土壤中有机复合污染物微生物组转化机制与调控原理:进展与展望
作者:
中图分类号:

S153

基金项目:

国家重点研发计划项目(2019YFC1803700)和国家自然科学基金项目(41991330,41671327)资助


Microbiome-mediated Transformation Mechanism and Regulation Principle of Mixed Organic Pollutants in Soils: Progress and Perspective
Author:
Fund Project:

Supported by the National Key Research and Development Program of China (No. 2019YFC1803700) and the National Natural Science Foundation of China (Nos. 41991330 and 41671327)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [66]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    实际污染土壤中有机污染物通常以复合污染状态存在,有机复合污染物的微生物降解过程及其作用机制显得更为复杂。土壤微生物类群多样,具有丰富的功能多样性。而有机复合污染物的降解通常由微生物组操控,通过微生物群落代谢网络完成污染物的去除。近年来,研究者逐渐关注有机复合污染土壤中微生物群落适应机制-微生物组转化过程-合成微生物组设计-原位微生物组修复等方面的研究,对认知污染土壤治理和修复具有重要的科学意义。本文以具有代谢协同性及功能互补性的微生物组为切入点,系统阐述土壤中有机复合污染物的微生物组转化机制与调控原理等,探讨微生物组在复合污染土壤绿色可持续原位生物修复中的发展前景。

    Abstract:

    Polluted soils contain a mixture of contaminants. The microorganisms-mediated degradation processes and mechanisms appear to be more complicated than those in a controlled lab environment given that the soil microbiota is diverse and versatile in ecological functioning. In recent years, many researchers have highlighted the adaptation mechanism of the microbiome, biotransformation processes, design of synthetic microbial systems, in situ remediation by microbiomes in mixed organic pollutants contaminated soils, which are important for an understanding of the processes and mechanisms underlying soil remediation. The degradation of mixed organic pollutants is believed to be mainly controlled by the soil microbial community and influenced by their complex ecological networks. Due to the advantages of microbiomes(metabolic synergy and functional complementarity), this paper systematically analyzes the research progress and development trend of microbiome-mediated transformation and remediation mechanisms in organic pollutant co-contaminated soils and presents an outlook on the development of microbiomes in green and sustainable in situ bioremediation of mixed contaminated soils.

