黄土高原不同土质和植被类型下Cl-运移特征及影响因素
作者:
中图分类号:

S152.3;S152.5

基金项目:

国家自然科学基金项目(41601221)、贵州省科技合作计划项目(黔科合LH字[2017]7068号)和中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室项目(A314021402-2010)资助


Cl- Transport and Its Influencing Factors in Soil as Affected by Soil Texture and Vegetation Cover in Loess Plateau
Author:
Fund Project:

the National Natural Science Foundation of China (41601221), the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0306), the Outstanding Young Talent Project of Institute of Geographic Sciences and Natural Resources Research, CAS (2017RC203), Youth Innovation Promotion Association of CAS (2019052) and Scientific Research Program from State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS & MWR (A314021402-2010).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为确定不同土质和植被类型下溶质运移特征及影响因素,采用垂直土柱易混置换法,研究了陕北六道沟和圪丑沟流域不同土质(砂土S、壤土L)和植被类型(乔AR、灌SH、草GR)下Cl-运移特征。结果表明:Cl-初始穿透时间(TS:12~80 min)、完全穿透时间(TE:75~480 min)、平均孔隙水流速(V:0.52~1.98 cm·h-1)和水动力弥散系数(D:0.75~2.55 cm2·h-1)均随土壤质地、植被类型和土层深度而发生变化。0~20 cm土层Cl-的TS和TE最小,随深度增加而增大,VD则相反。同一质地不同植被类型条件下0~1 m剖面中Cl-VD均值表现为:S-AR > S-GR > S-SH和L-AR> L-SH > L-GR,TS和TE则相反,这是由于砂土和壤土中不同类型植物根系生物量剖面分布具有显著差异,进而影响大孔隙数量、孔隙连通性密度和优先流路径。同一植被类型不同质地土壤0~1 m剖面中Cl-VD均值表现为:S-AR > L-AR;S-SH > L-SH;S-GR > L-GR,TS和TE则相反,这是由于土壤机械组成影响孔隙分布状况,砂土中大孔隙数量多且孔隙连通性密度高,有助于形成优先流,而壤土中细小孔隙所构成的复杂孔径及带电团聚体对离子的吸附作用会阻碍Cl-运移。容重、大孔隙数、孔隙连通性密度、有机碳含量和颗粒组成均与V,TS和TE显著相关,表明土壤性质显著影响不同土质和植被类型下Cl-运移特征。上述结果可为黄土高原不同质地土壤人工植被合理布局与配置,降低养分流失风险,提升生态系统服务功能提供参考。

    Abstract:

    [Objective] To evaluate nutrient cycling and pollutant migration in the Earth’s Critical Zone, it is essential to understand solute transport in soils. Despite extensive studies on processes and mechanisms of solute transport, little is known about how to characterize and regulate solute transport in soils different in soil texture and vegetation cover. This study is oriented to investigate Cl- transport parameters and their influencing factors in typical sandy and loamy soils different in vegetation cover in the Liudaogou and Gechougou watersheds in the northern part of the Loess Plateau. [Method] Six undisturbed soil columns(7 cm in diameter and 25 cm in height)different in texture(sandy and loamy, abbreviated as S and L, respectively)and in vegetation cover(arbor, shrub and grass, abbreviated as AR, SH and GR, respectively)were collected by hand to keep it as intact as possible in the Liudaogou and Gechougou watersheds located in Shenmu City, Shaanxi Province. With these columns, an indoor experiment was carried out to determine Cl- penetration curve in each soil column and experiment data were simulated with the convection-dispersion equation. Cl- transport parameters, including time the penetration begins(TS), time the penetration ends(TE), average pore-water velocity(V)and hydrodynamic dispersion coefficient(D), were obtained with the aid of the CXFIT software. Relationships between soil properties and Cl- transport parameters were analyzed with Pearson’s test. [Result] Results show that TS, TE, V and D of Cl- all varied with soil texture, vegetation type and soil depth in the range of 12~80 min, 75~480 min, 0.52~1.98 cm·h-1 and 0.75~2.55 cm2·h-1, respectively. TS and TE was the lowest in the 0~20 cm soil layer and increased with increasing soil depth, while V and D both exhibited a reverse pattern. Mean V and D in 0~1 m soil profiles the same in texture varied with vegetation cover, showing a decreasing order of S-AR > S-GR > S-SH and L-AR > L-SH > L-GR, while mean TS and TE did too, but showing opposite trends, which could be attributed to the differences caused by different vegetation covers in root biomass distribution in 0~1 m soil profiles either sandy or loamy in texture, which in turn affected the number of macro-pores, connectivity density and preferential flow pathway. On the other hand, mean V and D in 0~1 m soil profiles the same in vegetation cover varied with soil texture, showing orders of S-AR > L-AR; S-SH > L-SH and S-GR > L-GR, while mean TS and TE did too, but showing reverse patterns, which could be ascribed to the difference in soil mechanical composition that significantly affected the size and distribution of soil pores. Sandy soil was higher in number of macro-pores and more homogeneous in pore distribution, which was conducive to formation of preferential flow in soil profiles. In contrast, loamy soil was more complex in porosity formed of micro-pores and higher in adsorption force and capacity that inhibited Cl- transport. Soil bulk density, number of macro-pores, connectivity density, and contents of organic carbon, sand, silt and clay were all significantly related to V, TS and TE, indicating that soil properties were major factors affecting Cl- transport in soils, even though different in soil texture and in vegetation cover. [Conclusion] All the findings in this study may serve as references for rational vegetation distribution in soils different in texture in the Loess Plateau region to reduce soil nutrient loss and improve service functions of the ecosystem.

