花岗岩红壤丘陵区崩岗土体界限含水量的温度效应研究
作者:
基金项目:

国家自然科学基金项目(41907043)资助


Effects of Temperature on Soil Atterberg Limit in Soil of Collapsing Gully Wall in the Hilly Granitic Region of South China
Author:
Fund Project:

National Natural Science Foundation of China (No. 41907043)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    水分和温度会显著影响花岗岩红壤的力学状态,是崩岗发生和发展的两大驱动因素。以崩壁三个土层土壤:红土层、砂土层和碎屑层为研究对象,在15、25、40和60℃温度条件下对三个土层土壤的液塑限和结合水含量开展研究。结果表明:红土层的液限、塑限和塑性指数均高于砂土层和碎屑层,碎屑层土壤的液塑限最小。崩岗土壤的液塑限与细黏粒、有机质和氧化铁的含量呈线性正相关。温度从15℃升高至40℃时,三个土层土壤的液限和塑限均显著降低,同时土壤的结合水含量均降低。温度从40℃升高至60℃,红土层、碎屑层土壤塑限和红土层、砂土层土壤液限有所上升。温度对土壤结合水含量的影响规律与土壤液塑限的变化趋势一致。碎屑层土壤的液限接近饱和含水量,且液限随温度升高逐渐降低。在夏季高温多雨的情况下,碎屑层土壤最容易发生流动变形,可能是导致崩壁崩塌的主要原因之一。

    Abstract:

    [Objective] Collapsing gully, one of the most serious soil erosion problems in the tropical and subtropical areas of South China, occurs mainly in the hilly red soil regions as triggered off by the interaction of runoff and gravity. A collapsing gully generally consists of five parts:an upper catchment, a collapsing wall, a colluvial deposit, a scour channel, and an alluvial fan. Stability of a collapsing gully wall determines the scale of the collapsing gully and the volume of the colluvial deposit. Rainfall and temperature not only determine weathering rate of soils, but also affect the mechanical state of granite red soils. Liquid and plastic limits are the most commonly tested mechanical indices. However, few studies have been reported about investigation of the effects of temperature on soil Atterberg limits in collapsing gullies.[Method] In this study, soil samples were collected from the three soil layers in a soil profile, i.e. red soil layer, sandy soil layer and detritus layer, of a typical collapsing gully located in Anxi County, Fujian Province. The soil profile was subdivided into three soil layers in the light of their colors and structures. Four levels of temperature (15, 25, 40 and 60℃) were set to investigate their effects on soil liquid and plastic limits and soil bound water content.[Result] The red soil layer was found to be the highest in soil liquid limit, plastic limit and plastic index and followed by the sandy soil layer and the detritus layer. Liquid and plastic limits positively and linearly related to contents of fine clay, organic matter and iron oxide. When temperature rose from 15℃ to 40℃, soil liquid and plastic limits in the three soil layers all decreased, as well as the soil bound water content. When temperature rose from 40℃ to 60℃, soil plastic limit increased in the red soil layer and the detritus layer, and soil liquid limit increased in the red soil layer and sandy soil layer. The effect of temperature on soil bound water content was consistent with the changes in soil liquid and plastic limits.[Conclusion] The soil liquid limit of the detritus layer is approximate to its saturated water content, and decreases gradually with the rising soil temperature. In the case of high temperature and heavy rain in summer in this region, flow deformation is the most likely to occur in the detritus layer, which might be one of the main reasons causing the collapse of a collapsing gully wall.

