细菌-矿物互作及其复合体在重金属修复中的应用
作者:
中图分类号:

Q938.1+3

基金项目:

国家自然科学基金项目(41807031,41671313)和广东省自然科学基金项目(2018A030310127)资助


Interaction Between Bacteria and Soil Minerals and Application of Bacterial-Mineral Composites in Remediation of Heavy Metals Polluted Soil
Author:
Fund Project:

Supported by the Natural Science Foundation of Guangdong Province (2018A030310127); National Nature Science Foundation of China (41807031,41671313)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [72]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    利用功能细菌辅助植物固定重金属是目前农田土壤污染修复中高效且环境友好的方式,其中细菌与矿物间相互作用广泛存在,包括细菌对矿物的溶解作用、矿物对细菌活性的影响以及细菌-矿物复合体的形成等,并贯穿整个修复过程。一方面,细菌与矿物互作会影响细菌的活性和表面特性,如带电性、表面官能团位点类型及浓度等,进而影响细菌对重金属的生物吸附行为以及辅助植物修复作用的发挥;另一方面,细菌-矿物结合形成的复合体较单一细菌、矿物组分对重金属的固定行为不同,在重金属修复过程中发挥不可忽视的作用。本文综合分析细菌与矿物的结合作用、细菌对矿物的溶解作用以及矿物对细菌活性的影响,阐述细菌-土壤矿物(矿物材料)复合体在重金属污染修复中的应用潜能,为复合体应用于重金属污染土壤环境提供理论依据。

    Abstract:

    The use of functional bacteria to assist phytostabilization is nowadays a practical and eco-friendly method commonly applied to remediation of heavy metals-contaminated farmland soils. The application can effectively control the migration of heavy metal pollutants, reduce the concentration of available heavy metals in the soil, and further on ensure safety of the agricultural production. However, bacteria do not exist independently in soil. Nearly 80%~90% of the microorganisms exist on and adhere to the surface of soil minerals or mineral-organic complexes. Within this in-situ soil remediation process, the interplay between bacteria and minerals, including the formation of bacterial-mineral complexes, the dissolution of minerals by bacteria metabolites and the influence of minerals on bacterial activity, which runs through the whole remediation, should be taken in consideration and show extensive interferences. First, the interplay will affect the surface characteristics of bacteria, such as chargeability, type and concentration of the surface functional groups, etc., which in turn affect biosorption behavior of the bacteria to heavy metals; Secondly, minerals can affect bacterial activity by destroying integrity of the bacterial biofilm, dissolving out mineral ions to poison bacteria and buffering pH in the environment, etc., and disrupt internal physiological regulation mechanisms of the bacteria, which ultimately affect colonization ability of the bacteria on the surface of minerals, growth-promoting function of the bacteria on plants, and ability of the bacteria to immobilize heavy metals. Moreover, the composites formed by combination of bacteria and minerals differ in behavior in immobilization of heavy metals from a single component of bacteria or minerals. This process might promote formation of soil aggregates, improve soil physical structure, and slow down soil degradation, which is conducive to the sustainable use of remedied farmlands, and hence plays an important role in remediation of heavy metals-contaminated soils. At present, the research on relationships between soil minerals, bacteria and heavy metals is still limited, and most of them focus on apparent phenomena. Therefore, this paper is oriented to comprehensively review the combination of bacteria and minerals, the dissolution effect of bacteria on minerals and the influence of minerals on bacterial activity, and expound the application potential of bacteria-soil mineral(mineral material)complexes in remediation of heavy metal polluted soils, so as to provide a theoretical basis for the application of bacteria-mineral complexes in the heavy metals -contaminated soil environment.

