驯化对植物微生物组结构和功能影响的研究进展
作者:
基金项目:

国家自然科学基金项目(31902112)资助


Progress of Impact of Plant Domestication on Composition and Functions of Microbiome
Author:
Fund Project:

Supported by the National Natural Science Foundation of China (No. 31902112)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [79]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    微生物组在植物的养分获取、健康生长过程中发挥重要作用。植物驯化对微生物组的结构和功能产生了不可忽视的影响,但是其机制仍缺少系统性梳理总结。为此,综述了驯化过程中,植物的类型和基因型、根外代谢产物、土壤生境的改变对微生物组的影响。通过多向比较归纳发现,在驯化过程中:(1)对微生物多样性影响显著。大多数植物微生物多样性随驯化过程下降;野生植物可招募更多有益于抵抗病原菌的微生物群落;植物种类和基因型的改变影响了根际微生物组成及其与植物的共生关系。(2)根外代谢产物的改变影响了微生物的养分吸收,驯化降低了植物的化学防御功能。(3)相对于农田等栽培土壤,原生土壤生境具有更多样和独特的微生物组成。综上所述,植物根际微生物组的改变是驯化过程多因素综合作用的结果。揭示驯化对微生物组功能的影响,恢复驯化过程中可能丢失的植物-微生物的有益联系和性状,可为基于微生物组的植物育种策略提供理论基础。

    Abstract:

    The plant microbiome plays crucial roles in nutrient acquisition, growth and health of plants, and has the potential to reduce dependence of the crops on fertilizers and pesticides. Plant domestication shows a significant impact on composition and functions of the microbiome. However, the mechanisms underlying this process are not well understood. Here, the paper is presented to summarize impacts of the variation of the plant in cultivar and genotype, root exometabolite and habitat, while the plants are being domesticated on composition and functions of the microbiome. Multifaceted comparison shows:(1) that domestication affects microbial diversity significantly and most of the plant microbial communities decrease in diversity during domestication; wild crops might attract more microbial communities that are beneficial to the resistance of pathogenic bacteria:and variation of the plant in cultivar and genotype affects composition of the rhizosphere microbiome and symbiotic relationship of the microbiome with the plant; (2) that changes in root exometabolite affect nutrient acquisition of the microbes and domestication weakens chemical defense of the plant; (3) Relative to the microbiome in the soil of croplands, the one in the virgin soil habitat is composed of more diverse and unique microbes. To sum up, the change in the plant rhizosphere microbiome is the result of the comprehensive interactions of multiple factors during the plant domestication process. Revealing the impacts of plant domestication on functions of the microbiome and restoring the beneficial plant-microbe connections and properties that may have got lost during plant domestication, can facilitate the development of new microbiome-based breeding strategies.

    参考文献
    [1] Zamir D. Improving plant breeding with exotic genetic libraries[J]. Nature Reviews. Genetics, 2001, 2(12):983-989.
    [2] Purugganan M D, Fuller D Q. The nature of selection during plant domestication[J]. Nature, 2009, 457(7231):843-848.
    [3] Meyer R S, Purugganan M D. Evolution of crop species:Genetics of domestication and diversification[J]. Nature Reviews Genetics, 2013, 14(12):840-852.
    [4] Pérez-Jaramillo J E, Mendes R, Raaijmakers J M. Impact of plant domestication on rhizosphere microbiome assembly and functions[J]. Plant Molecular Biology, 2016, 90(6):635-644.
    [5] Meyer R S, DuVal A E, Jensen H R. Patterns and processes in crop domestication:An historical review and quantitative analysis of 203 global food crops[J]. New Phytologist, 2012, 196(1):29-48.
    [6] Chang C L, Ma L N, Tian C J. A Selecting effect of crop domestication on rhizomicrobiome[J]. Soils and Crops, 2018, 7(2):236-241.[常春玲, 马丽娜, 田春杰. 作物驯化对根际微生物组的选择效应[J]. 土壤与作物, 2018, 7(2):236-241.]
