土壤宏病毒组的研究方法与进展
作者:
中图分类号:

S154.3

基金项目:

国家重点研发计划项目(2018YFC1803100)、中国科协青年人才托举工程(2018QNRC001)、国家自然科学基金面上项目(41771350)资助


Review in the Soil Virus Metagenome Analytical Methods and Progress
Author:
Fund Project:

Supported by the National Key Research and Development Program of China(No.2018YFC1803100)、Young Elite Scientists Sponsorship Program by CAST(NO.2018QNRC001)and National Natural Science Foundation of China(No. 41771350)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    土壤是病毒遗传多样性的储存库,但由于土壤自身特性及技术手段的限制,基于传统培养方法对土壤病毒的研究及功能认知存在局限性。宏病毒组学技术能直接从土壤环境样品中获取病毒基因组,随后通过高通量测序、拼接组装、ORF预测,最终可对病毒基因进行功能注释,极大地丰富了对土壤病毒功能的认识。本文在阐释土壤病毒DNA提取、测序与病毒判别、功能基因注释等研究方法的基础上,重点探讨了单株噬菌体基因组,及近年来国内外土壤与极端陆地环境中宏病毒组研究进展。并对土壤宏病毒基因组研究的前沿和发展趋势进行了总结,强调了土壤病毒研究的整体化、技术流程规范化以及病毒资源库完善化的重要性。

    Abstract:

    Soil is one of the most important reservoirs of virus genetic diversity. Due to the limitation of currently-available method for isolating and cultivating soil microorganisms, the overall diversity and function of the soil viruses remain largely unknown. Thanks to the development in the viral metagenome analysis, it is possible to directly obtain viromes from soil samples through high throughput sequencing, splicing assemble, ORF prediction, and protein annotation, which greatly enrich the understanding of soil viral functions. This review briefly summarizes the analytical methods that are extensively used in the soil virus metagenomic studies, including soil virus DNA extraction, sequencing and virus identification, functional gene annotation and etc. Meanwhile, the research progress in the phage genomes harbored in the culturable bacterial strains, and the viral metagenomes in terrestrial ecosystems were reviewed as well. This work highlights the significance of integrating currently-available virus analytical techniques, building standard viral analysis procedures, and optimizing the virus relevant databases.