    参考文献
    [1] Rajkumar M, Sandhya S, Prasad M N V, et al. Perspectives of plant-associated microbes in heavy metal phytoremediation[J]. Biotechnology Advances, 2012, 30(6):1562-1574.
    [2] Dimkpa C O, Merten D, Svatoš A, et al. Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores[J]. Soil Biology & Biochemistry, 2009, 41(1):154-162.
    [3] Nkoh J N, Xu R K, Yan J, et al. Mechanism of Cu(II) and Cd(II) immobilization by extracellular polymeric substances(Escherichia coli) on variable charge soils[J]. Environmental Pollution, 2019, 247:136-145.
    [4] Joshi P M, Juwarkar A A. In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals[J]. Environmental Science & Technology, 2009, 43(15):5884-5889.
    [5] Belimov A A, Hontzeas N, Safronova V I, et al. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard(Brassica juncea L. Czern.)[J]. Soil Biology & Biochemistry, 2005, 37(2):241-250.
    [6] Chen Y M, Yang W J, Chao Y Q, et al. Metal-tolerant Enterobacter sp. strain EG16 enhanced phytoremediation using Hibiscus cannabinus via siderophore-mediated plant growth promotion under metal contamination[J]. Plant and Soil, 2017, 413(1/2):203-216.
    [7] Sinha S, Mukherjee S K. Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization[J]. Current Microbiology, 2008, 56(1):55-60.
    [8] Huang Q Y, Chen W L, Xu L H. Adsorption of copper and cadmium by Cu-and Cd-resistant bacteria and their composites with soil colloids and kaolinite[J]. Geomicrobiology Journal, 2005, 22(5):227-236.
    [9] Zhang R Y, Zhang Y T, Neu T R, et al. Initial attachment and biofilm formation of a novel crenarchaeote on mineral sulfides[J]. Advanced Materials Research, 2015, 1130:127-130.
    [10] Chen M L, Zhang L, Gu G H, et al. Effects of microorganisms on surface properties of chalcopyrite and bioleaching[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(6):1421-1426.
    [11] Ams D A, Fein J, Dong H L, et al. Experimental measurements of the adsorption of Bacillus subtilis and Pseudomonas mendocina onto Fe-oxyhydroxide-coated and uncoated quartz grains[J]. Geomicrobiology Journal, 2004, 21(8):511-519.
    [12] Tan S N, Chen M. Early stage adsorption behaviour of Acidithiobacillus ferrooxidans on minerals I:An experimental approach[J]. Hydrometallurgy, 2012, 119/120:87-94.
    [13] Yee N, Fein J B, Daughney C J. Experimental study of the pH, ionic strength, and reversibility behavior of bacteria-mineral adsorption[J]. Geochimica et Cosmochimica Acta, 2000, 64(4):609-617.
    [14] Ehrlich H L. How microbes influence mineral growth and dissolution[J]. Chemical Geology, 1996, 132(1/2/3/4):5-9.
    [15] Zhou Y F, Wang R C, Lu X C. Anorthite dissolution promoted by bacterial adhesion:Direct evidence from dialytic experiment[J]. Science China Earth Sciences, 2011, 54(2):204-211.
    [16] Torres M A, West A J, Nealson K. Microbial acceleration of olivine dissolution via siderophore production[J]. Procedia Earth and Planetary Science, 2014, 10:118-122.
    [17] Seiffert F, Bandow N, Kalbe U, et al. Laboratory tools to quantify biogenic dissolution of rocks and minerals:A model rock biofilm growing in percolation columns[J]. Frontiers in Earth Science, 2016, 4:31.
    [18] Barker W W, Welch S A, Chu S, et al. Experimental observations of the effects of bacteria on aluminosilicate weathering[J]. American Mineralogist, 1998, 83(11):1551-1563.
    [19] Glasauer S, Langley S, Beveridge T J. Sorption of Fe(hydr) oxides to the surface of Shewanella putrefaciens:Cell-bound fine-grained minerals are not always formed de novo[J]. Applied and Environmental Microbiology, 2001, 67(12):5544-5550.
