大气CO2浓度缓增对稻田土壤甲烷氧化过程的影响
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

Q938.1;S154.36

基金项目:

国家自然科学基金项目(41977037、41775152)和江苏省自然科学基金项目(BK20190092)资助


Effects of Slow Increase of Atmospheric CO2 Concentration on Methane Oxidation in Paddy Soils
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (No. 41977037,41775152), the Natural Science Foundation of Jiangsu Province (No. BK20190092)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    微生物介导的甲烷好氧氧化,对控制稻田甲烷排放起着重要作用。本文从基因、群落、活性等多个层次上解析CO2浓度缓增对稻田土壤甲烷好氧氧化过程的影响及其作用机理。依托于田间CO2浓度自动调控平台,在背景CO2浓度(AC)基础上,设置了CO2浓度缓增处理(每年增加40 μL·L-1,持续4年)(EC)。采用室内泥浆培养以及高通量测序和定量PCR技术,对不同CO2处理下水稻关键生育期(分蘖期、拔节期、扬花期和乳熟期)土壤中的甲烷氧化潜势及其功能微生物的丰度和群落结构进行了系统研究。结果表明:大气CO2浓度升高促进了稻田甲烷氧化潜势和甲烷氧化菌丰度的增加;CO2浓度升高还使得土壤中甲烷氧化菌的群落结构发生了显著变化,其优势菌从II型菌转变为I型菌。CO2浓度升高所致的土壤中甲烷、氧气浓度以及氮素水平等的改变很可能对稻田甲烷氧化过程产生了重要影响。综合本研究发现,稻田甲烷氧化过程对大气CO2浓度缓增具有积极的响应作用,这对全球气候变暖有一定的缓解作用。

    Abstract:

    [Objective] Microbial-mediated methane oxidation plays an important role in controlling methane emissions from paddy fields. Atmospheric CO2 enrichment could change the potential activity, abundance, and community composition of methanotrophs in paddy rhizosphere soil, and consequently, affect their role in controlling greenhouse gas emission. Currently, there are still controversies about the effect of elevated atmospheric CO2 concentration on methane oxidation potential and methanotrophic communities in paddy fields. Moreover, the atmospheric CO2 concentration is a slow increase process, rather than a sharp increase to certain concentrations. However, there is still no relevant research on the effect of the slow increase of CO2 concentration on methanotrophs. Therefore, it is necessary to study the effects and mechanism of slow increase of CO2 concentration on methane oxidation in paddy soils.[Method] In this study, a slow increase of atmospheric CO2 concentration (an increase of 40 μL·L-1 per year with 4 years) (EC) was set up based on the atmospheric CO2 concentration (AC) automatic control platform. Slurry incubation, high-throughput sequencing, and quantitative PCR on pmoA genes were used to systematically investigate the methane oxidation potential, and the abundance and community structure of methanotrophs in paddy soils under different CO2 concentrations. This study was carried out during key growth stages (e.g. tillering, jointing, flowering and milky) of rice.[Result] Results show that the variation trend of methane oxidation potential and methanotrophic abundance was consistent, and both were increased with the elevated atmospheric CO2 during flowering and milky stages but decreased during tillering and jointing stages. Based on the data obtained from all four growth stages, the atmospheric CO2 enrichment enhanced the methane oxidation potential by 11.7% and increased the abundance of methanotrophs by 53%. Further, the community structure of methanotrophs in soil was changed significantly, with the dominant methanotrophs shifting from type II under AC to type I under EC. There was no single environmental factor that was found to have a significant impact on methane oxidation potential, pmoA gene abundance or diversity. Also, the content of soil inorganic nitrogen (NH4+-N, NO2--N and NO3--N) was decreased under EC compared with the control. The relatively lower inorganic nitrogen content in paddy soils under EC could alleviate the inhibition of nitrogen on methane oxidation in the paddy field. By stimulating the growth of rice roots and increasing soil carbon input, elevated atmospheric CO2 can indirectly enhance the production of methane in soils, which in turn increased the methane oxidation potential and abundance of pmoA genes. The increase of rice root exudates and aerenchyma volume under EC might provide a more suitable living environment for type I methanotrophs.[Conclusion] Elevated atmospheric CO2 promotes the growth of crops, which can subsequently increase both CH4 and O2 concentrations in paddy rhizosphere soil, and decrease soil nitrogen level. The combined effects of the above environmental factors could affect the methane oxidation potential, methanotrophic abundance and community structure in our paddy soils. Taken together, our results indicate a positive response of methane oxidation to the slow increase of atmospheric CO2 concentration in paddy ecosystems, which could help alleviate global warming.

    参考文献
    相似文献
    引证文献
引用本文

刘心,沈李东,田茂辉,杨王挺,金靖昊,王昊宇,胡正华.大气CO2浓度缓增对稻田土壤甲烷氧化过程的影响[J].土壤学报,2022,59(2):568-579. DOI:10.11766/trxb202011190629 LIU Xin, SHEN Lidong, TIAN Maohui, YANG Wangting, JIN Jinghao, WANG Haoyu, HU Zhenghua. Effects of Slow Increase of Atmospheric CO2 Concentration on Methane Oxidation in Paddy Soils[J]. Acta Pedologica Sinica,2022,59(2):568-579.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-19
  • 最后修改日期:2021-02-23
  • 录用日期:2021-04-26
  • 在线发布日期: 2021-04-27
  • 出版日期: 2022-02-11