紫云英翻压后稻田土壤可溶性有机氮迁移特性与损失风险
作者:
基金项目:

国家自然科学基金项目(41671490)和福建农林大学科技创新项目(KF2105074)资助


Migration and Risk of Loss of Soluble Organic Nitrogen in Paddy Soil After Incorporation of Chinese Milk Vetch
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    可溶性有机氮在氮素转化和生态环境安全方面具有重要的作用。在等氮磷钾条件下以单施化肥(CK)为对照,研究不同数量紫云英(CMV1,15 000 kg·hm–2;CMV2,30 000 kg·hm–2和CMV3,45 000 kg·hm–2)翻压后灰泥田土壤可溶性有机氮(SON)和溶解性有机氮(DON)的动态变化、迁移特征及损失量。结果表明,不同施肥处理20~40 cm和40~60 cm土层SON含量分别较0~20 cm土层降低了58.50%和78.47%;施用紫云英利于SON在灰泥田土壤剖面中累积,水稻生育期0~60 cm土层CMV1、CMV2和CMV3处理SON密度分别较CK处理提高5.57%、10.11%和21.39%;不同施肥处理DON总损失量介于18.33~58.55 kg·hm–2,占可溶性总氮的46.52%~50.16%,其中3.77~37.85 kg·hm–2(以N计,下同)随淹水层径流损失,14.5~18.02 kg·hm–2随渗滤液迁移损失,且DON在土层间的迁移具有一定的延迟性;每季水稻CMV1、CMV2和CMV3较CK可分别减少16.90、31.09和37.52 kg·hm–2的DON损失。上述结果表明DON是稻田土壤氮素损失的重要形态,施用紫云英后灰泥田DON的损失量低于施用等氮量尿素,可减少水田氮素面源污染。

    Abstract:

    【Objective】Soluble organic nitrogen (SON) is one of the most active components of the soil nitrogen pool in farmland and plays an important role in nitrogen transformation and ecological environment security. As SON is highly mobile, it is prone to get lost with runoff or leaching, and thus, and hence affect water quality. 【Method】To provide a theoretical basis for rational fertilization in paddy fields, prevention and control of non-point source nitrogen pollution from paddy fields and improvement of the theory of nitrogen cycling, a field experiment, designed to have the following treatments, all equivalent in nutrient content, i.e. CK (application of chemical fertilizer only), CMV1 (application of chemical fertilizer plus incorporation of milk vetch at 15 000 kg·hm–2); CMV2 (application of chemical fertilizer plus incorporation of milk vetch at 30 000 kg·hm–2); and CMV3 (application of chemical fertilizer plus incorporation of milk vetch at 45 000 kg·hm–2), was carried out to explore dynamics, migration and loss of SON and dissolved organic nitrogen (DON) in grey-mud field soils. Soil samples from the treatments were analyzed for SON, respectively, using the hot water extraction method. SON concentrations were calculated by deducting TSN from the sum of SIN in the extracts. 【Result】During the growing period of rice, SON content in the 0-60 cm soil layer varied in the range from 2.09 to 22.32 mg·kg–1, showing a trend of “increasing - decreasing - increasing - decreasing to stable”. In the treatments the SON concentration was 140.95% and 364.44%, higher in the 0-20 cm soil layer, respectively, than in the 20-40 cm soil layer and the 40-60 cm soil layer, and 92.75% higher in the 20-40 cm soil layer than in the 40-60 cm soil layer. It is quite obvious that incorporation of Chinese milk vetch during the growth period of rice is beneficial to accumulation of SON in the soil (0-60 cm). In SON concentration in the 0-60 cm soil layer during the rice growth period, Treatment CMV1, CMV2 and CMV3 was 5.57%, 10.11% and 21.39%, respectively, higher than CK. Total loss of DON from the grey-mud fields under different fertilization treatments ranged from 18.33-58.55 kg·hm–2, accounting for 46.52%-50.16% of the TSN. Of the total loss, 3.77-37.85 kg·hm–2 was attributed to runoff, while 14.5-18.02 kg·hm–2 to leaching. Moreover, leaching of DON between soil layers was delayed to some extent. Compared with CK, Treatment CMV1, CMV2 and CMV3 was 16.90, 31.09 and 37.52 kg·hm–2, respectively, lower in DON loss.【Conclusion】Incorporation of milk vetch can increase the accumulation of SON in the 0-60 cm soil layer of the grey-mud field and promote the migration of SON. However, the effects decline with soil depth. DON is one of the important forms of nitrogen loss in paddy fields. Incorporation of milk vetch can reduce DON loss and then mitigate non-point source N pollutant from the paddy fields. The environmental impact of the loss of DON from paddy fields is worthy of attention. If only the loss of inorganic nitrogen with leaching of paddy soil solution is considered, the total nitrogen loss from paddy fields will be underestimated.