    参考文献
    [1] Liu Z P,Liu S J. Development of bioremediation in China-A review[J]. Chinese Journal of Biotechnology,2015,31(6):901-916.[刘志培,刘双江. 我国污染土壤生物修复技术的发展及现状[J]. 生物工程学报,2015,31(6):901-916.]
    [2] Luo Y M,Teng Y. Regional difference in soil pollution and strategy of soil zonal governance and remediation in China[J]. Bulletin of Chinese Academy of Sciences,2018,33(2):145-152.[骆永明,滕应. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊,2018,33(2):145-152.]
    [3] Atashgahi S,Sánchez-Andrea I,Heipieper H J,et al. Prospects for harnessing biocide resistance for bioremediation and detoxification[J]. Science,2018,360(6390):743-746.
    [4] Davoodi S M,Miri S B,Taheran M,et al. Bioremediation of unconventional oil contaminated ecosystems under natural and assisted conditions:A review[J]. Environmental Science & Technology,2020,54(4):2054-2067.
    [5] Zhu Y G,Shen R F,He J Z,et al. China soil microbiome initiative:Progress and perspective[J]. Bulletin of the Chinese Academy of Sciences,2017,32(6):554-565.[朱永官,沈仁芳,贺纪正,等. 中国土壤微生物组:进展与展望[J]. 中国科学院院刊,2017,32(6):554-565.]
    [6] Bahram M,Hildebrand F,Forslund S K,et al. Structure and function of the global topsoil microbiome[J]. Nature,2018,560(7717):233-237.
    [7] Crowther T W,van den Hoogen J,Wan J,et al. The global soil community and its influence on biogeochemistry[J]. Science,2019,365(6455):eaav0550.
    [8] Vila J,Tauler M,Grifoll M. Bacterial PAH degradation in marine and terrestrial habitats[J]. Current Opinion in Biotechnology,2015,33:95-102.
    [9] Podar M,Gilmour C C,Brandt C C,et al. Global prevalence and distribution of genes and microorganisms involved in mercury methylation[J]. Science Advances,2015,1(9):e1500675. https://doi.org/10.1126/sciadv.1500675.
    [10] Dvořák P,Nikel P I,Damborský J,et al. Bioremediation 3.0:Engineering pollutant-removing bacteria in the times of systemic biology[J]. Biotechnology Advances,2017,35(7):845-866.
    [11] Xu X H,Zarecki R,Medina S,et al. Modeling microbial communities from atrazine contaminated soils promotes the development of biostimulation solutions[J]. The ISME Journal,2019,13(2):494-508.
    [12] Worrich A,Musat N,Harms H. Associational effects in the microbial neighborhood[J]. The ISME Journal,2019,13(9):2143-2149.
    [13] Yu K,Yi S,Li B,et al. An integrated meta-omics approach reveals substrates involved in synergistic interactions in a bisphenol A(BPA)-degrading microbial community[J]. Microbiome,2019,7(1):16.
    [14] Jiao S,Chen W M,Wei G H. Resilience and assemblage of soil microbiome in response to chemical contamination combined with plant growth[J]. Applied and Environmental Microbiology,2019,85(6):e02523-02518. https://doi.org/10.1128/aem.02523-18.
    [15] Ren G D,Teng Y,Ren W J,et al. Pyrene dissipation potential varies with soil type and associated bacterial community changes[J]. Soil Biology and Biochemistry,2016,103:71-85.
    [16] Zenteno-Rojas A,Martínez-Romero E,Castañeda- Valbuena D,et al. Structure and diversity of native bacterial communities in soils contaminated with polychlorinated biphenyls[J]. AMB Express,2020,10(1):124.
    [17] Jiang L F,Luo C L,Zhang D Y,et al. Biphenyl-metabolizing microbial community and a functional operon revealed in E-waste-contaminated soil[J]. Environmental Science & Technology,2018,52(15):8558-8567.
    [18] Teng Y,Luo Y M,Shen R F,et al. Research progress and perspective of the multi-medium interface process and regulation principle of pollutants in site soil-groundwater[J]. Acta Pedologica Sinica,2020,57(6):1333-1340.[滕应,骆永明,沈仁芳,等. 场地土壤-地下水污染物多介质界面过程与调控研究进展与展望[J]. 土壤学报,2020,57(6):1333-1340.]
    [19] Teng Y,Xu L,Zou D X,et al. Changes of soil microbial structural diversity in polychlorinated biphenyls mixed polluted soils[J]. Ecology and Environmnet,2007(6):1688-1693.[滕应,徐莉,邹德勋,等. 多氯联苯复合污染土壤的微生物群落结构多样性变化[J]. 生态环境,2007(6):1688-1693.]
    [20] Li M Z,Liao Q,Dong Y P,et al. Effects of copper and sulfadiazine combined pollution on soil enzyme activity and metabolic function diversity of microbial dommunity[J]. Soils,2020,52(5):987-993.[李明珠,廖强,董远鹏,等. 铜和磺胺嘧啶复合污染对土壤酶活性及微生物群落功能多样性的影响[J]. 土壤,2020,52(5):987-993.]
    [21] Wang J W,Liu T,Sun W L,et al. Bioavailable metal(loid)s and physicochemical features co-mediating microbial communities at combined metal(loid)pollution sites[J]. Chemosphere,2020,260:127619.
    [22] Jansson J K,Hofmockel K S. Soil microbiomes and climate change[J]. Nature Reviews. Microbiology,2020,18(1):35-46.
    [23] Xun W B,Li W,Xiong W,et al. Diversity-triggered deterministic bacterial assembly constrains community functions[J]. Nature Communications,2019,10(1):3833.