    参考文献
    [1] Cobián Güemes A G,Youle M,Cantú V A,et al. Viruses as winners in the game of life[J]. Annual Review of Virology,2016,3(1):197-214.
    [2] Wang G H,Liu J J,Zhu D,et al. A review of researches on viruses in soil-Advancement and challenges[J]. Acta Pedologica Sinica,2020,57(6):1319-1332.[王光华,刘俊杰,朱冬,等. 土壤病毒的研究进展与挑战[J]. 土壤学报,2020,57(6):1319-1332.
    [3] Emerson J B. Soil viruses:A new hope. mSystems,2019,4(3):e00120-19.
    [4] Kuzyakov Y,Mason-Jones K. Viruses in soil:Nano-scale undead drivers of microbial life,biogeochemical turnover and ecosystem functions[J]. Soil Biology & Biochemistry,2018,127:305-317.
    [5] Wang G H. Lift mysterious veil of soil virus:‘Dark Matter’ of soil biota[J]. Bulletin of Chinese Academy of Sciences,2017,32(6):575-584.[王光华. 掀开土壤生物"暗物质"——土壤病毒的神秘面纱[J]. 中国科学院院刊,2017,32(6):575-584.]
    [6] Göller P C,Haro-Moreno J M,Rodriguez-Valera F,et al. Uncovering a hidden diversity:Optimized protocols for the extraction of dsDNA bacteriophages from soil[J]. Microbiome,2020,8:17.
    [7] Garza D R,Dutilh B E. From cultured to uncultured genome sequences:Metagenomics and modeling microbial ecosystems[J]. Cellular and Molecular Life Sciences,2015,72(22):4287-4308.
    [8] Xu Z W,Wei Y L,Ji X L. Advances in viral metagenomics[J]. Microbiology China,2020,47(8):2560-2570.[徐志伟,魏云林,季秀玲. 病毒宏基因组学研究进展[J].微生物学通报,2020,47(8):2560-2570.
    [9] Munson-Mcgee J H,Peng S Y,Dewerff S,et al. A virus or more in(nearly) every cell:Ubiquitous networks of virus-host interactions in extreme environments[J]. The ISME Journal,2018,12(7):1706-1714.
    [10] Han L L,Yu D T,He J Z. Research methods for soil viral ecology[J]. Acta Ecologica Sinica,2017,37(6):1749-1756.[韩丽丽,于丹婷,贺纪正. 土壤病毒生态学研究方法[J]. 生态学报,2017,37(6):1749-1756.]
    [11] Williamson K E,Wommack K E,Radosevich M. Sampling natural viral communities from soil for culture-independent analyses[J]. Applied and Environmental Microbiology,2003,69(11):6628-6633.
    [12] Shendure J,Ji H. Next-generation DNA sequencing[J]. Nature Biotechnology,2008,26(10):1135-1145.
    [13] He J Z,Yuan C L,Shen J P,et al. Methods for and progress in research on soil metagenomics[J]. Acta Pedologica Sinica,2012,49(1):155-164.[贺纪正,袁超磊,沈菊培,等.土壤宏基因组学研究方法与进展[J]. 土壤学报,2012,49(1):155-164.]
    [14] van Dijk E L,Jaszczyszyn Y,Naquin D,et al. The third revolution in sequencing technology[J]. Trends in Genetics,2018,34(9):666-681.
    [15] Ren J,Ahlgren N A,Lu Y Y,et al. VirFinder:A novel k-mer based tool for identifying viral sequences from assembled metagenomic data[J]. Microbiome,2017,5:69.
    [16] Fouts D E. Phage_Finder:Automated identification and classification of prophage regions in complete bacterial genome sequences[J]. Nucleic Acids Research,2006,34(20):5839-5851.
    [17] Lima-Mendez G,van Helden J,Toussaint A,et al. Prophinder:A computational tool for prophage prediction in prokaryotic genomes[J]. Bioinformatics,2008,24(6):863-865.
    [18] Arndt D,Grant J R,Marcu A,et al. PHASTER:A better,faster version of the PHAST phage search tool[J]. Nucleic Acids Research,2016,44(W1):W16-W21.
    [19] Arndt D,Marcu A,Liang Y J,et al. PHAST,PHASTER and PHASTEST:Tools for finding prophage in bacterial genomes[J]. Briefings in Bioinformatics,2019,20(4):1560-1567.
    [20] Roux S,Enault F,Hurwitz B L,et al. VirSorter:Mining viral signal from microbial genomic data[J]. PeerJ,2015,3:e985. https://doi.org/10.7717/peerj.985.
    [21] Zheng T T,Li J,Ni Y Q,et al. Mining,analyzing,and integrating viral signals from metagenomic data[J]. Microbiome,2019,7:42.
    [22] McNair K,Aziz R K,Pusch G D,et al. Phage genome annotation using the RAST pipeline[M]//Methods in molecular biology. New York:Springer New York,2017:231-238.
    [23] El-Gebali S,Mistry J,Bateman A,et al. The Pfam protein families database in 2019[J]. Nucleic Acids Research,2019,47(D1):D427-D432.
    [24] Triant D A,Pearson W R. Most partial domains in proteins are alignment and annotation artifacts[J]. Genome Biology,2015,16:99.