    [7] Lu J, Tang T, Tang H, et al. The accumulation of deleterious mutations in rice genomes:A hypothesis on the cost of domestication[J]. Trends in Genetics, 2006, 22(3):126-131.
    [8] Renaut S, Rieseberg L H. The accumulation of deleterious mutations as a consequence of domestication and improvement in sunflowers and other compositae crops[J]. Molecular Biology and Evolution, 2015, 32(9):2273-2283.
    [9] Hassani M A, Özkurt E, Seybold H, et al. Interactions and coadaptation in plant metaorganisms[J]. Annual Review of Phytopathology, 2019, 57(1):483-503.
    [10] Doebley J F, Gaut B S, Smith B D. The molecular genetics of crop domestication[J]. Cell, 2006, 127(7):1309-1321.
    [11] Bitocchi E, Nanni L, Bellucci E, et al. Mesoamerican origin of the common bean(Phaseolus vulgaris L.) is revealed by sequence data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(14):E788-E796. https://doi.org/10.1073/pnas.1108973109.
    [12] Ram S G, Thiruvengadam V, Vinod K K. Genetic diversity among cultivars, landraces and wild relatives of rice as revealed by microsatellite markers[J]. Journal of Applied Genetics, 2007, 48(4):337-345.
    [13] Haudry A, Cenci A, Ravel C, et al. Grinding up wheat:A massive loss of nucleotide diversity since domestication[J]. Molecular Biology and Evolution, 2007, 24(7):1506-1517.
    [14] Graham L E, Graham J M, Wilcox L W, et al. Evolutionary roots of plant microbiomes and biogeochemical impacts of nonvascular autotroph-microbiome systems over deep time[J]. International Journal of Plant Sciences, 2018, 179(7):505-522.
    [15] Fitzpatrick C R, Salas-González I, Conway J M, et al. The plant microbiome:From ecology to reductionism and beyond[J]. Annual Review of Microbiology, 2020, 74(1):81-100.
    [16] Turner T R, James E K, Poole P S. The plant microbiome[J]. Genome Biology, 2013, 14(6):209.
    [17]
    [17] Miller E T, Svanbäck R, Bohannan B J M. Microbiomes as metacommunities:Understanding host-associated microbes through metacommunity ecology[J]. Trends in Ecology & Evolution, 2018, 33(12):926-935.
    [18] Weese D J, Heath K D, Dentinger B T M, et al. Long-term nitrogen addition causes the evolution of less-cooperative mutualists[J]. Evolution, 2015, 69(3):631-642.
    [19] Qin H, Bai J F, Xu Q F, et al. Effects of arbuscular mycorrhizal fungal hyphae on soil microbial community composition and polychlorinated biphenyls degradation[J]. Soils, 2015, 47(4):704-710.[秦华, 白建峰, 徐秋芳, 等. 丛枝菌根真菌菌丝对土壤微生物群落结构及多氯联苯降解的影响[J]. 土壤, 2015, 47(4):704-710.]
    [20] Cao Y F, Shen Z Z, Liu S S, et al. Evaluation of effect of Trichoderma controlling fusarium wilt disease and its influencing factors with meta-analysis in China[J]. Acta Pedologica Sinica, 2019, 56(3):716-727.[操一凡, 沈宗专, 刘珊珊, 等. Meta分析评估中国木霉对枯萎病防控效果及其影响因素[J]. 土壤学报, 2019, 56(3):716-727.]
    [21] Bartoli C, Frachon L, Barret M, et al. In situ relationships between microbiota and potential pathobiota in Arabidopsis thaliana[J]. The ISME Journal, 2018, 12(8):2024-2038.
    [22] Khan A L, Asaf S, Al-Rawahi A, et al. Rhizospheric microbial communities associated with wild and cultivated frankincense producing Boswellia sacra tree[J]. PLoS One, 2017, 12(10):e0186939.
    [23] Ewald P W. Transmission modes and evolution of the parasitism-mutualism continuum[J]. Annals of the New York Academy of Sciences, 1987, 503:295-306.