    [20] Cai P, Huang Q Y, Walker S L. Deposition and survival of Escherichia coli O157:H7 on clay minerals in a parallel plate flow system[J]. Environmental Science & Technology, 2013, 47(4):1896-1903.
    [21] Rong X M, Huang Q Y, Chen W L. Microcalorimetric investigation on the metabolic activity of Bacillus thuringiensis as influenced by kaolinite, montmorillonite and goethite[J]. Applied Clay Science, 2007, 38(1/2):97-103.
    [22] Khodijah Chaerun S, Tazaki K, Asada R, et al. Interaction between clay minerals and hydrocarbon-utilizing indigenous microorganisms in high concentrations of heavy oil:Implications for bioremediation[J]. Clay Minerals, 2005, 40(1):105-114.
    [23] Courvoisier E, Dukan S. Improvement of Escherichia coli growth by kaolinite[J]. Applied Clay Science, 2009, 44(1/2):67-70.
    [24] Zhou Y, Chen H L, Yao J, et al. Influence of clay minerals on the Bacillus halophilus Y38 activity under anaerobic condition[J]. Applied Clay Science, 2010, 50(4):533-537.
    [25] Kostka J E, Dalton D D, Skelton H, et al. Growth of iron(III)-reducing bacteria on clay minerals as the sole Electron acceptor and comparison of growth yields on a variety of oxidized iron forms[J]. Applied and Environmental Microbiology, 2002, 68(12):6256-6262.
    [26] Wong D, Suflita J M, McKinley J P, et al. Impact of clay minerals on sulfate-reducing activity in aquifers[J]. Microbial Ecology, 2004, 47(1):80-86.
    [27] Wang L, Xia J L, Zhu H R, et al. Progress on research of microbe-mineral interaction and interfacial micro-analysis[J]. Microbiology China, 2017, 44(3):716-725.[王蕾, 夏金兰, 朱泓睿, 等. 微生物-矿物相互作用及界面显微分析研究进展[J]. 微生物学通报, 2017, 44(3):716-725.]
    [28] Vu B, Chen M, Crawford R J, et al. Bacterial extracellular polysaccharides involved in biofilm formation[J]. Molecules, 2009, 14(7):2535-2554.
    [29] Xie Z Y, Huang Q Y, Huang M. Influence of heavy metal-resistant bacterium on the adsorption of Cu2+ in soil colloid and minerals[J]. Hubei Agricultural Sciences, 2010, 49(4):855-858.[谢朝阳, 黄巧云, 黄敏. 耐重金属细菌对土壤胶体及矿物体系吸附镉的影响[J]. 湖北农业科学, 2010, 49(4):855-858.]
    [30] Hermansson M. The DLVO theory in microbial adhesion[J]. Colloids and Surfaces B:Biointerfaces, 1999, 14(1/2/3/4):105-119.
    [31] Dong Y L, Xu M, Liu F C, et al. Study on the adsorption of Bacillus subtilis and Pseudomonas fluorescens on iron-aluminum composite oxides[J]. Acta Scientiae Circumstantiae, 2019, 39(4):1205-1210.[董玉良, 徐苗, 刘方春, 等. 铁铝复合氧化物对两种细菌的吸附作用研究[J]. 环境科学学报, 2019, 39(4):1205-1210.]
    [32] Sharma P K, Hanumantha Rao K. Adhesion of Paenibacillus polymyxa on chalcopyrite and pyrite:Surface thermodynamics and extended DLVO theory[J]. Colloids and Surfaces B:Biointerfaces, 2003, 29(1):21-38.
    [33] Ren L Y, Hong Z N, Liu Z D, et al. ATR-FTIR investigation of mechanisms of Bacillus subtilis adhesion onto variable-and constant-charge soil colloids[J]. Colloids and Surfaces B:Biointerfaces, 2018, 162:288-295.
    [34] Hong Z N, Jiang J, Li J Y, et al. Preferential adhesion of surface groups of Bacillus subtilis on gibbsite at different ionic strengths and pHs revealed by ATR-FTIR spectroscopy[J]. Colloids and Surfaces B:Biointerfaces, 2018, 165:83-91.
    [35] Ho Y, McKay G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5):451-465.
    [36] Feng W L, Li Y Y, Lin Z Y, et al. The influence on biosorption potentials of metal-resistant bacteria Enterobacter sp. EG16 and Bacillus subtilis DBM by typical red soil minerals[J]. Journal of Soils and Sediments, 2020, 20(8):3217-3229.
    [37] Vasiliadou I A, Papoulis D, Chrysikopoulos C V, et al. Attachment of Pseudomonas putida onto differently structured kaolinite minerals:A combined ATR-FTIR and 1H NMR study[J]. Colloids and Surfaces B:Biointerfaces, 2011, 84(2):354-359.
