超高温堆肥微生物群落强化产热功能特征分析
作者:
中图分类号:

X712

基金项目:

国家自然科学基金项目(31972521)和福建农林大学优秀博士学位论文资助基金项目(324-1122yb055)共同资助


Characteristics of Enhanced Microbial Thermogenic Functions in Hyperthermophilic Composting
Author:
Fund Project:

Supported by the National Natural Science Foundation of China (No. 31972521) and the Scientific Research Foundation of Graduate School of Fujian Agriculture and Forestry University (No. 324-1122yb055)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    超高温堆肥技术较普通堆肥技术在氧化亚氮减排、氮素保留、抗性基因去除等方面具有显著优势。这些优势与超高温过程密切关联,然而超高温产生的原因却仍然未知。本文利用PICRUSt(phylogenetic investigation of communities by reconstruction of unobserved states)预测并分析了鸡粪超高温堆肥和普通堆肥微生物功能变化,重点比较了产热相关代谢通路和功能基因丰度的变化。研究发现,超高温堆肥可达到超过80℃的超高温阶段并持续5天以上,该阶段可显著提高微生物能量代谢、碳水化合物代谢等产热相关代谢通路丰度,有氧呼吸链中NADH脱氢酶功能基因和琥珀酸脱氢酶基因的丰度在超高温阶段显著增加(P < 0.05),并且上述代谢通路和功能基因丰度与超高温堆肥温度变化显著相关(P < 0.05)。采用随机森林回归模型将预测的堆肥温度与实际堆肥温度进行比较发现,两种处理各自预测温度结果与实际温度相关性显著(对于超高温堆肥,校正R2=0.96;对于普通堆肥,校正R2=0.97)。该模型表明,K03943(NADH脱氢酶黄蛋白2)、K15862(细胞色素c氧化酶cbb3型亚基I/II)和K05580(NADH醌氧化还原酶亚基I)的丰度变化是影响超高温堆肥温度的最重要因素。相比之下,普通堆肥温度最高不超过70℃,且上述产热相关代谢通路和功能基因丰度与堆肥温度显著负相关(P < 0.05)。以上结果表明,超高温堆肥微生物群落可能通过显著提高有氧呼吸链相关功能基因丰度,使超高温堆肥群落更迅速地代谢有机物,从而提高ATP合成速率,进而产生更多热量。

    Abstract:

    Objective Hyperthermophilic composting (hTC) exhibits significant advantages during organic solid waste treatment such as nitrous oxide mitigation, nitrogen retention, antibiotic resistance genes removal compared with those of conventional composting (cTC). Such advantages are closely linked with hyperthermophilic temperatures However, the reason for extremely high composting temperature remains unclear.Method Here, by using PICRUSt (physiological investigation of communities by reconstruction of unobserved states), the variations in microbial function during hTC and cTC using chicken manure were studied. The reason for the extremely high composting temperature in hTC was explored.Result Results show that the composting temperature could reach up to 80℃ and last for more than 5 days in hTC. hTC exhibited significant differences in both the composition of the microbial community and their metabolic pathways abundance during the hyperthermophilic stage. The abundances of thermogenesis related metabolic pathways (such as energy metabolism, carbohydrate metabolism) and aerobic respiration chain-related genes (such as NADH dehydrogenase gene, succinate dehydrogenase gene) were significantly increased during the hyperthermophilic stage (P < 0.05). Furthermore, the abundance of the enriched metabolic pathways and functional genes was significantly correlated with the temperature variation of hTC (P < 0.05). Random forest regression models comparing the predicted to actual composting temperatures found strong correlations in both treatments (for hTC, adjusted R2 =0.96; for cTC, adjusted R2 =0.97). The model indicated that the abundances of K03943(NADH dehydrogenase flavoprotein 2), k15862 (cytochrome c oxidase cbb3-type subunit I/II) and k05580 (NADH-quinone oxidoreductase subunit I) were the most important factors affecting the composting temperature in hTC. By comparison, the highest composting temperature of cTC was below 70℃, and the abundance of metabolic pathways and functional genes related to heat production was significantly negatively correlated with compost temperature (P < 0.05).Conclusion Our results suggest that the hTC community might metabolize organic matter more rapidly by significantly increasing the abundance of functional genes related to the aerobic respiration chain, thus increasing the rate of ATP synthesis and generating more metabolic heat.