    参考文献
    [1] Valentin C, Poesen J, Li Y. Gully erosion:Impacts, factors and control[J]. Catena, 2005, 63(2/3):132-153.
    [2] Lin J S, Huang Y H, Wang M K, et al. Assessing the sources of sediment transported in gully systems using a fingerprinting approach:An example from South-east China[J]. Catena, 2015, 129:9-17.
    [3] DiCenzo P D, Luk S H. Gully erosion and sediment transport in a small subtropical catchment, South China[J]. Catena, 1997, 29(2):161-176.
    [4] Xia D, Deng Y S, Wang S L, et al. Fractal features of soil particle-size distribution of different weathering profiles of the collapsing gullies in the hilly granitic region, South China[J]. Natural Hazards, 2015, 79(1):455-478.
    [5] Jiang F S, Huang Y H, Wang M K, et al. Effects of rainfall intensity and slope gradient on steep colluvial deposit erosion in southeast China[J]. Soil Science Society of America Journal, 2014, 78(5):1741-1752.
    [6] Xia J W, Cai C F, Wei Y J, et al. Granite residual soil properties in collapsing gullies of South China:Spatial variations and effects on collapsing gully erosion[J]. Catena, 2019, 174:469-477.
    [7] Deng Y S, Duan X Q, Ding S W, et al. Suction stress characteristics in granite red soils and their relationship with the collapsing gully in South China[J]. Catena, 2018, 171:505-522.
    [8] Zhong B L, Peng S Y, Zhang Q, et al. Using an ecological economics approach to support the restoration of collapsing gullies in Southern China[J]. Land Use Policy, 2013, 32:119-124.
    [9] Xu J X. Benggang erosion:The influencing factors[J]. Catena, 1996, 27(3/4):249-263.
    [10] Zhang X M, Ding S W, Cai C F. Effects of drying and wetting on nonlinear decay of soil shear strength in slope disintegration erosion area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5):241-245.[张晓明, 丁树文, 蔡崇法. 干湿效应下崩岗区岩土抗剪强度衰减非线性分析[J]. 农业工程学报, 2012, 28(5):241-245.]
    [11] Lin J L, Huang Y H, Zhang D B, et al. Influence of soil moisture content on shear characteristics of Benggang[J]. Journal of Soil and Water Conservation, 2013, 27(3):55-58.[林敬兰, 黄炎和, 张德斌, 等. 水分对崩岗土体抗剪切特性的影响[J]. 水土保持学报, 2013, 27(3):55-58.]
    [12] Liu X L, Qiu J N, Zhang D L. Analysis of soil wetting mechanism and influencing factors on the headwall of collapsing hill and erosional gully[J]. Journal of Soil and Water Conservation, 2016, 30(4):80-84.[刘希林, 邱锦安, 张大林. 崩岗侵蚀区崩壁土体湿化机理及影响因素分析[J]. 水土保持学报, 2016, 30(4):80-84.]
    [13] Deng Y S, Cai C F, Xia D, et al. Soil Atterberg limits of different weathering profiles of the collapsing gullies in the hilly granitic region of Southern China[J]. Solid Earth, 2016, 8(2):499-513.
    [14] Jefferson I, Foss Rogers C D. Liquid limit and the temperature sensitivity of clays[J]. Engineering Geology, 1998, 49(2):95-109.
    [15] Hua K K, Wei C F, Ren Z J. Characters and effects of soil liquid limit and shear strength in purple hilly-mountainous region[J]. Journal of Agricultural Mechanization Research, 2011, 33(6):105-110.[花可可, 魏朝富, 任镇江. 土壤液限和抗剪强度特征值及其影响因素研究——基于紫色土区[J]. 农机化研究, 2011, 33(6):105-110.]