    [38] Ruan B, Wu P X, Liu J, et al. Adhesion of Sphingomonas sp. GY2B onto montmorillonite:A combination study by thermodynamics and the extended DLVO theory[J]. Colloids and Surfaces B:Biointerfaces, 2020, 192:111085.
    [39] Jiang D, Huang Q, Cai P, et al. Adsorption of Pseudomonas putida on clay minerals and iron oxide[J]. Colloids and Surfaces B:Biointerfaces, 2007, 54(2):217-221.
    [40] Zhang T X, Yang W H, Zhu X Y, et al. The pH dependence of escherichia coli O157:H7 adsorption on kaolinite and goethite surfaces[J]. Journal of Soils and Sediments, 2014, 15(1):106-116.
    [41] Rong X M, Chen W L, Huang Q Y, et al. Pseudomonas putida adhesion to goethite:Studied by equilibrium adsorption, SEM, FTIR and ITC[J]. Colloids and Surfaces B:Biointerfaces, 2010, 80(1):79-85.
    [42] Zhou Y F, Wang R C, Lu X C. Anorthite dissolution promoted by bacterial adhesion:Direct evidence from dialytic experiment[J]. Science China Earth Science, 2011, 41(10):1454-1462.[周跃飞, 王汝成, 陆现彩. 微生物粘附加速钙长石溶解的直接证据:透析法实验研究[J]. 中国科学:地球科学, 2011, 41(10):1454-1462.]
    [43] Casey W H, Ludwig C. Silicate mineral dissolution as a ligand-exchange reaction[J]. Reviews in Mineralogy and Geochemistry, 1995, 31(1):87-117.
    [44] Welch S A, Ullman W J. Feldspar dissolution in acidic and organic solutions:Compositional and pH dependence of dissolution rate[J]. Geochimica et Cosmochimica Acta, 1996, 60(16):2939-2948.
    [45] Rong X M, Huang Q Y, Chen W L, et al. Interaction mechanisms of soil minerals with microorganisms and their environmental significance[J]. Acta Ecologica Sinica, 2008, 28(1):376-387.[荣兴民, 黄巧云, 陈雯莉, 等. 土壤矿物与微生物相互作用的机理及其环境效应[J]. 生态学报, 2008, 28(1):376-387.]
    [46] Qu C C, Qian S F, Chen L, et al. Size-dependent bacterial toxicity of hematite particles[J]. Environmental Science and Technology, 2019, 53(14):8147-8156.
    [47] Asadishad B, Ghoshal S, Tufenkji N. Short-term inactivation rates of selected Gram-positive and Gram-negative bacteria attached to metal oxide mineral surfaces:Role of solution and surface chemistry[J]. Environmental Science & Technology, 2013, 47(11):5729-5737.
    [48] Flis S E, Glenn A R, Dilworth M J. The interaction between aluminium and root nodule bacteria[J]. Soil Biology & Biochemistry, 1993, 25(4):403-417.
    [49] Guida L, Saidi Z, Hughes M N, et al. Aluminium toxicity and binding to Escherichia coli[J]. Archives of Microbiology, 1991, 156(6):507-512.
    [50] Guzzo A, Diorio C, DuBow M S. Transcription of the Escherichia coli fliC gene is regulated by metal ions[J]. Applied and Environmental Microbiology, 1991, 57(8):2255-2259.
    [51] Williams L B, Metge D W, Eberl D D, et al. What makes a natural clay antibacterial?[J]. Environmental Science & Technology, 2011, 45(8):3768-3773.
    [52] Park S, Imlay J A. High levels of intracellular cysteine promote oxidative DNA damage by driving the Fenton reaction[J]. Journal of Bacteriology, 2003, 185(6):1942-1950.
    [53] Kohanski M A, Dwyer D J, Hayete B, et al. A common mechanism of cellular death induced by bactericidal antibiotics[J]. Cell, 2007, 130(5):797-810.
    [54] Moore C M, Helmann J D. Metal ion homeostasis in Bacillus subtilis[J]. Current Opinion in Microbiology, 2005, 8(2):188-195.
    [55] Zheng M, Wang X, Templeton L J, et al. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide[J]. Journal of Bacteriology, 2001, 183(15):4562-4570.
    [56] Anjem A, Varghese S, Imlay J A. Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli[J]. Molecular Microbiology, 2009, 72(4):844-858.