    参考文献
    [1] Murphy D V,MacDonald A J,Stockdale E A,et al. Soluble organic nitrogen in agricultural soils[J]. Biology and Fertility of Soils,2000,30(5/6):374-387.
    [2] Song G. Soil soluble organic nitrogen and its influencing factors in rice - wheat rotation system[D]. Beijing:University of Chinese Academy of Sciences,2015.[宋歌. 稻麦轮作系统中土壤可溶态有机氮及其影响因素[D]. 北京:中国科学院大学,2015.]
    [3] Zhao M X,Zhou J B,Yan Z L. Adsorption characteristics of soluble organic carbon and nitrogen in different layer of cultivated soils[J]. Chinese Journal of Soil Science,2010,41(6):1328-1332.[赵满兴,周建斌,延志莲. 不同土层土壤对可溶性有机氮、碳的吸附特性研究[J]. 土壤通报,2010,41(6):1328-1332.]
    [4] Kong X Z,Yu H M,Shu L Z,et al. Impact of land use on the content and migration pattern of soluble organic nitrogen[J]. Chinese Journal of Soil Science,2015,46(6):1359-1365.[孔祥忠,于红梅,束良佐,等. 农田利用方式对土壤可溶性氮素含量及迁移的影响[J]. 土壤通报,2015,46(6):1359-1365.]
    [5] Zhou W,Lü T F,Yang Z P,et al. Research advances on regulating soil nitrogen loss by the type of nitrogen fertilizer and its application strategy[J]. Chinese Journal of Applied Ecology,2016,27(9):3051-3058.[周伟,吕腾飞,杨志平,等. 氮肥种类及运筹技术调控土壤氮素损失的研究进展[J]. 应用生态学报,2016,27(9):3051-3058.]
    [6] Jiao J X,Yang W,Li Y Y,et al. Impact of combined manure and chemical fertilization on nitrogen leaching from paddy field in red earth hilly area of China[J]. Journal of Agro-Environment Science,2014,33(6):1159-1166.[焦军霞,杨文,李裕元,等. 有机肥化肥配施对红壤丘陵区稻田土壤氮淋失特征的影响[J]. 农业环境科学学报,2014,33(6):1159-1166.]
    [7] Yang S H,Peng S Z,Xu J Z,et al. Effects of water saving irrigation and controlled release nitrogen fertilizer managements on nitrogen losses from paddy fields[J]. Paddy and Water Environment,2015,13(1):71-80.
    [8] Liang B,Kang L Y,Ren T,et al. The impact of exogenous N supply on soluble organic nitrogen dynamics and nitrogen balance in a greenhouse vegetable system[J]. Journal of Environmental Management,2015,154:351-357.
    [9] Quan Z,Lu C Y,Shi Y,et al. Manure increase the leaching risk of soil extractable organic nitrogen in intensively irrigated greenhouse vegetable cropping systems[J]. Acta Agriculturae Scandinavica,Section B - Soil & Plant Science,2015,65(3):199-207.
    [10] Long G Q,Jiang Y J,Sun B. Seasonal and inter-annual variation of leaching of dissolved organic carbon and nitrogen under long-term manure application in an acidic clay soil in subtropical China[J]. Soil and Tillage Research,2015,146:270-278.