    [16] Xie Y M. Study on characteristics and influencing factors of soil Atterberg limits in collapsing wall[J]. Pearl River, 2017, 38(12):96-99.[谢炎敏. 崩壁土壤界限含水率特征及影响因子研究[J]. 人民珠江, 2017, 38(12):96-99.]
    [17] Zhuang Y T, Huang Y H, Lin J S, et al. Study on liquid limit and plastic limit characteristics and factors of Benggang in red soil layer[J]. Research of Soil and Water Conservation, 2014, 21(3):208-211, 216.[庄雅婷, 黄炎和, 林金石, 等. 崩岗红土层土壤液塑限特性及影响因素研究[J]. 水土保持研究, 2014, 21(3):208-211, 216.]
    [18] Zhu H X, Deng Y S, Xia Z G, et al. Liquid and plastic limits and influencing factors for the profiles of collapse slope in Southeast of Hubei Province[J]. Science of Water and Soil Conservation, 2016, 14(5):1-7.[朱慧鑫, 邓羽松, 夏振刚, 等. 鄂东南花岗岩崩岗剖面土壤液塑限特征及影响因子分析[J]. 中国水土保持科学, 2016, 14(5):1-7.]
    [19] Zhu C G, Liu C, Shi B, et al. Numerical simulation of the influence of temperature field on slope stability[J]. Geological Journal of China Universities, 2018, 24(1):122-127.[朱晨光, 刘春, 施斌, 等. 边坡稳定性温度效应数值模拟研究[J].高校地质学报, 2018, 24(1):122-127.]
    [20] Shao Y X, Shi B, Liu C, et al. Temperature effect on hydro-physical properties of clayey soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10):1576-1582.[邵玉娴, 施斌, 刘春, 等. 黏性土水理性质温度效应研究[J]. 岩土工程学报, 2011, 33(10):1576-1582.]
    [21] Huang Z P, Sun J L, Cao Y B, et al. Temperature effect on strength evolution of saturated granite residual soil[J]. Nonferrous Metals(Mining Section), 2017, 69(2):54-60.[黄真萍, 孙加梁, 曹洋兵, 等. 饱和花岗岩残积土强度演化的温度效应研究[J]. 有色金属(矿山部分), 2017, 69(2):54-60.]
    [22] Bao S D. Soil and agricultural chemistry analysis[M]. Beijing:China Agriculture Press, 2000.[鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社, 2000.]
    [23] Chen J L, Zhou M, Lin J S, et al. Comparison of soil physicochemical properties and mineralogical compositions between noncollapsible soils and collapsed gullies[J]. Geoderma, 2018, 317:56-66.
    [24] Wu F C. The adsorbed bound water content measurement and some characteristics of seepage[J]. Chinese Journal of Geotechnical Engineering, 1984, 6(6):84-93.[吴凤彩. 粘性土的吸附结合水测量和渗流的某些特点[J]. 岩土工程学报, 1984, 6(6):84-93.]
    [25] Liu X, Zhang G C, Heathman G C, et al. Fractal features of soil particle-size distribution as affected by plant communities in the forested region of Mountain Yimeng, China[J]. Geoderma, 2009, 154(1/2):123-130.
    [26] Dong J G, Ji C S. Discussion on influence of particle size on liquid and plastic limit and its influence mechanism[J]. Engineering Construction, 2017, 49(3):13-17.[董均贵, 季春生. 粒径对液塑限的影响及影响机理研究[J].工程建设, 2017, 49(3):13-17.]
    [27] Husein Malkawi A I, Alawneh A S, Abu-Safaqah O T. Effects of organic matter on the physical and the physicochemical properties of an illitic soil[J]. Applied Clay Science, 1999, 14(5/6):257-278.
    [28] Lü Y, Nie L, Xu Y, et al. The mechanism of organic matter effect on physical and mechanical properties of turfy soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4):655-660.[吕岩, 佴磊, 徐燕, 等. 有机质对草炭土物理力学性质影响的机理分析[J]. 岩土工程学报, 2011, 33(4):655-660.]
