磷肥减施对集约化露天菜地周年磷损失削减效果评价
作者:
中图分类号:

X523;S157.2

基金项目:

国家重点研发计划项目(2017YFD0200200/08)和国家自然科学基金项目(31872957)资助


Evaluation of Phosphate Fertilizer Reduction on Annual Phosphorus Loss under Intensive Open-field Vegetable Production
Author:
Fund Project:

Supported by the National Key Research and Development Program of China (No. 2017YFD0200200/08) and the National Natural Science Foundation of China (No. 31872957)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    集约化菜地因高量施肥以及大水漫灌导致其在农田磷污染排放中的占比最高,目前已成为种植业磷损失的优先阻控对象。在定量评估菜地周年磷损失量的基础上,明确蔬菜合理的磷肥投入阈值范围,通过源头控制菜地磷的迁移、流失,对于有效降低中国农业面源污染造成的环境压力具有重要意义。以太湖流域露天菜地为研究对象,设置农民习惯施磷(对照)和减量施磷处理(减施20%、30%、50%和100%),通过为期一年的蔬菜轮作试验,明确土壤磷素环境阈值及磷素周年径流流失特征。结果表明,菜地磷环境阈值为78.9 mg·kg–1,所有处理土壤表层有效磷(Olsen-P)含量均超过环境阈值。随施磷量的减少,菜地总磷(TP)径流损失浓度降低,并主要以可溶性磷(DP)流失形态为主,DP/TP比例为50.1%~63.1%。磷径流损失负荷呈现出明显的季节性特征,夏秋季磷素流失量为1.93~3.26 kg·hm–2(以P计),占全年磷素流失通量的59.2%~63.2%。结构方程模型结果表明,当季施磷量直接且极显著影响TP流失浓度,并且TP流失浓度对TP流失负荷存在极显著的正向影响,影响系数为0.97。菜地施肥处理的磷肥流失系数在1.36%~3.33%,减磷50%的流失系数最低。与对照相比,随施磷量的减少,磷径流损失削减效果越好,减磷100%的削减率达41.5%。三季蔬菜种植中,减磷20%和减磷30%处理的蔬菜产量和对照无显著差异,减磷20%处理出现增产趋势。综合考虑环境风险和经济产量,推荐露天菜地减施20%~30%的磷肥比较适宜。

    Abstract:

    【Objective】Intensive vegetable fields have been the priority control projects for phosphorus (P) loss in farming due to massive fertilization and flood irrigation, accounting for the highest proportion of P pollution from farmlands. Therefore, (i) quantifying the assessment of the annual P loss of vegetable fields, (ii) clarifying the reasonable threshold range of phosphate fertilization for vegetables, and (iii) controlling P migration and loss from vegetable fields through the source are of great significance for effectively reducing the environmental pressure caused by agricultural non-point source pollution. 【Method】A plot experiment in the Tai Lake Basin with conventional fertilization and phosphate fertilization reduction treatments was conducted in a perennial and open vegetable field. The one-year vegetable rotation experiments focused on clarifying the environmental threshold of P and annual P runoff loss characteristics. There were five treatments, conventional fertilization (CK), reduction of 20% (P-20), 30% (P-30), 50% (P-50), and 100% (P-100)based on conventional P fertilization. 【Result】 The environmental threshold of soil P in the tested vegetable fields was 78.9 mg·kg–1. During the whole experimental period, Olsen-P content in the soil surface of different treatments exceeded the leaching threshold. The results of annual total P (TP) runoff loss concentration in vegetable fields showed that with the decrease of phosphate fertilization input, the annual loss concentration of TP decreased. Also, dissolved P (DP) was the dominant form of P species, accounting for 50.1%~63.1%. Runoff loss loads of P showed seasonal characteristics, with the amount of P loss in a summer-autumn season (1.93~3.26 kg·hm–2), accounting for 59.2%~63.2% of the annual P loss flux. Based on the structural equation modeling (SEM), the amount of phosphate fertilizer had a direct and extremely significant effect on TP loss concentration. Furthermore, TP loss concentration had a positive and extremely significant impact on TP runoff loss load with a path coefficient of 0.97. The loss coefficients of P were between 1.36% and 3.33%, and the lowest loss coefficient was in the P-50 treatment. With a decreased amount of P applied, the reduction ratio of P runoff loss increased, and a P loss reduction rate of 41.5% was recorded in the P-100 treatment. Treatments of P-20 and P-30 had no significant yield reduction during a three-successive vegetable growth period in a year compared with CK. 【Conclusion】 Taking environmental risk and economic yield into consideration, it is appropriate to reduce between 20%~30% P fertilizer application based on conventional phosphate fertilizer rate for open vegetable fields in Tai Lake region.