    [25] Kanehisa M,Furumichi M,Tanabe M,et al. KEGG:New perspectives on genomes,pathways,diseases and drugs[J]. Nucleic Acids Research,2017,45(D1):D353-D361.
    [26] Galperin M Y,Makarova K S,Wolf Y I,et al. Expanded microbial genome coverage and improved protein family annotation in the COG database[J]. Nucleic Acids Research,2015,43(D1):D261-D269.
    [27] Liu J,Glazko G,Mushegian A. Protein repertoire of double-stranded DNA bacteriophages[J]. Virus Research,2006,117(1):68-80.
    [28] Huang L,Zhang H,Wu P Z,et al. DbCAN-seq:A database of carbohydrate-active enzyme(CAZyme) sequence and annotation[J]. Nucleic Acids Research,2018,46(D1):D516-D521.
    [29] Alcock B P,Raphenya A R,Lau T T Y,et al. CARD 2020:Antibiotic resistome surveillance with the comprehensive antibiotic resistance database[J]. Nucleic Acids Research,2020,48(D1):D517-D525.
    [30] Ye M,Sun M M,Huang D,et al. A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment[J]. Environment International,2019,129:488-496.
    [31] Su J F,Liu J J,Yu H,et al. Isolation and whole genome sequencing of a novel lytic bacteriophage RS-PⅡ-1 infecting Ralstonia solanacearum[J]. Chinese Journal of Virology,2017,33(3):441-449.[苏靖芳,刘俊杰,于浩,等. 一株烟草青枯雷尔氏菌烈性噬菌体RS-PⅡ-1的分离及全基因组分析[J]. 病毒学报,2017,33(3):441-449.]
    [32] van Eck N J,Waltman L. Citation-based clustering of publications using CitNetExplorer and VOSviewer[J]. Sci睥?杴牯慭摥楴敲湩瑣孳?崲??丷愬琱由爱攨′?椺挱爰漵戳椭漱氰漷朰礮??ひ??????????????ど??扩牳?孁??嵡?坩楬汬汯楮愠浊献漠湃??????略栠牧浥慮湯湭?????坵潥浮浣慥挠歯?????整瑥?慩汯??噡楧牥甠獄敥獥?椭湐?獲潰楬汥?敡挠潮獯祶獥瑬攠浭獥??湥?甠湯武渠潴睨湥?煦畡慭湩瑬楹琠祓?睰楨瑯桶楩湲?慤湡?甠湩敮硦灥汣潴物敮摧?琼敩爾牂楡瑣潩牬祬孵?崼???渠渼畩愾汣?割敥癵楳攼眯?漾晛?噝椮爠潁汲潣杨祩??びㄠ????????は??水????戬爱?嬳??崩?匲挵栵电氭稲‵???氼瑢敲椾潛″???潓畵摴整慯畮???敄琠?愬汃???楮摥摹攠湁?摇椬癒敹牡獮椠瑆礠?漬晥?猠潡楬氮?权楨慯湩瑣?瘠楯牦甠獡敳獳孥?嵢??丠慳瑯畦牴敷??潥洠浨畡湳椠捡愠瑣楲潩湴獩??ぬㄠ??????????扶物?孯??崠??污?卡档慴祥敲扩???卩慯据桛摊敝瘮愠?剩??桯敢湩???堬?攰琱?愬氷???氮愼摢敲猾?漳昵?栠畈杵敥?灴桡愭权敥獰?晳爠潊洬?慺捫牬潡獲獣??慫爠瑄栬?獥?敬捥潲猠祄猬瑥整洠獡孬?崠??乧慎瑏畇爠攵?日?休?????????????水??????onally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses[J]. Nucleic Acids Research,2019,47(D1):D309-D314.
    [36] Jin M,Guo X,Zhang R,et al. Diversities and potential biogeochemical impacts of mangrove soil viruses[J]. Microbiome,2019,7:58.
    [37] Bi L,Yu D T,Du S,et al. Diversity and potential biogeochemical impacts of viruses in bulk and rhizosphere soils[J]. Environmental Microbiology,2020.
    [38] Segobola J,Adriaenssens E,Tsekoa T,et al. Exploring viral diversity in a unique south African soil habitat[J]. Scientific Reports,2018,8:111.
    [39] Liang X L,Wagner R E,Zhuang J,et al. Viral abundance and diversity vary with depth in a southeastern United States agricultural ultisol[J]. Soil Biology& Biochemistry,2019,137:107546.
    [40] Gao S M,Schippers A,Chen N,et al. Depth-related variability in viral communities in highly stratified sulfidic mine tailings[J]. Microbiome,2020,8:89.
    [41] Daly R A,Roux S,Borton M A,et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing[J]. Nature Microbiology,2019,4(2):352-361.
    [42] Bezuidt O,Lebre P H,Pierneef R A,et al. Phages actively challenge niche communities in Antarctic soils[J]. mSystems,2020. DOI:10.1128/mSystems. 00234-20
    [43] Adriaenssens E M,van Zyl L,de Maayer P,et al. Metagenomic analysis of the viral community in Namib Desert hypoliths[J]. Environmental Microbiology,2015,17(2):480-495.
    [44] Emerson J B,Roux S,Brum J R,et al. Host-linked soil viral ecology along a permafrost tha
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

祁慧鹓,郑晓璇,孙明明,王金锋,马迎飞,朱冬,王风贺,蒋新,叶茂.土壤宏病毒组的研究方法与进展[J].土壤学报,2021,58(3):568-577. DOI:10.11766/trxb202008210474 QI Huiyuan, ZHENG Xiaoxuan, SUN Mingming, WANG Jinfeng, MA Yingfei, ZHU Dong, WANG Fenghe, JIANG Xin, YE Mao. Review in the Soil Virus Metagenome Analytical Methods and Progress[J]. Acta Pedologica Sinica,2021,58(3):568-577.

复制
分享
文章指标
  • 点击次数:1757
  • 下载次数: 3504
  • HTML阅读次数: 2494
  • 引用次数: 0
历史
  • 收稿日期:2020-08-21
  • 最后修改日期:2020-10-13
  • 录用日期:2020-11-12
  • 在线发布日期: 2020-12-07
  • 出版日期: 2021-05-11
文章二维码