    参考文献
    [1] Li B G,Hu K L,Huang Y F,et al. Advances in modeling and applications of soil solute transport[J]. Soils,2005,37(4):345-352.[李保国,胡克林,黄元仿,等. 土壤溶质运移模型的研究及应用[J].土壤,2005,37(4):345-352.]
    [2] Kuntz B W,Rubin S,Berkowitz B,et al. Quantifying solute transport at the shale hills critical zone observatory[J]. Vadose Zone Journal,2011,10(3):843-857.
    [3] Van Genuchten M T,Wagenet R J. Two-site/two-region models for pesticide transport and degradation:Theoretical development and analytical solutions[J]. Soil Science Society of America Journal,1989,53(5):1303-1310.
    [4] Porro I,Wierenga P J,Hills R G. Solute transport through large uniform and layered soil columns[J]. Water Resources Research,1993,29(4):1321-1330.
    [5] Shao M A,Wang Q J,Huang M B. Soil physics[M]. Beijing:Higher Education Press,2006.[邵明安,王全九,黄明斌. 土壤物理学[M]. 北京:高等教育出版社,2006.]
    [6] Li Z M,Zhou Q,Wang H,et al. Influence of bulk density on the characteristic of water solute transport in red soil[J]. Journal of Soil and Water Conservation,2009,23(5):101-103.[李志明,周清,王辉,等. 土壤容重对红壤水分溶质运移特征影响的试验研究[J]. 水土保持学报,2009,23(5):101-103.]
    [7] Shen Z Y,Wang H,Ping L N,et al. Effect of antecedent soil moisture on characteristics of runoff,sediment loss and solute transport on red soil[J]. Journal of Soil and Water Conservation,2014,28(1):58-62.[沈紫燕,王辉,平李娜,等. 前期土壤含水量对粘性红壤产流产沙及溶质运移的影响[J]. 水土保持学报,2014,28(1):58-62.]
    [8] Mao N,Huang L M,Shao M A. Vertical distribution of soil organic and inorganic carbon under different vegetation covers in two toposequences of the Liudaogou watershed on the Loess Plateau,China[J]. Journal of Soil and Water Conservation,2018,73(4):479-491.
    [9] Pei Y W,Huang L M,Jia X X,et al. Soil water availability and its influencing factors in soils under two types of shrubberies typical of the Loess Plateau[J]. Acta Pedologica Sinica,2019,56(3):627-637.[裴艳武,黄来明,贾小旭,等. 黄土高原2种典型灌木地土壤水分有效性及其影响因素[J]. 土壤学报,2019,56(3):627-637.]
    [10] Yang X,Shao M,Li T C,et al. Structure characteristics of Camponotus japonicus nests in northern part of Loess Plateau and influencing factors[J]. Acta Pedologica Sinica,2018,55(4):868-878.[杨析,邵明安,李同川,等. 黄土高原北部日本弓背蚁巢穴结构特征及其影响因素[J]. 土壤学报,2018,55(4):868-878.]
    [11] Lü D Q,Shao M A,Pan Y. Dependent relationship between bulk density changes and soil water characteristics[J]. Journal of Soil and Water Conservation,2009,23(3):209-212,216.[吕殿青,邵明安,潘云. 容重变化与土壤水分特征的依赖关系研究[J]. 水土保持学报,2009,23(3):209-212,216.]
    [12] Yang M H,Cao M M,Zhu Z M,et al. Soil physical and chemical properties in the process of desertification on the southeastern edge of Mu Us sandy land[J]. Bulletin of Soil and Water Conservation,2010,30(2):169-172,176.[杨梅焕,曹明明,朱志梅,等. 毛乌素沙地东南缘沙漠化过程中土壤理化性质分析[J]. 水土保持通报,2010,30(2):169-172,176.]
    [13] Liu Z P,Shao M A. Vertical variations of soil moisture and total nitrogen in small catchment on Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering,2010,26(5):71-77.[刘志鹏,邵明安. 黄土高原小流域土壤水分及全氮的垂直变异[J]. 农业工程学报,2010,26(5):71-77.]