    参考文献
    [1] Jiang J S, Yu D, Wang Y, et al. Use of additives in composting informed by experience from agriculture:Effects of nitrogen fertilizer synergists on gaseous nitrogen emissions and corresponding genes (AmoA and nirS)[J]. Bioresource Technology, 2021, 319:124127.
    [2] Wan L B, Wang X T, Cong C, et al. Effect of inoculating microorganisms in chicken manure composting with maize straw[J]. Bioresource Technology, 2020, 301:122730.
    [3] Preble C V, Chen S S, Hotchi T, et al. Air pollutant emission rates for dry anaerobic digestion and composting of organic municipal solid waste[J]. Environmental Science&Technology, 2020, 54(24):16097-16107.
    [4] Wang X J, Bei Q C, Liu G, et al. Microbial abundance and community composition in different types of paddy soils in China and their affecting factors[J]. Acta Pedologica Sinica, 2021, 58(3):767-776王晓洁,卑其成,刘钢,等.不同类型水稻土微生物群落结构特征及其影响因素[J].土壤学报, 2021, 58(3):767-776.
    [5] Nigussie A, Kuyper T W, Bruun S, et al. Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting[J]. Journal of Cleaner Production, 2016, 139:429-439.
    [6] Robledo-Mahón T, Martín M A, Gutiérrez M C, et al. Sewage sludge composting under semi-permeable film at full-scale:Evaluation of odour emissions and relationships between microbiological activities and physico-chemical variables[J]. Environmental Research, 2019, 177:108624.
    [7] Yu Z, Liu X M, Zhao M H, et al. Hyperthermophilic composting accelerates the humification process of sewage sludge:Molecular characterization of dissolved organic matter using EEM-PARAFAC and two-dimensional correlation spectroscopy[J]. Bioresource Technology, 2019, 274:198-206.
    [8] Yu Z, Tang J, Liao H P, et al. The distinctive microbial community improves composting efficiency in a full-scale hyperthermophilic composting plant[J]. Bioresource Technology, 2018, 265:146-154.
    [9] Cui P, Chen Z, Zhao Q, et al. Hyperthermophilic composting significantly decreases N2O emissions by regulating N2O-related functional genes[J]. Bioresource Technology, 2019, 272:433-441.
    [10] Liao H P, Lu X M, Rensing C, et al. Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge[J]. Environmental Science&Technology, 2018, 52(1):266-276.
    [11] Cui P, Liao H P, Bai Y D, et al. Hyperthermophilic composting reduces nitrogen loss via inhibiting ammonifiers and enhancing nitrogenous humic substance formation[J]. Science of the Total Environment, 2019, 692:98-106.
    [12] Chen Z, Zhao W Q, Xing R Z, et al. Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology[J]. Journal of Hazardous Materials, 2020, 384:121271.
    [13] Liu X M, Hou Y, Li Z, et al. Hyperthermophilic composting of sewage sludge accelerates humic acid formation:Elemental and spectroscopic evidence[J]. Waste Management, 2020, 103:342-351.
    [14] Wang C, Dong D, Strong P J, et al. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes[J]. Microbiome, 2017, 5(1):1-15.
    [15] Langille M G I, Zaneveld J, Caporaso J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31(9):814-821.
    [16] Cui Y X, Biswal B K, van Loosdrecht M C M, et al. Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor[J]. Water Research, 2019, 166:115038.
    [17] Wang K, Chu C, Li X K, et al. Succession of bacterial community function in cow manure composing[J]. Bioresource Technology, 2018, 267:63-70.
    [18] Yin Y N, Wang J L. Predictive functional profiling of microbial communities in fermentative hydrogen production system using PICRUSt[J]. International Journal of Hydrogen Energy, 2021, 46(5):3716-3725.