    [11] Zhou Z H,Li X Q,Xing Y,et al. Effect of biochar amendment on nitrogen leaching in soil[J]. Earth and Environment,2011,39(2):278-284.[周志红,李心清,邢英,等. 生物炭对土壤氮素淋失的抑制作用[J]. 地球与环境,2011,39(2):278-284.]
    [12] Hu X S,Tang S M,Cao W D,et al. Effects of plantation and utilization of green manures during the summer fallow season on soil Dissolved organic carbon and nitrogen,and inorganic nitrogen in greenhouse[J]. Soil and Fertilizer Sciences in China,2015(3):21-28.[胡晓珊,唐树梅,曹卫东,等. 温室夏闲季种植翻压绿肥对土壤可溶性有机碳氮及无机氮的影响[J]. 中国土壤与肥料,2015(3):21-28.]
    [13] Liu W. Study on nutrients accumulation and decomposition charater of Astragalus sinicus L. and effect of application in paddy field[D]. Wuhan:Huazhong Agricultural University,2010.[刘威. 紫云英养分积累规律和还田腐解特性及其效应研究[D]. 武汉:华中农业大学,2010.]
    [14] Zhou X Q,Wu H W,Koetz E,et al. Soil labile carbon and nitrogen pools and microbial metabolic diversity under winter crops in an arid environment[J]. Applied Soil Ecology,2012,53:49-55.
    [15] Zhou X,LI Z M,Xie J,et al. Effect of reducing Chemical on rice yield,output value,content of soil carbon and nitrogen after utilizing the Milk Vetch[J]. Agricultural Science and Technology,2015,16(2):266-271.
    [16] Lu R K. Analytical methods for soil and agricultural chemistry[M]. Beijing:China Agricultural Science and Technology Press,2000.[鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科学技术出版社,2000.]
    [17] Chen C R,Xu Z H,Zhang S L,et al. Soluble organic nitrogen pools in forest soils of subtropical Australia[J]. Plant and Soil,2005,277(1/2):285-297.
    [18] Nie S N,Zhao L X,Lei X M,et al. Dissolved organic nitrogen distribution in differently fertilized paddy soil profiles:Implications for its potential loss[J]. Agriculture,Ecosystems & Environment,2018,262:58-64.
    [19] Zhang Y,Gong X W,Lü G H,et al. Soil Nitrogen content and components under different halophyte communities in saline desert[J]. Soils,2019,51(5):871-878.[张仰,龚雪伟,吕光辉,等. 盐生荒漠植物群落土壤氮素含量及其组分特征[J]. 土壤,2019,51(5):871-878.]
    [20] Wang F,Lin C,Li Q H,et al. A study on organic carbon and nutrient releasing characteristics of different Astragalus sinicus manure use levels in a single cropping region of subtropical China[J]. Acta Prataculturae Sinica,2012,21(4):319-324.[王飞,林诚,李清华,等. 亚热带单季稻区紫云英不同翻压量下有机碳和养分释放特征[J]. 草业学报,2012,21(4):319-324.]
    [21] Tian F F,Ji H F,Wang L Y,et al. Effects of various combinations of fertilizer,soil moisture,and temperature on nitrogen mineralization and soluble organic nitrogen in agricultural soil[J]. Environmental Science,2018,39(10):4717-4726.[田飞飞,纪鸿飞,王乐云,等. 施肥类型和水热变化对农田土壤氮素矿化及可溶性有机氮动态变化的影响[J]. 环境科学,2018,39(10):4717-4726.
    [22] Xi J G,Zhou J B. Leaching and transforming characteristics of urea-N added by different ways of fertigation[J]. Plant Nutrition and Fertilizer Science,2003,9(3):271-275.[习金根,周建斌. 不同灌溉施肥方式下尿素态氮在土壤中迁移转化特性的研究[J]. 植物营养与肥料学报,2003,9(3):271-275.]
    [23] Wan S X,Zhu H B,Tang S,et al. Effects of Astragalus sinicus manure and fertilizer combined application on biological properties of soil in Anhui double cropping rice areas along the Yangtze River[J]. Journal of Plant Nutrition and Fertilizer,2015,21(2):387-395.[万水霞,朱宏斌,唐杉,等. 紫云英与化肥配施对安徽沿江双季稻区土壤生物学特性的影响[J]. 植物营养与肥料学报,2015,21(2):387-395.]