    [14] Mao N,Shao M A,Huang L M. Distribution characteristics and influencing factors of soil carbon profile along toposequences in Liudaogou watershed[J]. Journal of Soil and Water Conservation,2017,31(5):222-230,239.[毛娜,邵明安,黄来明. 六道沟小流域地形序列土壤碳剖面分布特征及影响因素[J]. 水土保持学报,2017,31(5):222-230,239.]
    [15] Zhao S W,Zhao Y G,Wu J S. Quantitative analysis of soil pores under natural vegetation successions on the Loess Plateau[J]. Science China(Earth Sciences),2010,53(4):617-625.
    [16] Lu S,Meng P,Zhang J S,et al. Changes in soil organic carbon and total nitrogen in croplands converted to walnut-based agroforestry systems and orchards in southeastern Loess Plateau of China[J]. Environmental Monitoring and Assessment,2015,187(11):6881-6889.
    [17] Wang K B,Shi W Y,Shangguan Z P. Effects of natural and artificial vegetation types on soil properties in Loess Hilly region[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(15):80-86.[王凯博,时伟宇,上官周平. 黄土丘陵区天然和人工植被类型对土壤理化性质的影响[J]. 农业工程学报,2012,28(15):80-86.]
    [18] Jiao F,Wen Z M,An S S. Changes in soil properties across a chronosequence of vegetation restoration on the Loess Plateau of China[J]. Catena,2011,86(2):110-116.
    [19] Li Z C,Hu X. Effects of shrub(Caragana microphylla lam)encroachment on soil porosity of degraded sandy grassland[J]. Acta Pedologica Sinica,2015,52(1):242-248.[李宗超,胡霞. 小叶锦鸡儿灌丛化对退化沙质草地土壤孔隙特征的影响[J]. 土壤学报,2015,52(1):242-248.]
    [20] Gryze S D,Jassogne L,Six J,et al. Pore structure changes during decomposition of fresh residue:X-ray tomography analyses[J]. Geoderma,2006,134(1/2):82-96.
    [21] Wang Q J,Shao M A,Zheng J Y. Water movement and solute migration in soil[M]. Beijing:China Water Power Press,2007.[王全九,邵明安,郑纪勇. 土壤中水分运动与溶质迁移[M]. 北京:中国水利水电出版社,2007.]
    [22] Zhu H X,Ma L W,Selim H. Transport of nonreactive solute in soil and the determination of model parameters[J]. Acta Pedologica Sinica,1998,35(4):517-525.[朱红霞,马立望,Selim H. 非反应性物质在土壤中的迁移及其参数确定[J]. 土壤学报,1998,35(4):517-525.]
    [23] Chen X B,Zhang H J,Li S Y,et al. Characteristics and influencing factors of preferential flow in different vegetation types of purple sandstone regions[J]. Science of Soil and Water Conservation,2014,12(6):42-49.[陈晓冰,张洪江,李世友,等. 紫色砂岩区不同植被类型土壤优先流特征及其影响因素[J]. 中国水土保持科学,2014,12(6):42-49.]
    [24] Liu Q L,Xu S H. Retarding factors of copper movement in soils different in texture[J]. Acta Pedologica Sinica,2005,42(6):930-935.[刘庆玲,徐绍辉. 不同质地土壤中铜离子运移阻滞因子研究[J]. 土壤学报,2005,42(6):930-935.]
    [25] Wang J,Shao M A. Solute transport characteristics of a deep soil profile in the Loess Plateau,China[J]. Journal of Arid Land,2018,10(4):628-637.
    [26] Singh P,Kanwar R S. Preferential solute transport through macropores in large undisturbed saturated soil columns[J]. Journal of Environmental Quality,1991,20(1):295-300.
    [27] Raats P A C. Dynamics of fluids in porous media[J]. Soil Science Society of America Journal,1973,37(4):174-175.