    [57] Chamnongpol S, Dodson W, Cromie M J, et al. Fe(III)-mediated cellular toxicity[J]. Molecular Microbiology, 2010, 45(3):711-719.
    [58] Yu W B, Ye B C. Transcriptional profiling analysis of Bacillus subtilis in response to high levels of Fe3+[J]. Current Microbiology, 2016, 72(6):1-10.
    [59] Breland E J, Zhang E W, Bermudez T, et al. The histidine residue of QseC is required for canonical signaling between QseB and PmrB in uropathogenic Escherichia coli[J]. Journal of Bacteriology, 2017, 199:e00060-17.
    [60] Fang L C. The molecular mechanisms of heavy metals interaction with the bacteria-soil active particles micro-interfaces[D]. Wuhan:Huazhong Agricultural University, 2011.[方临川. 重金属与细菌-土壤活性颗粒微界面互作的分子机制[D]. 武汉:华中农业大学, 2011.]
    [61] Kulczycki E, Fowle D A, Fortin D, et al. Sorption of cadmium and lead by bacteria-ferrihydrite composites[J]. Geomicrobiology Journal, 2005, 22(6):299-310.
    [62] Walker S G, Flemming C A, Ferris F G, et al. Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution[J]. Applied and Environmental Microbiology, 1989, 55(11):2976-2984.
    [63] Zhu J, Huang Q Y, Pigna M, et al. Competitive sorption of Cu and Cr on goethite and goethite-bacteria complex[J]. Chemical Engineering Journal, 2012, 179:26-32.
    [64] Franzblau R E, Daughney C J, Swedlund P J, et al. Cu(II) removal by Anoxybacillus flavithermus-iron oxide composites during the addition of Fe(II)aq[J]. Geochimica et Cosmochimica Acta, 2016, 172:139-158.
    [65] Chen X C, Chen L T, Shi J Y, et al. Immobilization of heavy metals by Pseudomonas putida CZ1/goethite composites from solution[J]. Colloids and Surfaces B:Biointerfaces, 2008, 61(2):170-175.
    [66] Xu S Z, Xing Y H, Liu S, et al. Co-effect of minerals and Cd(II) promoted the formation of bacterial biofilm and consequently enhanced the sorption of Cd(II)[J]. Environmental Pollution, 2020, 258:113774.
    [67] Flemming C A, Ferris F G, Beveridge T J, et al. Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites[J]. Applied and Environmental Microbiology, 1990, 56(10):3191-3203.
    [68] Du H H, Qu C C, Liu J, et al. Molecular investigation on the binding of Cd(II) by the binary mixtures of montmorillonite with two bacterial species[J]. Environmental Pollution, 2017, 229:871-878.
    [69] Qu C C, Ma M K, Chen W L, et al. Surface complexation modeling of Cu(II) sorption to montmorillonite-bacteria composites[J]. Science of the Total Environment, 2017, 607/608:1408-1418.
    [70] Qu C C, Du H H, Ma M K, et al. Pb sorption on montmorillonite-bacteria composites:A combination study by XAFS, ITC and SCM[J]. Chemosphere, 2018, 200:427-436.
    [71] Chen X C, Wu W X, Shi J Y, et al. Adsorption of copper and zinc on Pseudomonas putida CZ1:Particle concentration effect and adsorption reversibility[J]. Colloids and Surfaces B:Biointerfaces, 2007, 54(1):46-52.
    [72] Du H H, Chen W L, Cai P, et al. Competitive adsorption of Pb and Cd on bacteria-montmorillonite composite[J]. Environmental Pollution, 2016, 218:168-175.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

俸文玲,林芷昀,李雅莹,迟浩淳,王诗忠,晁元卿,仇荣亮.细菌-矿物互作及其复合体在重金属修复中的应用[J].土壤学报,2021,58(4):851-861. DOI:10.11766/trxb202007280143 FENG Wenling, LIN Zhiyun, LI Yaying, CHI Haochun, WANG Shizhong, CHAO Yuanqing, QIU Rongliang. Interaction Between Bacteria and Soil Minerals and Application of Bacterial-Mineral Composites in Remediation of Heavy Metals Polluted Soil[J]. Acta Pedologica Sinica,2021,58(4):851-861.

复制
分享
文章指标
  • 点击次数:1283
  • 下载次数: 4625
  • HTML阅读次数: 4308
  • 引用次数: 0
历史
  • 收稿日期:2020-07-28
  • 最后修改日期:2020-11-10
  • 录用日期:2020-12-17
  • 在线发布日期: 2020-12-22
  • 出版日期: 2021-07-11
文章二维码