    参考文献
    [1] Ministry of Agriculture,PRC. China agriculture statistical report[M]. Beijing:China Agriculture Press,2017.[中华人民共和国农业部.中国农业统计资料[M]. 北京:中国农业出版社,2017.]
    [2] Huang S W,Tang J W,Li C H,et al. Reducing potential of chemical fertilizers and scientific fertilization countermeasure in vegetable production in China[J]. Journal of Plant Nutrition and Fertilizers,2017,23(6):14801493.[黄绍文,唐继伟,李春花,等. 我国蔬菜化肥减施潜力与科学施用对策[J]. 植物营养与肥料学报,2017,23(6):1480—1493.]
    [3] Yan Z J,Liu P P,Li Y H,et al. Phosphorus in China's intensive vegetable production systems:Overfertilization,soil enrichment,and environmental implications[J]. Journal of Environmental Quality,2013,42(4):982—989.
    [4] Wang R,Min J,Kronzucker H J,et al. N and P runoff losses in China's vegetable production systems:Loss characteristics,impact,and management practices[J]. Science of the Total Environment,2019,663:971—979.
    [5] China National Environment Monitoring Centre. National surface water quality report[R]. 2020,9:30.[中国环境监测总站. 全国地表水水质月报[R]. 2020,9:30.]
    [6] Min J,Ji R T,Wang X,et al. Changes in planting structure and nitrogen and phosphorus loss loads of farmland in Taihu Lake region[J]. Chinese Journal of Eco-Agriculture,2020,28(8):1230—1238.[闵矩,纪荣婷,王霞,等. 太湖地区种植结构及农田氮磷流失负荷变化[J]. 中国生态农业学报,2020,28(8):1230—1238.]
    [7] Zu Y Q,Yang J,Zhan F D,et al. Effects of straw mulching on non-point source pollution loading from cultivated land with maize and broccoli[J]. Journal of Soil and Water Conservation,2014,28(6):155—160.[祖艳群,杨静,湛方栋,等. 秸秆覆盖对玉米和青花农田土壤面源污染负荷的影响[J]. 水土保持学报,2014,28(6):155—160.]
    [8] Wu M,Tang X Q,Li Q Y,et al. Review of ecological engineering solutions for rural non-point source water pollution control in Hubei Province,China[J]. Water,Air,& Soil Pollution,2013,224(5):1—18.
    [9] Zhan F D,Fu Z X,Yang J,et al. Effects of maize intercropping on characteristics of surface runoff pollution from vegetables fields in Dianchi watershed[J]. Acta Scientiae Circumstantiae,2012,32(4):847—855.[湛方栋,傅志兴,杨静,等. 滇池流域套作玉米对蔬菜农田地表径流污染流失特征的影响[J]. 环境科学学报,2012,32(4):847—855.]
    [10] Fohse D,Claassen N,Jungk A. Phosphorus efficiency of plants. 1. External and internal P requirement and P uptake efficiency of different plant-species[J]. Plant and Soil,1988,110:101—109.
    [11] Gong R,Liu Q,Rong X M,et al. Effects of reduced phosphorus on maize yield and P surface runoff in embankment upland[J]. Hunan Agricultural Sciences,2014(20):18—20.[龚蓉,刘强,荣湘民,等. 南方丘陵区旱地减磷对玉米产量及磷径流损失的影响[J]. 湖南农业科学,2014(20):18—20.]
    [12] Lü Y M,Wu Y M,Li H D,et al. Effects of dynamic changes of nitrogen and phosphorus concentrations in surface water of paddy field under different fertilizer rate[J]. Journal of Ecology and Rural Environment,2018,34(4):349—355.[吕亚敏,吴玉红,李洪达,等. 减肥措施对稻田田面水氮、磷动态变化特征的影响[J]. 生态与农村环境学报,2018,34(4):349—355.]
    [13] Li E Y,Qiu Y Q,Peng P Q,et al. Effects of reduction and control nitrogen and phosphorous on maize yield and surface runoff in red soil slopes of Dongting Lake[J]. Journal of Soil and Water Conversation,2011,25(4):32—35.[李恩尧,邱亚群,彭佩钦,等. 洞庭湖红壤坡地减氮控磷对玉米产量和径流氮磷的影响[J]. 水土保持学报,2011,25(4):32—35.]