    [19] Zhang Q Q, Zhao X Y, Li W J, et al. Responses of short-chain fatty acids production to the addition of various biocarriers to sludge anaerobic fermentation[J]. Bioresource Technology, 2020, 304:122989.
    [20] Buhlmann C H, Mickan B S, Jenkins S N, et al. Ammonia stress on a resilient mesophilic anaerobic inoculum:Methane production, microbial community, and putative metabolic pathways[J]. Bioresource Technology, 2019, 275:70-77.
    [21] Zhang B B, Wan X H, Yang J Q, et al. Effects of litters different in quality on soil microbial community structure in Cunninghamia lanceolata plantation[J]. Acta Pedologica Sinica, 2021, 58(4):1040-1049张冰冰,万晓华,杨军钱,等.不同凋落物质量对杉木人工林土壤微生物群落结构的影响.土壤学报, 2021, 58(4):1040-1049.
    [22] Louca S, Polz M F, Mazel F, et al. Function and functional redundancy in microbial systems[J]. Nature Ecology&Evolution, 2018, 2(6):936-943.
    [23] Antunes L P, Martins L F, Pereira R V, et al. Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics[J]. Scientific Reports, 2016, 6:38915.
    [24] Chng K R, Ghosh T S, Tan Y H, et al. Metagenome-wide association analysis identifies microbial determinants of post-antibiotic ecological recovery in the gut[J]. Nature Ecology&Evolution, 2020, 4(9):1256-1267.
    [25] Guo J H, Li J, Chen H, et al. Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements[J]. Water Research, 2017, 123:468-478.
    [26] Frank S A. Metabolic heat in microbial conflict and cooperation[J]. Frontiers in Ecology and Evolution, 2020, 8:275. https://doi.org/10.3389/fevo.2020.00275.
    [27] Sadef Y, Poulsen T G, Bester K. Impact of compost process temperature on organic micro-pollutant degradation[J]. Science of the Total Environment, 2014, 494/495:306-312.
    [28] Robador A, LaRowe D E, Finkel S E, et al. Changes in microbial energy metabolism measured by nanocalorimetry during growth phase transitions[J]. Frontiers in Microbiology, 2018, 9:109.
    [29] Tabata K, Hida F, Kiriyama T, et al. Measurement of soil bacterial colony temperatures and isolation of a high heat-producing bacterium[J]. BMC Microbiology, 2013, 13:56.
    [30] Liu X, Jing X Y, Ye Y, et al. Bacterial vesicles mediate extracellular electron transfer[J]. Environmental Science&Technology Letters, 2020, 7(1):27-34.
    [31] Liu X, Zhuo S Y, Rensing C, et al. Syntrophic growth with direct interspecies electron transfer between pili-free Geobacter species[J]. The ISME Journal, 2018, 12(9):2142-2151.
    [32] Atomi H. Recent progress towards the application of hyperthermophiles and their enzymes[J]. Current Opinion in Chemical Biology, 2005, 9(2):166-173.
    [33] Stetter K O. A brief history of the discovery of hyperthermophilic life[J]. Biochemical Society Transactions, 2013, 41(1):416-420.
    [34] Atomi H, Sato T, Kanai T. Application of hyperthermophiles and their enzymes[J]. Current Opinion in Biotechnology, 2011, 22(5):618-626.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

崔鹏,艾超凡,廖汉鹏,周顺桂.超高温堆肥微生物群落强化产热功能特征分析[J].土壤学报,2022,59(6):1660-1669. DOI:10.11766/trxb202102050077 CUI Peng, AI Chaofan, LIAO Hanpeng, ZHOU Shungui. Characteristics of Enhanced Microbial Thermogenic Functions in Hyperthermophilic Composting[J]. Acta Pedologica Sinica,2022,59(6):1660-1669.

复制
分享
文章指标
  • 点击次数:971
  • 下载次数: 2045
  • HTML阅读次数: 2228
  • 引用次数: 0
历史
  • 收稿日期:2021-02-05
  • 最后修改日期:2021-07-31
  • 录用日期:2021-08-08
  • 在线发布日期: 2021-08-11
文章二维码