    [24] Truyens S, Weyens N, Cuypers A, et al. Bacterial seed endophytes:Genera, vertical transmission and interaction with plants[J]. Environmental Microbiology Reports, 2015, 7(1):40-50.
    [25] Porter S S, Sachs J L. Agriculture and the disruption of plant-microbial symbiosis[J]. Trends in Ecology & Evolution, 2020, 35(5):426-439.
    [26] Kim H, Lee K K, Jeon J, et al. Domestication of Oryza species eco-evolutionarily shapes bacterial and fungal communities in rice seed[J]. Microbiome, 2020, 8(1):20.
    [27] Amine Hassani M, Özkurt E, Franzenburg S, et al. Ecological assembly processes of the bacterial and fungal microbiota of wild and domesticated wheat species[J]. bioRxiv, 2020, DOI:10.1101/2020.01.07.896910.
    [28] Bulgarelli D, Garrido-Oter R, Münch P C, et al. Structure and function of the bacterial root microbiota in wild and domesticated barley[J]. Cell Host & Microbe, 2015, 17(3):392-403.
    [29] Ma L, Luo S, Xu S, et al. Different effects of wild and cultivated soybean on rhizosphere bacteria[J]. Microbiology, 2019, 88(6):720-728.
    [30] Pérez-Jaramillo J E, Carrión V J, Bosse M, et al. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits[J]. The ISME Journal, 2017, 11(10):2244-2257.
    [31] Pérez-Jaramillo J E, Carrión V J, de Hollander M, et al. The wild side of plant microbiomes[J]. Microbiome, 2018, 6(1):143.
    [32] Leff J W, Lynch R C, Kane N C, et al. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus[J]. New Phytologist, 2017, 214(1):412-423.
    [33] Hetrick B A D, Wilson G W T, Cox T S. Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors[J]. Canadian Journal of Botany, 1992, 70(10):2032-2040.
    [34] Sangabriel-Conde W, Negrete-Yankelevich S, Maldonado-Mendoza I E, et al. Native maize landraces from Los Tuxtlas, Mexico show varying mycorrhizal dependency for P uptake[J]. Biology and Fertility of Soils, 2014, 50(2):405-414.
    [35] Martín-Robles N, Lehmann A, Seco E, et al. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species[J]. New Phytologist, 2018, 218(1):322-334.
    [36] Kiers E T, Hutton M G, Denison R F. Human selection and the relaxation of legume defences against ineffective rhizobia[J]. Proceedings of the Royal Society B:Biological Sciences, 2007, 274(1629):3119-3126.
    [37] Muñoz N, Qi X, Li M W, et al. Improvement in nitrogen fixation capacity could be part of the domestication process in soybean[J]. Heredity, 2016, 117(2):84-93.
    [38] Weinert N, Piceno Y, Ding G C, et al. Phylochip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars:Many common and few cultivar-dependent taxa[J]. FEMS Microbiology Ecology, 2011, 75(3):497-506.
    [39] İnceoğlu Ö, Falcão Salles J, van Elsas J D. Soil and cultivar type shape the bacterial community in the potato rhizosphere[J]. Microbial Ecology, 2012, 63(2):460-470.
    [40] Johnston-Monje D, Raizada M N. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology[J]. PLoS One, 2011, 6(6):e20396.
    [41] Shi S H, Tian L, Nasir F, et al. Impact of domestication on the evolution of rhizomicrobiome of rice in response to the presence of Magnaporthe oryzae[J]. Plant Physiology and Biochemistry, 2018, 132:156-165.
    [42] Liu Z J, Wang D G, Li T, et al. Isolation of bacteria in wild soybean rhizosphere and study on its function to reduce disadvantage of soybean continuous cropping[J]. Soybean Science, 2007, 26(2):176-180.[刘昭军, 王德国, 李铁, 等. 野生大豆根际微生物的分离及其缓解大豆连作障碍的研究[J]. 大豆科学, 2007, 26(2):176-180.]
    [43] Zachow C, Muller H, Tilcher R, et al. Differences between the rhizosphere microbiome of Beta vulgaris ssp. Maritima-ancestor of all beet crops and modern sugar beets[J]. Frontiers in Microbiology, 2014, 5:415. https://doi.org/10.3389/fmicb.2014.00415.