    [28] Li Z,Wu P T,Feng H,et al. Simulated experiment on effect of soil bulk density on soil infiltration capacity[J]. Transactions of the Chinese Society of Agricultural Engineering,2009,25(6):40-45.[李卓,吴普特,冯浩,等. 容重对土壤水分入渗能力影响模拟试验[J]. 农业工程学报,2009,25(6):40-45.]
    [29] Wang Y,Chen Y Y,Peng C S,et al. Effects of initial water content on solute preferential transport in inter-tidal zone of Yellow River Estuary[J]. Marine Environmental Science,2011,30(3):310-315.[王岩,陈友媛,彭昌盛,等. 初始含水量对黄河口潮滩溶质优先运移的影响研究[J]. 海洋环境科学,2011,30(3):310-315.]
    [30] Zeng Q,Xu Z M,Guan Q,et al. Characteristics of macropores in soil of slope under different vegetation measures[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(S1):3343-3352.[曾强,徐则民,官琦,等. 不同植被条件下斜坡土体大孔隙特征分析[J]. 岩石力学与工程学报,2016,35(S1):3343-3352.]
    [31] Wen Y H. Influence of texture and bulk density on the transport's law of Cl- in soils[J]. Research of Soil and Water Conservation,2002,9(1):73-75.[温以华. 不同质地和容重对Cl- 在土壤中运移规律的影响[J]. 水土保持研究,2002,9(1):73-75.]
    [32] Han L,Wang H Z,Yu J. Soil hydrological characteristics of different vegetation types in the upper reaches of Tarim River[J]. Journal of Soil and Water Conservation,2013,27(6):124-129.[韩路,王海珍,于军. 塔里木河上游不同植被类型土壤水文特性研究[J]. 水土保持学报,2013,27(6):124-129.]
    [33] Lü G,Gu Y S,Wei Z P,et al. Study on soil infiltration characteristics under several typical vegetation in Baishilazi Nature Reserve[J]. Ecology and Environmental Sciences,2013,22(5):780-786.[吕刚,顾宇书,魏忠平,等. 白石砬子自然保护区几种主要植被类型土壤入渗特性研究[J]. 生态环境学报,2013,22(5):780-786.]
    [34] Zhao H B,Liu G B,Xu M X. Review on vegetation restoration on nutrient changes in watershed of loess hilly region[J]. Bulletin of Soil and Water Conservation,2004,24(2):72-75.[赵护兵,刘国彬,许明祥. 黄土丘陵区植被恢复与流域养分环境演变研究进展[J]. 水土保持通报,2004,24(2):72-75.]
    [35] Zhang M K,Fang L P. Accumulation and transport of nutrients in agricultural sandy soils[J]. Journal of Soil and Water Conservation,2006,20(2):46-49.[章明奎,方利平. 砂质农业土壤养分积累和迁移特点的研究[J]. 水土保持学报,2006,20(2):46-49.]
    [36] Li X Z,Fan G S. Influence of organic matter content on infiltration capacity and parameter in field soils[J]. Transactions of the Chinese Society of Agricultural Engineering,2006,22(3):188-190.[李雪转,樊贵盛. 土壤有机质含量对土壤入渗能力及参数影响的试验研究[J]. 农业工程学报,2006,22(3):188-190.]
    [37] Zhang C Z,Zhang J B,Xu S H,et al. Numerical simulation of reactive solute transport in saturated column of different soils[J]. Advances in Water Science,2008,19(4):552-558.[张丛志,张佳宝,徐绍辉,等. 反应性溶质在不同质地饱和土柱中运移的数值模拟[J]. 水科学进展,2008,19(4):552-558.]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李荣磊,陈留美,邵明安,黄来明,裴艳武,张应龙.黄土高原不同土质和植被类型下Cl-运移特征及影响因素[J].土壤学报,2021,58(5):1190-1201. DOI:10.11766/trxb202002200059 LI Ronglei, CHEN Liumei, SHAO Ming'an, HUANG Laiming, PEI Yanwu, ZHANG Yinglong. Cl- Transport and Its Influencing Factors in Soil as Affected by Soil Texture and Vegetation Cover in Loess Plateau[J]. Acta Pedologica Sinica,2021,58(5):1190-1201.

复制
分享
文章指标
  • 点击次数:988
  • 下载次数: 2817
  • HTML阅读次数: 1469
  • 引用次数: 0
历史
  • 收稿日期:2020-02-20
  • 最后修改日期:2020-05-05
  • 录用日期:2020-07-29
  • 在线发布日期: 2020-12-08
  • 出版日期: 2021-09-11
文章二维码