    [24] Angulo M T,Moog C H,Liu Y Y. A theoretical framework for controlling complex microbial communities[J]. Nature Communications,2019,10(1):1045.
    [25] Jiao S,Chen W M,Wei G H. Biogeography and ecological diversity patterns of rare and abundant bacteria in oil-contaminated soils[J]. Molecular Ecology,2017,26(19):5305-5317.
    [26] Sun W M,Xiao E Z,Xiao T F,et al. Response of soil microbial communities to elevated antimony and arsenic contamination indicates the relationship between the innate microbiota and contaminant fractions[J]. Environmental Science & Technology,2017,51(16):9165-9175.
    [27] Sun X X,Kong T L,Xu R,et al. Comparative characterization of microbial communities that inhabit arsenic-rich and antimony-rich contaminated sites:Responses to two different contamination conditions[J]. Environmental Pollution,2020,260:114052.
    [28] Xiao E Z,Krumins V,Xiao T F,et al. Depth-resolved microbial community analyses in two contrasting soil cores contaminated by antimony and arsenic[J]. Environmental Pollution,2017,221:244-255.
    [29] Cai X X,Yuan Y,Yu L P,et al. Biochar enhances bioelectrochemical remediation of pentachlorophenol-contaminated soils via long-distance electron transfer[J]. Journal of Hazardous Materials,2020,391:122213.
    [30] Louca S,Polz M F,Mazel F,et al. Function and functional redundancy in microbial systems[J]. Nature Ecology & Evolution,2018,2(6):936-943.
    [31] Niehaus L,Boland I,Liu M H,et al. Microbial coexistence through chemical-mediated interactions[J]. Nature Communications,2019,10(1):2052.
    [32] Wang J N,Shi Y Y,Zheng L Y,et al. Isolation and identification of petroleum degradation bacteria and interspecific interactions among four Bacillus strains[J]. Chinese Journal of Environmental Science,2015,36(6):2245-2251.[王佳楠,石妍云,郑力燕,等. 石油降解菌的分离鉴定及4株芽胞杆菌种间效应[J]. 环境科学,2015,36(6):2245-2251.]
    [33] Kenny D J,Balskus E P. Engineering chemical interactions in microbial communities[J]. Chemical Society Reviews,2018,47(5):1705-1729.
    [34] Nagarajan K,Loh K C. Formulation of microbial cocktails for BTEX biodegradation[J]. Biodegradation,2015,26(1):51-63.
    [35] Busch A,Lacal J,Martos A,et al. Bacterial sensor kinase TodS interacts with agonistic and antagonistic signals[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(34):13774-13779.
    [36] Yang Z G,Jiang W K,Wang X H,et al. An amidase gene,ipaH,is responsible for the initial step in the iprodione degradation pathway of Paenarthrobacter sp. strain YJN-5[J]. Applied and Environmental Microbiology,2018,84(19):e01150-01118.
    [37] Yang H X,Hu S L,Wang X,et al. Erratum for Yang et al.,"Pigmentiphaga sp. strain D-2 uses a novel amidase to initiate the catabolism of the neonicotinoid insecticide acetamiprid"[J]. Applied and Environmental Microbiology,2020,86(12):e02425-02419.
    [38] Crits-Christoph A,Diamond S,Butterfield C N,et al. Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis[J]. Nature,2018,558(7710):440-444.
    [39] Zhu T,Wu B.Synthetic microbiome:When "synthetic biology" meets "microbiomics"[J]. Chinese Science Bulletin,2019,1764:1791-1798.[朱彤,吴边. 合成微生物组:当"合成生物学"遇见"微生物组学"[J]. 科学通报,2019,64(17):1791-1798.]
    [40] Lawson C E,Harcombe W R,Hatzenpichler R,et al. Common principles and best practices for engineering microbiomes[J]. Nature Reviews. Microbiology,2019,17(12):725-741.
    [41] Feng J,Li R F,Zhang S S,et al. Bioretrosynthesis of functionalized N-heterocycles from glucose via one-pot tandem collaborations of designed microbes[J]. Advanced Science,2020,7(17):2001188.
    [42] Trivedi P,Leach J E,Tringe S G,et al. Plant-microbiome interactions:From community assembly to plant health[J]. Nature Reviews Microbiology,2020,18(11):607-621.
    [43] de Lorenzo V,Prather K L J,Chen G Q,et al. The power of synthetic biology for bioproduction,remediation and pollution control:The un's sustainable development goals will inevitably require the application of molecular biology and biotechnology on a global scale[J]. EMBO Reports,2018,19(4):e45658
    [44] Romero M,Gallego D,Blaz J,et al. Rhizosphere metagenomics of mine tailings colonizing plants:Assembling and selecting synthetic bacterial communities to enhance in situ bioremediation[J]. bioRxiv,2019,DOI:10.1101/664805.
    [45] Mu D S,Liang Q Y,Wang X M,et al. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing[J]. Microbiome,2018,6(1):230.
    [46] Zhang D Y,Berry J P,Zhu D,et al. Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community[J]. The ISME Journal,2015,9(3):603-614.
    [47] Jiang C Y,Dong L B,Zhao J K,et al. High-throughput single-cell cultivation on microfluidic streak plates[J]. Applied and Environmental Microbiology,2016,82(7):2210-2218.