    [44] Fernández-González A J, Cardoni M, Gómez-Lama Cabanás C, et al. Linking belowground microbial network changes to different tolerance level towards Verticillium wilt of olive[J]. Microbiome, 2020, 8(1):11.
    [45] Kwak M J, Kong H G, Choi K, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology, 2018, 36(11):1100-1109.
    [46] Mendes L W, de Chaves M G, Fonseca M D C, et al. Resistance breeding of common bean shapes the physiology of the rhizosphere microbiome[J]. Frontiers in Microbiology, 2019, 10:2252.
    [47] Yang L, Du Y X, Xu L J, et al. Effects of soil microecological environment on occurrence of ‘black humor’ disease in cherry tree[J]. Soils, 2017, 49(2):308-313.[杨璐, 杜岩新, 徐利娟, 等. 土壤微生态环境对樱桃树"黑疙瘩"病发生的影响[J]. 土壤, 2017, 49(2):308-313.]
    [48] Mendes L W, Raaijmakers J M, de Hollander M, et al. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function[J]. The ISME Journal, 2018, 12(1):212-224.
    [49] Mendes L W, Mendes R, Raaijmakers J M, et al. Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean[J]. The ISME Journal, 2018, 12(12):3038-3042.
    [50] Iannucci A, Fragasso M, Beleggia R, et al. Evolution of the crop rhizosphere:Impact of domestication on root exudates in tetraploid wheat(Triticum turgidum L.)[J]. Frontiers in Plant Science, 2017, 8:2124. https://doi.org/10.3389/fpls.2017.02124.
    [51] Preece C, Peñuelas J. A return to the wild:Root exudates and food security[J]. Trends in Plant Science, 2020, 25(1):14-21.
    [52] Walker T S, Bais H P, Grotewold E, et al. Root exudation and rhizosphere biology[J]. Plant Physiology, 2003, 132(1):44-51.
    [53] Mayrose M, Kane N C, Mayrose I, et al. Increased growth in sunflower correlates with reduced defences and altered gene expression in response to biotic and abiotic stress[J]. Molecular Ecology, 2011, 20(22):4683-4694.
    [54] Ruan Y L. Sucrose metabolism:Gateway to diverse carbon use and sugar signaling[J]. Annual Review of Plant Biology, 2014, 65(1):33-67.
    [55] Sasse J, Martinoia E, Northen T. Feed your friends:Do plant exudates shape the root microbiome?[J]. Trends in Plant Science, 2018, 23(1):25-41.
    [56] Zhang N, Yang D Q, Kendall J R A, et al. Comparative genomic analysis of Bacillus amyloliquefaciens and Bacillus subtilis reveals evolutional traits for adaptation to plant-associated habitats[J]. Frontiers in Microbiology, 2016, 7:2039.
    [57] Biate D L, Kumari A, Annapurna K, et al. Legume root exudates:Their role in symbiotic interactions[M]//Plant microbes symbiosis:Applied facets. New Delhi:Springer India, 2014:259-271.
    [58] Peters N, Frost J, Long S. A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes[J]. Science, 1986, 233(4767):977-980.
    [59] Hassan S, Mathesius U. The role of flavonoids in root-rhizosphere signalling:Opportunities and challenges for improving plant-microbe interactions[J]. Journal of Experimental Botany, 2012, 63(9):3429-3444.
    [60] Mutch L A, Young J P W. Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes[J]. Molecular Ecology, 2004, 13(8):2435-2444.
    [61] An G H, Kobayashi S, Enoki H, et al. How does arbuscular mycorrhizal colonization vary with host plant genotype? An example based on maize(Zea mays) germplasms[J]. Plant and Soil, 2010, 327(1/2):441-453.
    [62] Lehmann A, Barto E K, Powell J R, et al. Mycorrhizal responsiveness trends in annual crop plants and their wild relatives-A meta-analysis on studies from 1981 to 2010[J]. Plant and Soil, 2012, 355(1/2):231-250.
