短期培养下抑制剂烯丙基硫脲对土壤硝化作用及微生物的影响
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(41501267)和土壤与农业可持续发展国家重点实验室开放课题(Y20160025)资助


Effect of Allylthiourea on Soil Nitrification and the Underlying Microbial Mechanism in Short-term Laboratory Microcosms
Author:
Affiliation:

Fund Project:

the National Natural Science Foundation of China(No. 41501267)and the State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences(No. Y20160025)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    硝化抑制剂烯丙基硫脲(ATU)对土壤硝化作用及温室效应的影响及机理尚不清楚。采集典型旱地土壤,进行21 d室内微宇宙培养,探究氮肥与不同剂量ATU(分别为氮素用量的1%、5%、10%、15%和20%)配施对土壤硝化作用及N2O和CO2排放通量的影响,并通过实时荧光定量PCR和高通量测序16S rRNA基因技术监测硝化微生物群落变化,同时与传统硝化抑制剂双氰胺(DCD)进行保氮减排效果的对比。结果表明,与未施加氮肥的对照(CK)相比,单施氮肥(N)显著提高土壤硝化强度并促进N2O排放。DCD能显著抑制硝态氮和N2O的积累,抑制效率分别为68.6%和93.3%。而低浓度ATU对土壤硝化作用无影响,仅在高浓度具有抑制效应,且抑制效率最高仅为14.7%。所有ATU处理N2O排放量均显著降低,降幅为60.3%~68.2%,仍远高于DCD处理。处理间N2O和CO2的综合温室效应强弱顺序为N>ATU+N>DCD+N≈CK,不同ATU施用量处理之间差异不显著。相关分析发现氨氧化细菌(AOB),而不是氨氧化古菌(AOA)和全程氨氧化细菌(Comammox),与土壤硝态氮积累和N2O排放显著正相关,与土壤pH显著负相关。高通量测序结果表明Nitrosovibrio tenuis类型AOB对氮肥诱导的硝化过程起主导作用。此外,ATU和DCD还能显著提高Cupriavidus,并降低PatulibacterAeromicrobiumActinomycetosporaDefluviicoccusAcidipila等微生物属在群落中的相对丰度。该研究为深化土壤碳氮循环理论,合理使用硝化抑制剂以及减缓温室气体排放提供科学依据。

    Abstract:

    [Objective] Allylthiourea (ATU) is a promising nitrification inhibitor. However, its effects on soil nitrification and greenhouse gas (GHG) mitigation are still unclear.[Method] In this study, a 21-day microcosm incubation was established with the application of nitrogen (N) and different doses of ATU (1%, 5%, 10%, 15% and 20% of N applied) to a yellow-brown upland soil. Also, dicyandiamide (DCD, 10% of N applied) was applied to compare the inhibition efficiency on nitrification and GHG emission with ATU. The dynamics of inorganic nitrogen and N2O/CO2 emission during the incubation were detected, and changes in the different microbial population were analyzed by real-time PCR and 16S rRNA gene-based high through-put sequencing.[Result] N application greatly stimulated soil nitrification activity and promoted N2O emission. DCD had a strong inhibitory effect on soil nitrification (68.6%) and N2O emission (93.3%). ATU did not influence soil nitrification at low doses (<5%), but inhibited the nitrate accumulation at high doses (>10%) with the highest inhibition efficiency of 14.7%. All treatments with ATU decreased N2O emission by 60.3%~68.2% but was still much higher than when DCD was applied. In general, the global warming potential (GWP) of N2O and CO2 were the highest in N treatment and seconded by ATU+N treatment. There were no significant differences in GWP between DCD+N and CK treatment, or among different doses of ATU with N treatments. The quantitative real-time PCR of amoA genes suggested that ammonia-oxidizing bacteria (AOB) rather than ammonia-oxidizing archaea (AOA) and complete ammonia-oxidizing bacteria (Comammox), had a positive relationship with soil nitrate accumulation and N2O emission,but a negative correlation with pH. Microbial community analysis by high through-put sequencing revealed Nitrosovibrio tenuis-like AOB dominated in soil nitrification process which was greatly stimulated by nitrogen. Besides, ATU and DCD significantly increased the relative abundance of cupriavidus but reduced the relative abundance of Patulibacter, Aeromicrobium, Actinomycetospora, Defluviicoccus and Acidipila.[Conclusion] This study reveals the exact mechanisms of ATU on soil microbial guilds and GHG emission and plays an important role in the future implementation of agricultural management strategies and the evaluation of global climate change.

    参考文献
    相似文献
    引证文献
引用本文

沈晓忆,夏围围,次仁拉姆,李乙坤.短期培养下抑制剂烯丙基硫脲对土壤硝化作用及微生物的影响[J].土壤学报,2021,58(6):1552-1563. DOI:10.11766/trxb202101080015 SHEN Xiaoyi, XIA Weiwei, Cirenlamu, LI Yikun. Effect of Allylthiourea on Soil Nitrification and the Underlying Microbial Mechanism in Short-term Laboratory Microcosms[J]. Acta Pedologica Sinica,2021,58(6):1552-1563.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-01-08
  • 最后修改日期:2021-03-22
  • 录用日期:2021-05-31
  • 在线发布日期: 2021-05-31
  • 出版日期: 2021-11-11