土壤中微塑料的生态效应与生物降解
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

X53;S154

基金项目:

“美丽中国”生态文明科技工程专项(XDA23050102)、国家自然科学基金(NSFC)-山东省联合基金重点支持项目(U1806206)和山东农业大学引进人才科研启动基金资助


Ecological Effects and Biodegradation of Microplastics in Soils
Author:
Affiliation:

Fund Project:

NSFC-Shandong Joint Fund Key Projects (U1806206),Scientific Research Foundation of Shandong Agricultural University

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    塑料污染已成为环境污染治理中重要的一部分,其生态效应和防治一直是近几年污染防治的关注点。由于塑料在环境中较难降解,经过环境中风化的等物理作用,这些难以降解的塑料最终形成了直径小于5 mm的微塑料。微塑料作为近几年全球重点研究的污染物,其生态效应和降解方法一直备受关注。除了塑料垃圾污染外,一次性塑料产品、地膜等农用材料的使用,也会造成土壤中微塑料的污染。土壤中的微塑料会通过发生横向和纵向迁移扩大污染范围,加大微塑料在土壤中的污染程度,给土壤微塑料治理带来了很大的挑战。本文从土壤环境、土壤微生物、植物体、食物链等方面综述了微塑料的生态效应,总结了近几年微塑料的危害,探讨了微塑料在植物和食物链中的积累,并且对微塑料沿食物链富集的风险进行分析。土壤微塑料的生态效应主要来自三个方面:塑料的主要成分、塑料合成过程中的添加剂、微塑料在环境中吸收挟带的污染物。微塑料能直接改变土壤的理化性质,影响土壤微生物群落的功能和结构多样性,并且会在植物体内积累,影响植物体健康。微塑料可能会通过饮食、饮水和呼吸等方式进入动物体和人体。除了通过沿食物链传递外,土壤微塑料还能通过扬尘的方式扩散到空气中,从而被食物链中不同层次的动物通过呼吸吸入到体内。一旦微塑料进入生物体内后,可能会进入生物体内的循环系统,从而在动物体内各处积累。还对微塑料的生物降解方法进行了论述,尤其是对真菌和细菌的降解机制进行了详细的讨论。研究发现土壤中的昆虫、细菌和真菌均具有降解微塑料的能力,这些生物也均能成为解决土壤微塑料污染很好的对策。考虑到微塑料在环境中的生态效应和持久性,结合现有的微塑料降解方法,本文对未来土壤微塑料的研究方向和重点进行了分析和展望。

    Abstract:

    Ecological effects mainly refer to the damage to the environment caused by various anthropogenic activities. These usually cause structural and functional change in the ecosystem. With the increased use of plastics, plastic pollution has become a very important part of environmental pollution management. Their ecological effects and prevention have been the focus of pollution prevention in recent years. Plastics are difficult to degrade in the environment, and after the physical effects of weathering, they eventually form plastic particles less than 5 mm in diameter called microplastics. This has led to the ecological effects and degradation methods of microplastics receiving much attention in recent years. In addition to plastic waste pollution, the use of disposable plastic products, plastic film, and other plastic agricultural materials can also cause microplastic pollution in the soil. Microplastics in the soil will expand the pollution scope by lateral and vertical migration. Lateral migration mainly refers to the diffusion of microplastics in the surface layer of soil through wind and surface water, while vertical migration refers to the diffusion of microplastics to deeper layers of soil through soil organisms, water or various enrichment methods. The migration of microplastics increases the degree of microplastic pollution in soil and creates a great challenge for soil microplastic management. In this review, the ecological effects of microplastics are reviewed in terms of soil environment, soil microorganisms, plant, and food chain. The deposition of microplastics in plants and food chain is discussed, and the risk of microplastic enrichment along the food chain is analyzed. The ecological effects of soil microplastics come from three main sources:the main components of the plastic, additives in the plastic synthesis process, and the pollutants that the microplastic absorbs from the environment. Microplastics can directly change the physicochemical properties of soil, affect the function and structure of soil microbes, and accumulate in plants, thereby affecting their health. Also, microplastics can enter the animal and human bodies through diet, drinking water, and respiration. Additionally, soil microplastics can be dispersed into the air by way of dust lifting and thus be inhaled by animals at different levels of the food chain through respiration. Once inside the organism, microplastics may enter the circulatory system of the organism and thus accumulate in various parts of the organism. Microplastics have been found in many livestock products, but their entry channels into animals still need to be studied. Even though the content is very low, these microplastics may accumulate in the human body in large quantities through the food chain. The biodegradation methods of microplastics, especially the degradation mechanisms of fungi and bacteria are discussed in detail. Currently, studies have found that insects, bacteria and fungi in soil can degrade microplastics, and all of these organisms could also be good countermeasures to deal with soil microplastic pollution. Finally, based on the summary of the existing research on ecological effects and biodegradation of microplastics, the review analyzes and outlooks the future research directions and priorities of soil microplastics.

    参考文献
    相似文献
    引证文献
引用本文

刘鑫蓓,董旭晟,解志红,马学文,骆永明.土壤中微塑料的生态效应与生物降解[J].土壤学报,2022,59(2):349-363. DOI:10.11766/trxb202102240040 LIU Xinbei, DONG Xusheng, XIE Zhihong, MA Xuewen, LUO Yongming. Ecological Effects and Biodegradation of Microplastics in Soils[J]. Acta Pedologica Sinica,2022,59(2):349-363.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-02-24
  • 最后修改日期:2021-04-24
  • 录用日期:2021-08-10
  • 在线发布日期: 2021-08-12
  • 出版日期: 2022-02-11