    [24] Zhang F L,Wu M Q,Xia Y,et al. Changes in nitrogen and phosphorus in surface water of paddy field in Jianghan Plain[J]. Acta Pedologica Sinica,2019,56(5):1190-1200.[张富林,吴茂前,夏颖,等. 江汉平原稻田田面水氮磷变化特征研究[J]. 土壤学报,2019,56(5):1190-1200.]
    [25] Yan Z L,Fang Y,Chen J C,et al. Effect of turning over Chinese milk vetch(Astragalus sinicus L.)on soil nutrients and microbial properties in paddy fields[J]. Journal of Plant Nutrition and Fertilizer,2014,20(5):1151-1160.[颜志雷,方宇,陈济琛,等. 连年翻压紫云英对稻田土壤养分和微生物学特性的影响[J]. 植物营养与肥料学报,2014,20(5):1151-1160.]
    [26] Luo Y Q,Zhao X Y,Li M X. Ecological effect of plant root exudates and related affecting factors:A review[J]. Chinese Journal of Applied Ecology,2012,23(12):3496-3504.[罗永清,赵学勇,李美霞. 植物根系分泌物生态效应及其影响因素研究综述[J]. 应用生态学报,2012,23(12):3496-3504.]
    [27] Zhang S J,Zhang G,Wang D J,et al. Effects of straw returning coupled with application of nitrogen fertilizer on rice yield and dynamic[J]. Acta Pedologica Sinica,2020,57(2):435-445.[张世洁,张刚,王德建,等. 秸秆还田配施氮肥对稻田增产及田面水氮动态变化的影响[J]. 土壤学报,2020,57(2):435-445.]
    [28] Wang H X. Contents,dynamics and leaching characteristics of dissolved organic carbon and nitrogen in soil[D]. Yangling,Shaanxi:Northwest A & F University,2008.[王红霞. 土壤中溶解性有机碳、氮及其迁移淋溶特性研究[D]. 陕西杨凌:西北农林科技大学,2008.]
    [29] Li X Y,Zheng X F,Zhou J B. Contents and characteristic of organic carbon and nitrogen in wheat rhizosphere with different soil textures[J]. Chinese Journal of Soil Science,2012,43(3):610-613.[李晓月,郑险峰,周建斌. 不同质地小麦根际土壤有机碳、氮含量及特性研究[J]. 土壤通报,2012,43(3):610-613.]
    [30] Gan L. A preliminary study on the dynamics of nitrogen transport and transformation in soils under the conditions of irrigation with sewage effluent and fertilization[D]. Beijing:China Agricultural University,2002.[甘露. 污水灌溉与施肥条件下氮素在土壤中迁移转化动态的初步研究[D]. 北京:中国农业大学,2002.]
    [31] Huang Q,Wu J T,Chen J,et al. Adsorption of dissolved organic carbon(DOC)on soil:A review[J]. Soils,2015,47(3):446-452.[黄倩,吴靖霆,陈杰,等. 土壤吸附可溶性有机碳研究进展[J]. 土壤,2015,47(3):446-452.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨静,郭文圻,杨文浩,周碧青,张黎明,邢世和.紫云英翻压后稻田土壤可溶性有机氮迁移特性与损失风险[J].土壤学报,2022,59(3):786-796. DOI:10.11766/trxb202009100469 YANG Jing, GUO Wenqi, YANG Wenhao, ZHOU Biqing, ZHANG Liming, XING Shihe. Migration and Risk of Loss of Soluble Organic Nitrogen in Paddy Soil After Incorporation of Chinese Milk Vetch[J]. Acta Pedologica Sinica,2022,59(3):786-796.

复制
分享
文章指标
  • 点击次数:483
  • 下载次数: 1610
  • HTML阅读次数: 1522
  • 引用次数: 0
历史
  • 收稿日期:2020-09-10
  • 最后修改日期:2020-11-25
  • 在线发布日期: 2022-04-16
文章二维码