    [48] Kehe J,Kulesa A,Ortiz A,et al. Massively parallel screening of synthetic microbial communities[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(26):12804-12809.
    [49] Li J B,Luo C L,Zhang G,et al. Coupling magnetic-nanoparticle mediated isolation(MMI)and stable isotope probing(SIP)for identifying and isolating the active microbes involved in phenanthrene degradation in wastewater with higher resolution and accuracy[J]. Water Research,2018,144:226-234.
    [50] Wang X Z,Zhao X H,Li H B,et al. Separating and characterizing functional alkane degraders from crude-oil-contaminated sites via magnetic nanoparticle-mediated isolation[J]. Research in Microbiology,2016,167(9/10):731-744.
    [51] Ma F Q,Yang G Y. Ultra-high-throughput screening system based on droplet microfluidics and its applications in synthetic biology[J]. Biotechnology Bulletin,2017(1):83-92.[马富强,杨广宇. 基于液滴微流控技术的超高通量筛选体系及其在合成生物学中的应用[J]. 生物技术通报,2017(1):83-92.]
    [52] Yin J,Ma A Z,Song M Y,et al. Research progress in synthetic microbial systems[J]. Microbiology China,2020,47(2):583-593.[尹珺,马安周,宋茂勇,等. 合成微生物体系研究进展[J]. 微生物学通报,2020,47(2):583-593.]
    [53] Wang B B,Teng Y,Xu Y F,et al. Effect of mixed soil microbiomes on pyrene removal and the response of the soil microorganisms[J]. Science of the Total Environment,2018,640/641:9-17.
    [54] Thomas F,Corre E,Cébron A. Stable isotope probing and metagenomics highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium in polluted soil[J]. The ISME Journal,2019,13(7):1814-1830.
    [55] Gonzalez E,Pitre F E,Pagé A P,et al. Trees,fungi and bacteria:Tripartite metatranscriptomics of a root microbiome responding to soil contamination[J]. Microbiome,2018,6(1):53.
    [56] Khan Z,Roman D,Kintz T,et al. Degradation,phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida,PD1[J]. Environmental Science & Technology,2014,48(20):12221-12228.
    [57] Doty S L,Freeman J L,Cohu C M,et al. Enhanced degradation of TCE on a superfund site using endophyte-assisted poplar tree phytoremediation[J]. Environmental Science & Technology,2017,51(17):10050-10058.
    [58] Legault E K,James C A,Stewart K,et al. A field trial of TCE phytoremediation by genetically modified poplars expressing cytochrome P4502E1[J]. Environmental Science & Technology,2017,51(11):6090-6099.
    [59] Yergeau E,Sanschagrin S,Maynard C,et al. Microbial expression profiles in the rhizosphere of willows depend on soil contamination[J]. The ISME Journal,2014,8(2):344-358.
    [60] Yergeau E,Tremblay J,Joly S,et al. Soil contamination alters the willow root and rhizosphere metatranscriptome and the root-rhizosphere interactome[J]. The ISME Journal,2018,12(3):869-884.
    [61] Wang K L,Miao F,Shi K,et al. Research advances in eco-toxicological diagnosis methods of soil pollution[J]. Soils,2019,51(5):854-863.[王开来,苗峰,史柯,等. 土壤污染生态毒理诊断方法研究进展[J]. 土壤,2019,51(5):854-863.]
    [62] Fang H,Deng Y F,Ge Q Q,et al. Biodegradability and ecological safety assessment of Stenotrophomonas sp. DDT-1 in the DDT-contaminated soil[J]. Ecotoxicology and Environmental Safety,2018,158:145-153.
    [63] Lemming G,Hauschild M Z,Chambon J,et al. Environmental impacts of remediation of a trichloroethene-contaminated site:Life cycle assessment of remediation alternatives[J]. Environmental Science & Technology,2010,44(23):9163-9169.
    [64] Dong J Q,Zhang H Z,Lei Q S,et al. Review of LCA procedure and models for contaminated site remediation[J]. Environmental Pollution & Control,2016,38(12):89-95.[董璟琦,张红振,雷秋霜,等. 污染场地修复生命周期评估程序与模型的研究进展[J]. 环境污染与防治,2016,38(12):89-95.]
    [65] Hou D Y,Li G H. Green and sustainable remediation of contaminated soil in China:Core elements and development direction[J]. Environmental Protection,2016,44(20):16-19.[侯德义,李广贺. 污染土壤绿色可持续修复的内涵与发展方向分析[J]. 环境保护,2016,44(20):16-19.]
    [66] Hu X T,Zhu J X,Ding Q. Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies:Incineration and base catalyzed decomposition[J]. Journal of Hazardous Materials,2011,191(1/2/3):258-268.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

滕应,王笑咪,韩玉娟,任文杰,赵玲,骆永明.土壤中有机复合污染物微生物组转化机制与调控原理:进展与展望[J].土壤学报,2021,58(5):1084-1093. DOI:10.11766/trxb202009300458 TENG Ying, WANG Xiaomi, HAN Yujuan, REN Wenjie, ZHAO Ling, LUO Yongming. Microbiome-mediated Transformation Mechanism and Regulation Principle of Mixed Organic Pollutants in Soils: Progress and Perspective[J]. Acta Pedologica Sinica,2021,58(5):1084-1093.

复制
分享
文章指标
  • 点击次数:1684
  • 下载次数: 4335
  • HTML阅读次数: 7396
  • 引用次数: 0
历史
  • 收稿日期:2020-09-30
  • 最后修改日期:2021-01-06
  • 录用日期:2021-02-25
  • 在线发布日期: 2021-02-26
  • 出版日期: 2021-09-11
文章二维码