油/麦-稻轮作和施肥对土壤养分及团聚体碳氮分布的影响
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S158.3

基金项目:

国家油菜产业技术体系建设专项(CARS-12)资助


Effects of Rapeseed/Wheat-Rice Rotation and Fertilization on Soil Nutrients and Distribution of Aggregate Carbon and Nitrogen
Author:
Affiliation:

Fund Project:

Supported by the Earmarked Fund for China Agriculture Research System (No. CARS-12)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通过田间定位试验探究油菜-水稻与小麦-水稻轮作在不同施肥措施下的土壤养分及团聚体碳氮分布差异,为长江中游油麦交错区水旱轮作模式选择及培肥地力提供依据。利用湖北沙洋的定位试验,选择油-稻和麦-稻轮作的不施肥(CK)、施用化肥(NPK)、化肥与秸秆还田相结合(NPK+S)3个处理,在试验布置的第4年于油菜和小麦收获后取0~20 cm土壤样品,测定土壤有机质和氮磷钾养分含量、孔隙度、团聚体分布和稳定性、团聚体有机碳和全氮贡献率等指标。结果表明:(1)与麦-稻轮作相比,油-稻轮作土壤有机质和有效磷含量在各施肥处理中分别提高了13.1%~19.2%和18.8%~59.5%,土壤全氮含量在秸秆不还田时提高了28.1%(CK处理)和29.2%(NPK处理);(2)秸秆不还田时,油-稻轮作土壤总孔隙度较麦-稻轮作显著提高了8.1%(CK处理)和10.3%(NPK处理),相应的毛管孔隙度分别提高了11.7%和10.5%;(3)与麦-稻轮作相比,油-稻轮作土壤团聚体的平均重量直径(MWD)、平均几何直径(GMD)和大团聚体含量(WSMA)在各施肥处理中均显著提高,且提高了大团聚体有机碳和全氮贡献率;(4)在相同轮作模式中,土壤有机质和养分含量均表现为:CK

    Abstract:

    [Objective] In China, upland-paddy rotation systems are mainly distributed in the Yangtze River Basin, with rapeseed-rice (RR) and wheat-rice (WR) rotations being the main systems. It was noticed that rice productivity varied with the rotation system. Therefore, a long-term experiment, designed to have different treatments concerning rotation system and fertilization pattern, was carried out. The study aimed to explore differences in soil nutrients and distribution of aggregate carbon and nitrogen between RR and WR rotations and between different fertilization methods. It is hoped that the study may providing a scientific basis for optimizing the paddy-upland rotation systems and the fertilization methods as well in the rapeseed-wheat interlaced area of the middle reaches of the Yangtze River.[Method] The field experiment was designed to have two treatments in rotation system (i.e., RR and WR) and three treatments in fertilization, i.e., CK (no fertilization), NPK (chemical fertilization), and NPK+S (chemical fertilization combined with straw returning). Soil samples were collected from the 0-20cm soil layer of each treatment after harvest of the upland crops of the fourth year for analysis of physical and chemical properties, such as soil organic matter, nutrient content, porosity, distribution and stability of soil aggregates, and contribution rate of soil aggregate organic carbon and nitrogen to the soil total.[Result] Compared with WR, RR was 13.1%-19.2% and 18.8%-59.5% higher in content of soil organic matter and available phosphorus when fertilized. Treatment NPK+S was 28.1% than CK and 29.2% higher than Treatment NPK in content of soil total nitrogen. In the group of Treatment NPK, Treatment RR was significantly or 8.1% (in CK) and 10.3% (in Treatment NPK) higher and 11.7% and 10.5%, respectively, higher than Treatment WR in total porosity and capillary porosity. In the group of fertilization treatments (either NPK or NPK+S), Treatment WR was significantly higher than Treatment RR in mean weight diameter (MWD) and geometric mean diameter (GMD) of the water-stable soil aggregates and content of water-stable macroaggregate (WSMA), and in contribution rate of large-sized soil aggregates to total organic carbon and total nitrogen as well. In terms of soil organic matter and nutrient contents the fertilization treatments displayed an order of CK < NPK < NPK+S, and Treatments NPK and NPK+S were significantly higher than CK in soil aggregate stability and contribution rate of large-sized aggregates to total organic carbon and total nitrogen, regardless of rotation patterns. In the group of Treatment WR, Treatment NPK + S was significantly higher than CK and NPK in soil total porosity and capillary porosity, while in the group of Treatment RR, no significant difference was observed in soil porosity between different fertilizer treatments.[Conclusion] All the findings show that under the rapeseed-rice rotation system, application of chemical fertilizer combined with straw returning can increase contents of soil organic matter and soil nutrients, improve bulk density and porosity of the soil, and stabilize soil aggregate structure. Hence, the combination of rapeseed-rice rotation and application of NPK coupled with straw returning could be deemed as an important measure to achieve sustainable development of rice fields.

    参考文献
    相似文献
    引证文献
引用本文

张顺涛,任涛,周橡棋,方娅婷,廖世鹏,丛日环,鲁剑巍.油/麦-稻轮作和施肥对土壤养分及团聚体碳氮分布的影响[J].土壤学报,2022,59(1):194-205. DOI:10.11766/trxb202004090091 ZHANG Shuntao, REN Tao, ZHOU Xiangqi, FANG Yating, LIAO Shipeng, CONG Rihuan, LU Jianwei. Effects of Rapeseed/Wheat-Rice Rotation and Fertilization on Soil Nutrients and Distribution of Aggregate Carbon and Nitrogen[J]. Acta Pedologica Sinica,2022,59(1):194-205.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-04-09
  • 最后修改日期:2020-07-23
  • 录用日期:2020-10-14
  • 在线发布日期: 2020-12-10
  • 出版日期: 2022-01-11