    [14] Xie Z Y,Zhuo M N,Li D Q,et al. Characteristics of nitrogen and phosphorus loss by runoff from vegetable fields under different fertilization levels[J]. Ecology and Environmental Sciences,2013,22(8):1423—1427.[谢真越,卓慕宁,李定强,等. 不同施肥水平下菜地径流氮磷流失特征[J]. 生态环境学报,2013,22(8):1423—1427.]
    [15] Wang C R,Hu Z Y,Yang L Z,et al. Risk of phosphate leaching loss from soil of vegetable plot in the typical region of Taihu Lake[J]. Acta Scientiae Circumstantiae,2005,25(1):76—80.[王彩绒,胡正义,杨林章,等. 太湖典型地区蔬菜地土壤磷素淋失风险[J]. 环境科学学报,2005,25(1):76—80.]
    [16] Hu Z P,Zheng X M,Huang Z C,et al. Nitrogen and phosphorus loss by surface runoff in farm land in Shanghai[J]. Chinese Journal of Soil Science,2007,38(2):310—313.[胡志平,郑祥民,黄宗楚,等. 上海地区不同施肥方式氮磷随地表径流流失研究[J]. 土壤通报,2007,38(2):310—313.]
    [17] Hesketh N,Brookes P C. Development of an indicator for risk of phosphorus leaching[J]. Journal of Environmental Quality,2000,29(1):105—110.
    [18] Liu L,Wang L,Xu W Q,et al. Environmental threshold and prevention of soil phosphorus leaching in greenhouse soils[J]. Acta Agriculturae Boreali-Sinica,2019,34(S1):197—203.[刘蕾,王凌,徐万强,等. 设施土壤磷素淋失环境阈值及防控措施[J]. 华北农学报,2019,34(S1):197—203.]
    [19] Liu L,Zhang G Y,Gao J,et al. Reduction effect of reduced fertilization on nitrogen and phosphorus loss in agriculture in Chongli[J]. Journal of Hebei Agricultural Sciences,2019,23(6):82—87.[刘蕾,张国印,郜静,等. 减量施肥对崇礼区农业氮磷流失的削减效应[J]. 河北农业科学,2019,23(6):82—87.]
    [20] Luo Q D,Zhuang Y H,Li Y. Threshold values on phosphorus leaching of vegetable soils in Fuzhou[J]. Fujian Journal of Agricultural Sciences,2012,27(4):373—378.[罗泉达,庄远红,李延. 福州市蔬菜地土壤磷淋失的"阈值"研究[J]. 福建农业学报,2012,27(4):373—378.]
    [21] Li A F,Zhang M K. Accumulation and environmental risk of nitrogen and phosphorus in vegetable soils with different plantation history in northern Zhejiang[J]. Journal of Agro-Environment Science,2010,29(1):122—127.[李艾芬,章明奎. 浙北平原不同种植年限蔬菜地土壤氮磷的积累及环境风险评价[J]. 农业环境科学学报,2010,29(1):122—127.]
    [22] Qin H L,Quan Z,Liu X L,et al. Phosphorus status and risk of phosphate leaching loss from vegetable soil of different planting years in suburbs of Changsha[J]. Scientia Agricultura Sinica,2010,43(9):1843—1851.[秦红灵,全智,刘新亮,等.长沙市郊不同种植年限菜地土壤磷状况及淋失风险分析[J]. 中国农业科学,2010,43(9):1843—1851.]
    [23] Jiang B,Lin X Y,Zhang Y S. Phosphorus status and index for predicting environmental risk of phosphorus leaching in typical vegetable soils of Hangzhou[J]. Journal of Zhejiang University(Agriculture & Life Science),2008,34(2):207—213.[姜波,林咸永,章永松. 杭州市郊典型菜园土壤磷素状况及磷素淋失风险研究[J]. 浙江大学学报(农业与生命科学版),2008,34(2):207—213.]
    [24] Wang X J,Liao W H,Liu J L. Phosphorus leaching from vegetable fields and impact factors[J]. Acta Agriculturae Boreali-Sinica,2006,21(4):67—70.[王新军,廖文华,刘建玲. 菜地土壤磷素淋失及其影响因素[J]. 华北农学报,2006,21(4):67—70.]
    [25] State Environmental Protection Administration. Environmental quality standards for surface water:GHZB 1-1999[S]. Beijing:China Environment Science Press,2000.[国家环境保护总局. 地表水环境质量标准GHZB 1-1999[S]. 北京:中国环境科学出版社,2000.]
    [26] Wang D H,Liang C H. Transportation of agriculture phosphorus and control to reduce the phosphorus loss to water:A review[J]. Soil and Environmental Sciences,2002,11(2):183—188.[王道涵,梁成华. 农业磷素流失途径及控制方法研究进展[J]. 土壤与环境,2002,11(2):183—188.]
