,2015,178(6):821-824.
    [5] Xu A Z,Hu J M,Xiong Y,et al. Comparison of soil moisture measurement using TDR method,dry burning method and oven drying method[J]. Journal of Water Resources and Water Engineering,2018,29(2):253-256.[徐爱珍,胡建民,熊永,等. TDR法、干烧法及烘干法测定土壤含水量的比较研究[J]. 水资源与水工程学报,2018,29(2):253-256.]
    [6] Singh M,Hukkeri S B,Rajput R K. Spirit-burning and Papadakis's methods for the determination of soil moisture as substitutes for oven-drying method[J]. Indian Journal of Agricultural Sciences,1970,1(3):155-160.
    [7] Topp G C,Davis J L,Annan A P. Electromagnetic determination of soil water content:Measurements in coaxial transmission lines[J]. Water Resources Research,1980,16(3):574-582.
    [8] Roth C H,Malicki M A,Plagge R. Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR[J]. Journal of Soil Science,1992,43(1):1-13.
    [9] Herkelrath W N,Hamburg S P,Murphy F. Automatic,real-time monitoring of soil moisture in a remote field area with time domain reflectometry[J]. Water Resources Research,1991,27(5):857-864.
    [10] Malicki M A,Plagge R,Roth C H. Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil[J]. European Journal of Soil Science,1996,47(3):357-366.
    [11] Zhu A N,Ji L Q,Zhang J B,et al. Empirical relationship between soil dielectric constant and volumetric water content in various soils[J]. Acta Pedologica Sinica,2011,48(2):263-268.[朱安宁,吉丽青,张佳宝,等. 不同类型土壤介电常数与体积含水量经验关系研究[J]. 土壤学报,2011,48(2):263-268.]
    [12] Ju Z Q. Dielectric permitivity and its relationship with water content for several soils in China[D]. Beijing:China Agricultural University,2005.[巨兆强. 中国几种典型土壤介电常数及其与含水量的关系[D]. 北京:中国农业大学,2005.]
    [13] Dobson M,Ulaby F,Hallikainen M,et al. Microwave dielectric behavior of wet soil-part Ⅱ:Dielectric mixing models[J]. IEEE Transactions on Geoscience and Remote Sensing,1985,GE-23(1):35-46.
    [14] Dirksen C,Dasberg S. Improved calibration of time domain reflectometry soil water content measurements[J]. Soil Science Society of America Journal,1993,57(3):660-667.
    [15] Xu J H. Soil permittivities in LF-UHF frequency range and soil moisture measurement in frequency domain[D]. Yangling,Shaanxi:Northwest A & F University,2014.[许景辉. 土壤LF-UHF波段介电特性与含水量频域测定方法研究[D]. 陕西杨凌:西北农林科技大学,2014.]
    [16] Gong Y S,Cao Q H,Sun Z J. The effects of soil bulk density,clay content and temperature on soil water content measurement using time-domain reflectometry[J]. Hydrological Processes,2003,17(18):3601-3614.
    [17] Cosenza P,Tabbagh A. Electromagnetic determination of clay water content:Role of the microporosity[J]. Applied Clay Science,2004,26(1/4):21-36.
    [18] Song L,Zhang X J,Li H P. Dielectric constant measure?扥牮?嬠??嵤?婡牮楡扬楹????敯??潓牨癡慮湧????慦杲桯摺慥摮椠?乩???椠散汬敡捹琨爰椮挱?挱潇湈獺琩慛湊瑝?洠潃摨敩汮污椠湃杩?睩楬琠桅?獧潩楮汥?慲楩牮?挠潊浯灵潲獮楡瑬椬漲渰?愱測搴?椨琸猩?攱昰昷攭挱琱‰漮湛?珷愬爠?狊愬摎慷牏?猠椊杷溻懓沉?拏感揋欵猸捰憄璞瑋旊狄斋搆?漨瘰攮爱?猱潇楈決?獛畊牝昮愠挟攨寥?嵦??匲攰渱猱漬爴猴?劳〩????????????ひ???代??Robinson D A,Friedman S P. A method for measuring the solid particle permittivity or electrical conductivity of rocks,sediments,and granular materials[J]. Journal of Geophysical Research:Solid Earth,2003,108(B2):1978-2012. https://doi.org/10.1029/2001jb000691.
    [20] Alharthi A,Lange J. Soil water saturation:Dielectric determination[J]. Water Resources Research,1987,23(4):591-595.
    [21] Ferré P A,Rudolph D L,Kachanoski R G. Spatial averaging of water content by time domain reflectometry:Implications for twin rod probes with and without dielectric coatings[J]. Water Resources Research,1996,32(2):271-279.
    [22] Cole R H,Berberian J G,Mashimo S,et al. Time domain reflection methods for dielectric measurements to 10 GHz[J]. Journal of Applied Physics,1989,66(2):793-802.
    [23] Berberian J G. Time domain reflectometry:Bilinear corrections and extending the range of analysis beyond the quarter and half wavelength conditions[J]. Journal of Molecular Liquids,1993,56(7):1-18.
    [24] Folgerø K,Tjomsland T. Permittivity measurement of thin liquid layers using open-ended coaxial probes[J]. Measurement Science and Technology,1996,7(8):1164-1173.
    [25] Estevez R,Jones S B. Frequency domain soil moisture determination using bilinear analysis with an open-ended dielectric probe[C]//Reno,Nevada,June 21-June 24:2009.
    [26] Cole R H. Bridge sampling methods for admittance measurements from 500 kHz to 5 GHz[J]. IEEE Transactions on Instrumentation & Measurement,1983,32(1):42-47.
    [27] Logsdon S D. Electrical spectra of undisturbed soil from a crop rotation study[J]. Soil Science Society of America Journal,2008,72(1):11-15.
    [28] Viscarra Rossel R A,Taylor H J,McBratney A B. Multivariate calibration of hyperspectral γ-ray energy spectra for proximal soil sensing[J]. European Journal of Soil Science,2007,58(1):343-353.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵钟声,许景辉,王一琛,王雷,邵明烨.基于双线性理论的黏质土介电谱与含水量频域测量研究[J].土壤学报,2021,58(3):685-693. DOI:10.11766/trxb201912230443 ZHAO Zhongsheng, XU Jinghui, WANG Yichen, WANG Lei, SHAO Mingye. Measurement of Dielectric Spectra and Water Content Frequency Domain of Clay Soil Based on Bilinear Theory[J]. Acta Pedologica Sinica,2021,58(3):685-693.

复制
分享
文章指标
  • 点击次数:686
  • 下载次数: 2336
  • HTML阅读次数: 972
  • 引用次数: 0
历史
  • 收稿日期:2019-12-23
  • 最后修改日期:2020-03-30
  • 录用日期:2020-05-13
  • 在线发布日期: 2020-12-07
  • 出版日期: 2021-05-11
文章二维码