针铁矿吸附态和包裹态有机碳在稻田土壤中的矿化及其激发效应
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

X144

基金项目:

国家自然科学基金项目(41761134095,41877104,31860160)资助


Mineralization of Goethite-Adsorbed and -Encapsulated Organic Carbon and Its Priming Effect in Paddy Soil
Author:
Affiliation:

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    南方水稻土富含铁氧化物,土壤有机碳通过与铁氧化物结合的形式长期固存于土壤中;由于土壤中氧化铁和有机碳主要通过吸附、键和与包裹等形式存在,所以不同的碳铁复合物的稳定性存在一定的差异。尽管已有较多研究分析了土壤中有机碳与铁矿的结合与赋存形式,但是有机碳与铁矿间的结合方式对有机碳在水稻土中矿化及其激发效应的影响机制尚不明确。以葡萄糖为典型小分子外源有机碳,通过制备针铁矿吸附态葡萄糖和包裹态葡萄糖,采用室内模拟培养实验,研究两种铁矿结合态葡萄糖在淹水水稻土中的矿化特征及其激发效应。结果表明:与单独添加葡萄糖处理相比,碳铁复合物的添加分别使CO213CO2释放量增加了0.39倍~0.53倍和0.87倍~1.07倍,却使CH413CH4释放量分别降低了0.44倍~0.59倍和0.25倍~0.44倍。相对于针铁矿吸附态葡萄糖,针铁矿包裹态葡萄糖显著抑制了CH4释放。而且,碳铁复合物的添加均在一定程度上促进了土壤原有有机碳矿化释放CO2,但抑制了来源于土壤原有有机碳的CH4释放。其中,针铁矿包裹态葡萄糖对来源于土壤原有有机碳的CH4释放量是针铁矿吸附态葡萄糖的1.33倍。针铁矿包裹态葡萄糖的快速矿化的碳库比例显著高于针铁矿吸附态葡萄糖,且其半衰期(T1/2)较针铁矿吸附态葡萄糖大10.85倍,其快库转化速率(k1)和慢库转化速率(k2)比铁矿吸附态葡萄糖的小10.74倍和19倍。其次,针铁矿包裹态葡萄糖对土壤有机质CO2累积激发效应表现为较弱的正激发(6.44 mg·kg-1),而对土壤有机质CH4累积激发效应则表现为负激发(-15.49 mg·kg-1),即针铁矿包裹态葡萄糖的添加抑制了土壤原有有机碳的矿化(-9.05 mg·kg-1),从而增强了土壤有机碳的固持潜力。因此,不同结构碳铁复合物的添加抑制了土壤原有有机碳的矿化,且针铁矿包裹态有机碳比针铁矿吸附态有机碳在水稻土中具有更强的稳定性和固碳效应。该研究结果也表明,水稻土中与铁氧化结合的小分子有机碳相对于游离态的有机碳,具有更强的生物稳定性,更低的矿化速率,而且能够抑制土壤有机碳的矿化,产生负激发效应,有利于增加土壤的长期固碳效应。

    Abstract:

    [Objective] The paddy soil in South China rich in iron oxides has soil organic carbon (OC) stored for a long time in association with iron oxides. As the iron oxide and organic carbon in the soil exist mainly in adsorbed-, bonded, and encapsulated forms, the carbon-goethite association vary in stability with the form. Although a large volume of studies have analyzed how OC and iron oxides associate in the soil and what form they exist in. However, so far little is known about mechanism of the association, relative to type, between iron oxides and OC affecting mineralization of OC and its priming effects (PE) in paddy soil.[Method] Glucose was used as the typical low molecular weight exogenous C, and prepared into goethite-adsorbed glucose (Goe-G) and goethite-encapsulated glucose (Goe*G), which were then incubated in the experiment to explore characteristics of the mineralization of the two iron oxides-glucose associations and their PE in paddy soil.[Result] Results show that compared with the pots amended with glucose alone, the pots amended with the two types of carbon-goethite association, separately, had CO2 and 13CO2 emission increased by 0.39-0.53 times and 0.87-1.07 times, respectively, and CH4 and 13CH4 emission decreased by 0.44-0.59 fold and 0.25-0.44 fold, respectively. Relative to amendment of goethite-adsorbed glucose, amendment of goethite-encapsulated glucose significantly inhibited CH4 release. What is more, amendment of carbon-goethite association, regardless of type, promoted the mineralization of SOC into CO2 but inhibited the release of native SOC-derived CH4. The inhibitory effect of goethite-encapsulated glucose on the release of native SOC-derived CH4 was significantly greater than that of goethite adsorbed glucose. The fast pool of goethite-encapsulated glucose was higher than that of goethite adsorbed glucose, and its half-life (T1/2) was 10.85 times longer than that of goethite adsorbed glucose, and the turnover rate of the fast pool (k1) and slow pool (k2) was 10.74 and 19 times smaller than that of the goethite adsorbed glucose, respectively. Secondly, the goethite encapsulated glucose-induced a weak positive PE for CO2 emission (6.44 mg·kg-1), but a negative PE for CH4 emission (-15.49 mg·kg-1). The findings suggest that the amendment of goethite-encapsulated glucose inhibits mineralization of native SOC(-9.05 mg·kg-1) and enhances the potential of C assimilation in the paddy soil. Though the addition of either carbon-goethite association has the effect inhibiting mineralization of native SOC, the amendment of goethite-encapsulated OC is more beneficial than that of goethite-adsorbed OC to soil C stabilization and sequestration.[Conclusion] The findings in the experiment suggest that iron-oxides-bonded low molecular weight OC is higher in biological stability than soluble OC, but relatively low in mineralization rate, thus inhibiting mineralization of native SOC and inducing negative priming effect. Therefore, amendment of OC bonded with iron oxides is beneficial to long-term C sequestration effect in paddy soils.

    参考文献
    相似文献
    引证文献
引用本文

江家彬,祝贞科,林森,李宇虹,李科林,王小利,葛体达,吴金水.针铁矿吸附态和包裹态有机碳在稻田土壤中的矿化及其激发效应[J].土壤学报,2021,58(6):1530-1539. DOI:10.11766/trxb202005050215 JIANG Jiabin, ZHU Zhenke, LIN Sen, LI Yuhong, LI Kelin, WANG Xiaoli, GE Tida, WU Jinshui. Mineralization of Goethite-Adsorbed and -Encapsulated Organic Carbon and Its Priming Effect in Paddy Soil[J]. Acta Pedologica Sinica,2021,58(6):1530-1539.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-05-05
  • 最后修改日期:2020-06-26
  • 录用日期:2020-08-20
  • 在线发布日期: 2020-12-31
  • 出版日期: 2021-11-11