水稻土Fe2+氧化耦合硝酸根异化还原成铵(DNRA)及其对氧气存在和碳源添加的响应
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(41571289)和国家重点研发计划项目(2017YFD0200101)资助


Dissimilatory Nitrate Reduction to Ammonium Coupled to Fe2+ Oxidation in Paddy Soils as Affected by Oxygen Presence and Carbon Addition
Author:
Affiliation:

Fund Project:

The National Natural Science Foundation of China(41571289); The National Key Research and Development Plan of China(No. 2017YFD0200101)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以江苏常熟和湖南桃源水稻土为研究对象,通过室内15N示踪实验研究水稻土中Fe2+氧化耦合硝酸根异化还原成铵(Dissimilatory nitrate reduction to ammonium,DNRA)过程及其对氧气存在和碳源添加的响应。结果表明,两种水稻土中均存在Fe2+氧化耦合DNRA过程,常熟和桃源水稻土中DNRA的速率分别为0.38±0.15和0.36±0.21 nmol·g-1·h-1(以N计),当体系中Fe2+浓度为500 μmol·L-1时,DNRA速率有所提升但并不显著,当Fe2+浓度为800 μmol·L-1时,DNRA速率提升显著(P < 0.05),分别提升至2.35±0.30和0.81±0.22 nmol·g-1·h-1。在800 μmol·L-1 Fe2+浓度下,常熟水稻土中Fe2+氧化耦合DNRA的速率显著(P < 0.05)高于桃源水稻土,与两种水稻土中nrfA功能基因丰度的高低一致。在氧气存在和碳源添加的响应实验中,单一氧气处理、单一乳酸处理及氧气乳酸联合处理均显著(P < 0.05)促进桃源水稻土Fe2+氧化耦合DNRA过程速率,而在常熟水稻土中,800 μmol·L-1 Fe2+浓度下,单一乳酸及乳酸氧气联合处理显著(P <0.05)抑制Fe2+氧化耦合DNRA过程速率。以上研究表明,两种水稻土中均存在Fe2+氧化耦合DNRA过程,氧气和乳酸的单独、联合作用可以影响Fe2+耦合DNRA过程,但具体影响因土壤而异。未来研究还应纳入更多土壤样本,综合考虑环境因子和土壤性质对Fe2+氧化耦合DNRA过程的影响。

    Abstract:

    [Objective] Dissimilatory nitrate reduction to ammonium (DNRA), a biological pathway converting NO3- to NH4+, provides ammonium for rice uptake and microbial immobilization, resulting in N retention in paddy soils. Recently, the coupling between DNRA and Fe2+oxidation has been reported occurring in freshwater lake or estuary sediments. However, so far little has been reported on this process in paddy soil, and its potential key factors are practically unknown.[Method] Using 15N-tracing technique in combination with membrane inlet mass spectrometer (MIMS), an in-lab incubation experiment was performed to investigate the process of DNRA coupled to Fe2+ oxidation as affected by oxygen presence and carbon addition in two types of paddy soils (CS and TY).[Result] Results showed that the process of DNRA coupled to Fe2+ oxidation was found in both paddy soils, where the potential rate of DNRA increased from N 0.36-0.38 to 0.81-2.35 nmol·g-1·h-1 with Fe2+ addition rising from 0 to 800 μmol·L-1. At the concentration of 800 μmol·L-1 Fe2+, potential rate of DNRA was significantly higher in CS soil than that in TY soil, which was in consistence with differences between the two tested soils in nrfA gene abundance. Effect of oxygen presence and/or lactic acid addition on the process of DNRA coupled to Fe2+ oxidation varied in the two tested paddy soils. In TY soil, regardless of singly or in combination applied, oxygen presence and lactic acid addition significantly promoted potential rate of DNRA at varying Fe2+concentrations. In CS soil, single oxygen presence or lactic acid addition significantly increased potential rate of DNRA at the concentration of 500 μmol·L-1 Fe2+, whereas, at the concentration of 800 μmol·L-1 Fe2+, either lactic acid singly applied or in combination with oxygen significantly decreased potential rate of DNRA.[Conclusion] Findings of this study suggest that the process of DNRA coupled to Fe2+ oxidation occurs in paddy soils and may be affected by presence of oxygen and carbon addition. Further studies are needed to deepen understanding of this process by including more types of soil and comprehensively evaluating the effects of environmental parameters and soil properties on the process.

    参考文献
    相似文献
    引证文献
引用本文

吴敏,李进芳,魏志军,李承霖,夏永秋,单军,颜晓元.水稻土Fe2+氧化耦合硝酸根异化还原成铵(DNRA)及其对氧气存在和碳源添加的响应[J].土壤学报,2022,59(1):253-262. DOI:10.11766/trxb202007100382 WU Min, LI Jinfang, WEI Zhijun, LI Chenglin, XIA Yongqiu, SHAN Jun, YAN Xiaoyuan. Dissimilatory Nitrate Reduction to Ammonium Coupled to Fe2+ Oxidation in Paddy Soils as Affected by Oxygen Presence and Carbon Addition[J]. Acta Pedologica Sinica,2022,59(1):253-262.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-10
  • 最后修改日期:2020-09-10
  • 录用日期:2020-11-09
  • 在线发布日期: 2020-12-22
  • 出版日期: 2022-01-11