    [63] Rodriguez-Saona C, Vorsa N, Singh A P, et al. Tracing the history of plant traits under domestication in cranberries:Potential consequences on anti-herbivore defences[J]. Journal of Experimental Botany, 2011, 62(8):2633-2644.
    [64] Rosenthal J P, Dirzo R. Effects of life history, domestication and agronomic selection on plant defence against insects:Evidence from maizes and wild relatives[J]. Evolutionary Ecology, 1997, 11(3):337-355.
    [65] Wink M. Plant breeding:Importance of plant secondary metabolites for protection against pathogens and herbivores[J]. Theoretical and Applied Genetics, 1988, 75(2):225-233.
    [66] Stenberg J A, Heil M, Åhman I, et al. Optimizing crops for biocontrol of pests and disease[J]. Trends in Plant Science, 2015, 20(11):698-712.
    [67] Whitehead S R, Turcotte M M, Poveda K. Domestication impacts on plant-herbivore interactions:A meta-analysis[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2017, 372(1712):20160034.
    [68] Chen L, Xin X L, Zhang J B, et al. Soil characteristics overwhelm cultivar effects on the structure and assembly of root-associated microbiomes of modern maize[J]. Pedosphere, 2019, 29(3):360-373.
    [69] Köllner T G, Held M, Lenk C, et al. A maize(E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties[J]. The Plant Cell, 2008, 20(2):482-494.
    [70] Ji L, Shi S H, Tian L, et al. A discussion on issues related to the recruit of rhizosphere microbes caused by crop domestication[J]. Soils and Crops, 2019, 8(4):368-372.[吉丽, 石绍华, 田磊, 等. 作物驯化对根际微生物组的选择[J]. 土壤与作物, 2019, 8(4):368-372.]
    [71] Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere[J]. FEMS Microbiology Ecology, 2009, 68(1):1-13.
    [72] Chang C L, Zhang J X, Liu T T, et al. Rhizosphere fungal communities of wild and cultivated soybeans grown in three different soil suspensions[J]. Applied Soil Ecology, 2020, 153:103586.
    [73] Liu K, Ge Z, Xu Y D, et al. Responses of soil microbial community to drying-wetting alternation relative to tillage mode[J]. Acta Pedologica Sinica, 2020, 57(1):206-216.[刘奎, 葛壮, 徐英德, 等. 不同耕作方式下黑土微生物群落对干湿交替的响应[J]. 土壤学报, 2020, 57(1):206-216.]
    [74] Verbruggen E, Röling W F M, Gamper H A, et al. Positive effects of organic farming on below-ground mutualists:Large-scale comparison of mycorrhizal fungal communities in agricultural soils[J]. New Phytologist, 2010, 186(4):968-979.
    [75] Santos-González J C, Nallanchakravarthula S, Alström S, et al. Soil, but not cultivar, shapes the structure of arbuscular mycorrhizal fungal assemblages associated with strawberry[J]. Microbial Ecology, 2011, 62(1):25-35.
    [76] Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species[J]. New Phytologist, 2016, 209(2):798-811.
    [77] Cassman N A, Leite M F A, Pan Y, et al. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland[J]. Scientific Reports, 2016, 6:23680.
    [78] Fox J E, Gulledge J, Engelhaupt E, et al. Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(24):10282-10287.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙铭雪,宋春旭.驯化对植物微生物组结构和功能影响的研究进展[J].土壤学报,2022,59(1):66-78. DOI:10.11766/trxb202006090210 SUN Mingxue, SONG Chunxu. Progress of Impact of Plant Domestication on Composition and Functions of Microbiome[J]. Acta Pedologica Sinica,2022,59(1):66-78.

复制
分享
文章指标
  • 点击次数:775
  • 下载次数: 2366
  • HTML阅读次数: 2856
  • 引用次数: 0
历史
  • 收稿日期:2020-06-09
  • 最后修改日期:2020-10-26
  • 录用日期:2020-12-29
  • 在线发布日期: 2020-12-30
  • 出版日期: 2022-01-11
文章二维码