    [29] Zhang X W, Kong L W. Interaction between iron oxide colloids and clay minerals and its effect on properties of caly[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1):65-74.[张先伟, 孔令伟. 氧化铁胶体与黏土矿物的交互作用及其对黏土土性影响[J]. 岩土工程学报, 2014, 36(1):65-74.]
    [30] He Q, Chen J F, Xu Z Y. Influence of transformation of iron oxides on soil structure[J]. Acta Pedologica Sinica, 1981, 18(4):326-334.[何群, 陈家坊, 许祖诒. 土壤中氧化铁的转化及其对土壤结构的影响[J].土壤学报, 1981, 18(4):326-334.]
    [31] Passwell R E. Temperature effects on clay soil consolidation[J]. Journal of the Soil Mechanics & Foundations Division, 1967, 93(3):9-21.
    [32] Morin R, Silva A J. The effects of high pressure and high temperature on some physical properties of ocean sediments[J]. Journal of Geophysical Research:Solid Earth, 1984, 89(B1):511-526.
    [33] van Olphen H. An Introduction to Clay Colloid Chemistry. New York:John Wiley, 1977.
    [34] Youssef M S, Sabry A, Ramli A H EI. Temperature changes and their effects on some physical properties of soils[J]//Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering, Paris, 1961, 1:419-421.
    [35] Bai B, Zhao C G. Temperature effects on mechanical characteristics of clay soils[J]. Rock and Soil Mechanics, 2003, 24(4):533-537.[白冰, 赵成刚. 温度对粘性土介质力学特性的影响[J]. 岩土力学, 2003, 24(4):533-537.]
    [36] Ågren G I, Wetterstedt J Å M. What determines the temperature response of soil organic matter decomposition?[J]. Soil Biology and Biochemistry, 2007, 39(7):1794-1798.
    [37] Lu J Q, Chen D X, Li S L. The status of exchangeable potassium, calcium and magnesium in the major Fujian soil great groups and their distributions[J]. Journal of Fujian Agricultural College, 1985, 14(2):134-142.[陆集卿, 陈大勋, 李双霖. 福建省主要土类代换性钾、钙、镁含量及其分布规律的研究[J].福建农学院学报, 1985, 14(2):134-142.]
    [38] Li S Y, Lan P L, Xu S G, et al. Effects of desulphurisation byproducts on leguminosae crop growth in acid soils[J]. Ecology and Environment, 2003, 12(3):263-268.[李淑仪, 蓝佩玲, 徐胜光, 等. 燃煤烟气脱硫副产物在酸性土壤上施用的效果-以豆科作物为例[J]. 生态环境, 2003, 12(3):263-268.]
    [39] Meng G L, Chen Y F, Wang G W, et al. Study on the effect of water-soil interaction on the engineering property of remodeling red clay in Guilin[J]. Science Technology and Engineering, 2017, 17(10):265-271.[蒙高磊, 陈逸方, 王根伟, 等. 水土作用对桂林重塑红黏土工程性质试验研究[J]. 科学技术与工程, 2017, 17(10):265-271.]
    [40] Dong X, Tian J, Wu H, et al. Application of the emissivity method considering the effects of soil moisture for retrieving land surface temperature[J]. Resources Science, 2017, 39(8):1592-1604.[董雪, 田静, 吴骅, 等. 考虑土壤水分影响的比辐射率方法在地表温度反演中的应用[J]. 资源科学, 2017, 39(8):1592-1604.]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张越,赵冬峰,郑勤敏,林金石,蒋芳市,黄碧妃,葛宏力,黄炎和.花岗岩红壤丘陵区崩岗土体界限含水量的温度效应研究[J].土壤学报,2022,59(1):118-128. DOI:10.11766/trxb202007300287 ZHANG Yue, ZHAO Dongfeng, ZHENG Qinmin, LIN Jinshi, JIANG Fangshi, HUANG Bifei, GE Hongli, HUANG Yanhe. Effects of Temperature on Soil Atterberg Limit in Soil of Collapsing Gully Wall in the Hilly Granitic Region of South China[J]. Acta Pedologica Sinica,2022,59(1):118-128.

复制
分享
文章指标
  • 点击次数:668
  • 下载次数: 2074
  • HTML阅读次数: 1359
  • 引用次数: 0
历史
  • 收稿日期:2020-07-30
  • 最后修改日期:2020-09-17
  • 录用日期:2020-11-05
  • 在线发布日期: 2020-12-10
  • 出版日期: 2022-01-11
文章二维码