    [27] Gao C,Zhu J Y,Zhu J G,et al. Phosphorus exports via overland runoff under different land uses and their seasonal pattern[J]. Acta Scientiae Circumstantiae,2005,25(11):1543—1549.[高超,朱继业,朱建国,等. 不同土地利用方式下的地表径流磷输出及其季节性分布特征[J]. 环境科学学报,2005,25(11):1543—1549.]
    [28] Li J,Li Z B,Li P,et al. Effect of vegetation pattern on phosphorus loss character under simulate rainfall condition[J]. Journal of Soil and Water Conservation,2010,24(4):27—30.[李婧,李占斌,李鹏,等.模拟降雨条件下植被格局对径流总磷流失特征的影响分析[J]. 水土保持学报,2010,24(4):27—30.]
    [29] Tao P,Wang S J. Effects of land use,land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in Southwest China[J]. Catena,2012,90(1):53—62.
    [30] Huang Y F,Zhang L P,Hong H S,et al. An experimental research on soil erosion and nitrogen,phosphorus losses under vegetation covers[J]. Journal of Agro-Environment Science,2004,23(4):735—739.[黄云凤,张珞平,洪华生,等. 不同土地利用对流域土壤侵蚀和氮、磷流失的影响[J].农业环境科学学报,2004,23(4):735—739.]
    [31] Xi Y G,Tian W,Li Y,et al. Nitrogen and phosphorus runoff losses and loss coefficients in rice-wheat rotation system in Taihu Lake basin[J]. Jiangsu Journal of Agricultural Sciences,2014,30(3):534—540.[席运官,田伟,李妍,等. 太湖地区稻麦轮作系统氮,磷径流排放规律及流失系数[J]. 江苏农业学报,2014,30(3):534—540.]
    [32] Huang Z C,Zheng X M,Yao C X. The study of nonirrigated farmland nitrogen and phosphorus loss with surface runoff in Shanghai[J]. Yunnan Geographic Environment Research,2007,19(1):6—10.[黄宗楚,郑祥民,姚春霞. 上海旱地农田氮磷随地表径流流失研究[J]. 云南地理环境研究,2007,19(1):6—10.]
    [33] Zeng Z B,Li M J,Yao J W,et al. Impacts of custom fertilization on N and P losses by runoff in vegetable fields[J]. Journal of Soil and Water Conservation,2012,26(5):34—43.[曾招兵,李盟军,姚建武,等. 习惯施肥对菜地氮磷径流流失的影响[J]. 水土保持学报,2012,26(5):34—43.]
    [34] Wang Z C,Qiu D,Du Y Y,et al. Characteristics of surface runoff and nitrogen and phosphorus losses in typical vegetable field of Taihu Lake Basin[J]. Jiangsu Journal of Agricultural Science,2012,28(6):1501—1504.[王子臣,邱丹,堵燕钰,等.太湖流域典型菜地地表径流及氮磷流失特征[J]. 江苏农业学报,2012,28(6):1501—1504.]
    [35] Yang L X,Yang G S,Yuan S F,et al. Characteristics of soil phosphorus runoff under different rainfall intensities in the typical vegetable plot of Taihu Basin[J]. Environmental Science,2007,28(8):1763—1769.[杨丽霞,杨桂山,苑韶峰,等. 不同雨强条件下太湖流域典型蔬菜地土壤磷素的径流特征[J]. 环境科学,2007,28(8):1763—1769.]
    [36] Hu M P,Liu Y M,Zhang Y F,et al. Long-term(1980-2015)changes in net anthropogenic phosphorus inputs and riverine phosphorus export in the Yangtze River basin[J]. Water Research,2020,177:115779.
    [37] Jiao P J,Xu D,Wang S L,et al. Nitrogen and phosphorus runoff losses from farmland under nature rainfall[J]. Journal of Agro-Environment Science,2010,29(3):534—540.[焦平金,许迪,王少丽,等. 自然降雨条件下农田地表产流及氮磷流失规律研究[J]. 农业环境科学学报,2010,29(3):534—540.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王瑞,施卫明,李奕林.磷肥减施对集约化露天菜地周年磷损失削减效果评价[J].土壤学报,2023,60(1):224-234. DOI:10.11766/trxb202102050078 WANG Rui, SHI Weiming, LI Yilin. Evaluation of Phosphate Fertilizer Reduction on Annual Phosphorus Loss under Intensive Open-field Vegetable Production[J]. Acta Pedologica Sinica,2023,60(1):224-234.

复制
分享
文章指标
  • 点击次数:319
  • 下载次数: 1458
  • HTML阅读次数: 785
  • 引用次数: 0
历史
  • 收稿日期:2021-02-15
  • 最后修改日期:2021-08-25
  • 录用日期:2021-10-18
  • 在线发布日期: 2021-10-22
文章二维码